首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Choi EJ  Kim T  Lee MS 《Life sciences》2007,80(15):1403-1408
We investigated the effects of genistein and genistin on proliferation and apoptosis of human ovarian SK-OV-3 cells and explored the mechanism for these effects. SK-OV-3 cells were treated with genistein and genistin at various concentrations (ranging from 1 to 100 muM) either alone or in combination for 24 and 48 h. Cell proliferation was estimated using an MTT assay, and cell cycle arrest was evaluated using FACS. Caspase-3 activity and annexin-based cell cycle analysis were used as measures of apoptosis. In addition, genistein- and genistin-induced cytotoxicity was determined by measuring release of LDH. Genistein treatment for 24 or 48 h substantially inhibited SK-OV-3 cell proliferation in a dose-dependent manner, and genistin treatment for 48 h also inhibited cell proliferation. Genistein caused cell cycle arrest at G2/M phase in dose- and time-dependent manner, and genistin caused cell cycle arrest not only at G2/M phase but also at G1 phase. Genistein markedly induced apoptosis and significantly increased LDH release, whereas genistin did not affect LDH release. Moreover, exposure to both genistein and genistin in combination for 48 h induced apoptosis without increasing LDH release. Genistein and genistin inhibit cell proliferation by disrupting the cell cycle, which is strongly associated with the arrest induction of either G1 or G2/M phase and may induce apoptosis. Based on our findings, we speculate that both genistein and genistin may prove useful as anticancer drugs and that the combination of genistein and genistin may have further anticancer activity.  相似文献   

2.
Enomoto M  Seong JY  Kawashima S  Park MK 《Life sciences》2004,74(25):3141-3152
There have been numerous reports of the inhibitory effects of gonadotropin-releasing hormone (GnRH) and its agonistic and antagonistic analogues on carcinomas derived from various organs, and in particular the direct inhibitory effects have been extensively studied. On the other hand, several studies have indicated that GnRH stimulates the proliferation of lymphoid tissues and cells, suggesting that GnRH is an immunomodulator. However, there have been few reports showing a stimulatory effect of GnRH on cell lines not derived from lymphoid tissues, and the mechanism of the stimulatory effect has not been investigated in detail. In this study, the stimulatory effect of GnRH (100 pM) on TSU-Pr1, a human prostatic carcinoma cell line, was demonstrated, and the dose-depedency of this effect of GnRH (3.125 fM approximately 20 nM) was observed by measuring colony-formation. RT-PCR analysis showed that both human GnRH receptor 1 and 2 are expressed in TSU-Pr1 cells, suggesting that this stimulatory effect of GnRH occurs through GnRH receptor(s). To our knowledge, this is the first report showing the stimulatory effect of GnRH on a prostatic carcinoma cell line. Moreover, we also examined the effect of conditioned medium of TSU-Pr1 cells and found that it inhibited the GnRH activity only on TSU-Pr1 cells. This characteristic of the conditioned medium of TSU-Pr1 cells is different from that of HHUA or Jurkat cells described in our previous study. TSU-Pr1 cells the proliferation of which is stimulated by GnRH can yield important clues about the mechanisms of the effects of GnRH on cell proliferation.  相似文献   

3.
Arsenic trioxide (As2O3, diarsenic oxide) has recently been reported to induce apoptosis and inhibit the proliferation of various human cancer cells derived from solid tumors as well as hematopoietic malignancies. In this study, the in vitro effects of As2O3 and tetraasrsenic oxide (As4O6) on cell cycle regulation and basic fibroblast growth factor (bFGF)- or vascular endothelial growth factor (VEGF)-stimulated cell proliferation of human umbilical vein endothelial cells (HUVEC) were investigated. Significant dose-dependent inhibition of cell proliferation was observed when HUVEC were treated with either arsenical compound for 48 h, and flow cytometric analysis revealed that these two arsenical compounds induced cell cycle arrest at the G1 and G2/M phases--the increases in cell population at the G1 and G2/M phase were dominantly observed in As2O3- and As4O6-treated cells, respectively. In both arsenical compounds-treated cells, the protein levels of cyclin A and CDC25C were significantly reduced in a dose-dependent manner, concomitant to the reduced activities of CDK2- and CDC2-associated kinase. In G1-synchronized HUVEC, the arsenical compounds prevented the cell cycle progression from G1 to S phase, which was stimulated by bFGF or VEGF, through the inhibition of growth factor-dependent signaling. These results suggest that arsenical compounds inhibit the proliferation of HUVEC via G1 and G2/M phase arrest of the cell cycle. In addition, these inhibitory effects on bFGF- or VEGF-stimulated cell proliferation suggest antiangiogenic potential of these arsenical compounds.  相似文献   

4.
Lim HK  Kang HK  Yoo ES  Kim BJ  Kim YW  Cho M  Lee JH  Lee YS  Chung MH  Hyun JW 《Life sciences》2003,72(12):1389-1399
The cytotoxic activity of oxysterols, 7 beta-hydroxycholesterol (7 beta-OHC) and 25-hydroxycholesterol (25-OHC), has been evaluated using various leukemia cell lines. Among the tested cell lines, both oxysterols showed the highest cytotoxicity to THP-1, human monocytic leukemia cell line. These oxysterols induced apoptosis through down-regulation of Bcl-2 expression and activation of caspases. Also, the oxysterols showed the accumulation at G(2)/M phase of cell cycle through down-regulation of cyclin B1 expression. Taken together, these results indicated that both 7 beta-OHC and 25-OHC inhibited the proliferation of THP-1 cells through apoptosis and cell cycle accumulation at G(2)/M phase.  相似文献   

5.
6.
刘佳  杨晓彤  杨庆尧 《生物磁学》2011,(20):3826-3829
目的:探究云芝糖)Ik(PSP)对人急性淋巴母细胞白血病Molt-4细胞周期的影响。方法:采用流式细胞术BrdU/DNA双染法获得各时相细胞分布状况和细胞周期的动力学参数。结果:0.1mg/mlPSP处理12h后,G2/M期细胞百分比由对照组的11.09%减少至3.69%。DNA合成时间由12.10h延长至108.40h。24h处理组中,S期细胞百分比由对照组的43.29%增加至67.26%,而G0/G1期和G2/M期细胞百分比均减少,G0/G1期细胞百分比由对照组的37.47%减少至27.43%,G2/M期细胞百分比由对照组的19.24%降低至5.31%。DNA合成时间更是由11.95h延长至114.52h。结论:PSP对人急性淋巴母细胞白血病Molt-4细胞周期的阻滞作用在于S期.该作用与DNA合成抑制有关。  相似文献   

7.
8.
c-ski对大鼠皮肤成纤维细胞增殖的调节作用及机制   总被引:6,自引:0,他引:6  
c-ski是成纤维细胞增殖的复杂调节子,它对中胚层来源的皮肤成纤维细胞增殖的作用还不清楚。在观察正常成纤维细胞周期c-ski表达的时相特点的基础上,通过体外转染c-ski,观察它对细胞增殖活性、细胞周期进展以及周期蛋白表达的影响。结果显示:c-ski mRNA表达在加入血清后开始升高,在细胞周期G,期的高峰期达到峰值,S期显著下降,在G2/M期维持在较低的水平:转染的c-ski可以以剂量依赖的方式增加细胞的增殖活性,并且可以逆转Smad3对细胞增殖活性的抑制作用;C-ski使成纤维细胞提前达到G0/G1期的最低点,进入S期:同时细胞G1期周期蛋白cyclinD的表达增加。这些结果表明:C-ski是皮肤成纤维细胞G1期的调节子,通过加快G1期进展促进增殖,抑制Smad3活性,促进cyclinD的表达可能与这一作用的分子机制有关。  相似文献   

9.
Cell proliferation is accompanied with changing levels of intracellular calmodulin (CaM) and its activation.Prior data from synchronized cell population could not actually stand for various CaM levels in different phases of cell cycle.Here,based upon quantitative measurement of fluorescence in individual cells,a method was developed to investigate intracellular total CaM and Ca^2 -activated CaM contents. Intensity of CaM immunoflurescence gave total CaM level,and Ca^2 -activated CaM was measured by fluorescence intensity of CaM antagonist trifluoperazine (TFP).In mouse erythroleukemia (MEL) cells,total CaM level increased from G1 through S to G2M,reaching a maximum of 2-fold increase,then reduced to half amount after cell division.Meanwhile,Ca^2 -activated CaM also in creased through the cell cycle(G1,S,G2M).Increasing observed in G1 meant that the entry of cells from G1 into S phase may require CaM accumulation,and,equally or even more important,Ca^2 -dependent activation of CaM.Ca^2 -activated CaM decreased after cell division.The results suggested that CaM gene expression and C^2 -modulated CaM activation act synergistically to accomplish the cell cycle progression.  相似文献   

10.
HeLa cells synchronized by double-thymidine block were grown in Eagle's minimum essential medium supplemented with 10% calf serum, and the fluctuation of trypsin-like protease activity in the cell cycle was examined. Seven distinct activity peaks were observed in one cell cycle at a cell density of 2%: two peaks in S phase, one peak at the S/G2 boundary, one peak in early M phase and one at the M/G1 boundary, and two peaks in G1 phase. HeLa cells synchronized by a mitotic detachment technique also showed similar results at cell density of 4.8%. The appearance of trypsin-like proteinase activity in the cell cycle was markedly affected by cell density, and no definite peak was observed above 8%. trans-Guanidinomethylcyclohexanecarboxylic and 4-tert-butylphenyl ester (GMCHA-OPhBut), a specific inhibitor for trypsin and a strong inhibitor of HeLa cell growth, had no effect on the various events in the first S, G2 and M phases, such as the incorporation of [methyl-3H]thymidine into DNA, the increase in the cell concentration, and the appearance of trypsin-like proteinase activity, whereas it retarded the onset of the second S phase and the various events in the second S, G2 and M phases for 3 h. In particular, it induced the appearance of a new proteinase peak at the G1/S boundary.  相似文献   

11.
Effect of cadmium on cell cycle progression in Chinese hamster ovary cells   总被引:4,自引:0,他引:4  
Chinese hamster ovary K1 (CHO K1) cells are very sensitive to cadmium (Cd) toxicity. They were used to investigate the effect of Cd on cell cycle progression. Cells were cultured with 0.1, 0.4, 1 or 4 microM Cd for various time intervals. There was no difference in growth rate when less than 0.4 microM Cd was given within 24 h. A dose-dependent reduction of cell proliferation was observed when more than 0.4 microM of Cd was given. The cells were pulse-labeled with 5-bromodeoxyuridine (BrdU), and the labeled cells were cultured in the presence of increasing concentrations of Cd. Cell cycle progression was retarded as a function of Cd concentration. G2/M arrest was observed when the BrdU-labeled cells were treated with 1 microM Cd for 8h, whereas cells receiving 4 microM Cd stopped at the S phase within 4 h. Cell cycle analysis of cells treated with Cd for 24 h showed that G2/M arrest occurred only when cells received 0.8 to 2 microM Cd. Despite the occurrence of G2/M arrest in the Cd treatment, only a limited proportion of the cells were blocked in the M phase. However, the increase in M phase cells coincided with an elevation in the cyclin-dependent kinase 1 activity. To examine whether Cd acts on cells at a specific cell stage, they were synchronized at the G1 or G2/M phase then treated with 1 microM Cd for 12 h. The cells were blocked at the G2/M and G1/S phase, respectively. This finding indicates that Cd toxicity is global and not cell phase specific. We also investigated the involvement of Cd-induced reactive oxygen species (ROS) with the occurrence of G2/M block and found a lack of correlation between cell cycle arrest and ROS production. We measured the Cd content that caused G2/M arrest from a series of Cd treatments and determined the ranges of cumulative Cd concentrations that could result in cell cycle arrest.  相似文献   

12.
Gonadotropin releasing hormone (GnRH) is a hypothalamic neuronal secretory decapeptide that plays a pivotal role in mammalian reproduction. GnRH and its analogues are used extensively in the treatment of hormone dependent diseases and assisted reproductive technology. Fourteen structural variants and three different forms of GnRH, named as hypothalamic GnRH or GnRH-I, mid brain GnRH or GnRH-II and GnRH-III across various species of protochordates and vertebrates have been recognised. The hormone acts by binding to cell surface transmembrane G protein coupled receptors (GPCRs) and activates Gq/11 subfamily of G proteins. Although hypothalamus and pituitary are the principal source and target sites for GnRH, several reports have recently suggested extra-hypothalamic GnRH and GnRH receptors in various reproductive tissues such as ovaries, placenta, endometrium, oviducts, testes, prostrate, and mammary glands. GnRH-II appears to be predominantly expressed in extra pituitary reproductive tissues where it produces its effect by PLC, PKA2, PLD, and AC cell signalling pathways. In these tissues, GnRH is considered to act by autocrine or paracrine manner and regulate ovarian steroidogenesis by having stimulatory as well as inhibitory effect on the production of steroid hormones and apoptosis in ovarian follicle and corpus luteum. In male gonads, GnRH has been shown to cause a direct stimulatory effect on basal steroidogenesis and an inhibitory effect on gonadotropin-stimulated androgen biosynthesis. Recent studies have shown that GnRH is more abundantly present in ovarian, endometrial and prostrate carcinomas. The presence of type-II GnRH receptors in reproductive tissues (e.g. gonads, prostrate, endometrium, oviduct, placenta, and mammary glands) suggests existence of distinct role(s) for type-II GnRH molecule in these tissues. The existence of different GnRH forms indicates the presence of distinctive cognate receptors types in vertebrates and is a productive area of research and may contribute to the development of new generation of GnRH analogues with highly selective and controlled action on different reproductive tissues and the target-specific GnRH analogues could be developed.  相似文献   

13.
Abstract

The conformational space available to GnRH and 1GnRH-III was compared using 5.2 ns constant temperature and pressure molecular dynamics simulations with explicit TIP3P solvation and the AMBER v. 5.0 force field. Cluster analysis of both trajectories resulted in two groups of conformations. Results of free energy calculations, in agreement with previous experimental data, indicate that a conformation with a turn from residues 5 through 8 is preferred for GnRH in an aqueous environment. By contrast, a conformation with a helix from residues 2 through 7 with a bend from residues 6 through 10 is preferred for 1GnRH-III in an aqueous environment. The side chains of His2 and Trp3 in 1GnRH-III occupy different regions of phase space and participate in weakly polar interactions different from those in GnRH. The unique conformational properties of 1GnRH-III may account for its specific anti cancer activity.  相似文献   

14.
In the present study, we investigated the mechanisms by which zinc causes growth arrest in colon cancer cells. The results suggest that zinc treatment stabilizes the levels of the wild-type adenomatous polyposis coli (APC) protein at the post-translational level since the APC mRNA levels and the promoter activity of the APC gene were decreased in HCT-116 cells (which express the wild-type APC gene) after treatment with ZnCl2. Increased levels of wild-type but not truncated APC proteins were required for the ZnCl2-mediated G2/M phase arrest in different colon cancer cell lines. We further tested whether serum-stimulation, which induces cell cycle arrest in the S phase, can relieve ZnCl2-induced G2/M phase arrest of HCT-116 cells. Results showed that in the HCT-116 cells pretreated with ZnCl2, the serum-stimulation neither changed the distribution of G2/M phase arrested cells nor the increased levels of APC protein. The G2/M phase arrest correlated with retarded growth of HCT-116 cells. To further establish that wild-type APC protein plays a role in ZnCl2-induced G2/M arrest, we treated SW480 colon cancer cells that express truncated APC protein. We found that ZnCl2 treatment did not induce G2/M phase arrest in SW480 cells; however, the cell growth was retarded due to the loss of E-cadherin and alpha-tubulin levels. These results suggest that ZnCl2 inhibits the proliferation of colon cancer cells (which carry the wild-type APC gene) through stabilization of the APC protein and cell cycle arrest in the G2/M phase. On the other hand, ZnCl2 inhibits the proliferation of colon cancer cells (which carry the mutant APC gene) by disrupting cellular attachment and microtubule stability.  相似文献   

15.
Endocrine disruptors (EDs) are a great concern throughout the world, because they have adverse effects on human health and wildlife. In the present study, we investigated the effects of EDs on the proliferation and survival of murine neural stem cells (NSCs). In contrast to bisphenol A, phthalic acid benzyl n-butyl ester, phthalic acid di-n-butyl ester and phthalic acid di(2-ethylhexyl) ester, the treatment of NSCs with 4-nonylphenol for 24 h inhibited cell growth in a concentration-dependent manner. In addition, treatment with 4-nonylphenol resulted in nuclear condensation and DNA fragmentation (morphological changes due to apoptosis) in NSCs after 12 h of exposure, and activated caspase-3 after 6 h and 9 h of exposure. Furthermore, an exposure to 4-nonylphenol led to the accumulation of cells at the G2/M phase interface and down-regulated the protein levels of cyclin A and B1, which are the major regulatory proteins at the G2 to M transition of the cell cycle. Together, these results indicate that, in contrast to other EDs, 4-nonylphenol may exhibit a potent cytotoxicity through apoptosis via the caspase cascade and cell cycle arrest at the G2/M phase, and suggest that 4-nonylphenol may affect neurogenesis in the CNS.  相似文献   

16.
This study was undertaken to gain more insight into the mechanism whereby TGF-beta influences the cell cycle progression of cultured rabbit articular chondrocytes. Using proliferating chondrocytes in fetal calf serum-containing medium, we have previously shown that TGF-beta induced a recruitment of cells at the end of the S phase (G2/M) observed 24 h after addition. The delayed cells may then be released, producing a proliferative effect at 48 h, provided a substantial amount of FCS (10%) is present in the medium. Otherwise, in low level of serum (2% FCS, for example), only inhibition of cell proliferation is observed. In chondrocytes synchronized in S phase by a thymidine block, we investigated here the time-course incorporation of [3H]-thymidine into DNA, the cell cycle traverse by flow cytofluorometric study of DNA content, the expression of PCNA (Proliferating Cell Nuclear Antigen), and cAMP levels. The data demonstrate that TGF-beta provoked a decrease of cAMP content (0.5-1 h) followed by an enhancement of the DNA synthesis rate (4 h) which was detectable through cytofluorometric analysis and [3H]-thymidine labeling and correlated with the PCNA expression. In contrast, addition of cAMP analogues to the cultures resulted in an inhibition of replication rate. We also showed that pertussis toxin produced a decrease of the DNA synthesis rate, in a transient manner and only in the presence of TGF-beta. All these results suggest that TGF-beta may accelerate the replication process of cyclized chondrocytes, making then accumulate at the G2/M boundary, via a mechanism that could involve the adenylate cyclase activity and a Gi-protein. The factor might be responsible for producing a pool of cells having already replicated their DNA and therefore capable of re-entering the cell cycle without delay. This cell population could serve as a tissue reserve able to induce a mitosis wave when necessary--for example, in the repair of tissue damage.  相似文献   

17.
The ability of low-dose ionizing radiation (1 Gy) to modulate the activities of the mitogen-activated protein kinase (MAPK) and Jun NH2-terminal kinase (JNK1) cascades in human myeloid leukemia (HL60/pCEP4) cells and in cells overexpressing the anti-apoptosis protein BCL2 (HL60/Bcl-2) was investigated. Radiation exposure caused prolonged (3-4 h) activation of MAPK in HL60 cells. The ability of radiation to activate the MAPK pathway was attenuated by 30% in cells overexpressing BCL2. In contrast, low-dose irradiation of HL60/pCEP4 and HL60/Bcl-2 cells failed to modulate JNK1 activity. Inhibition of the MAPK pathway by use of the specific MEK1/2 inhibitor (10 microM PD98059) in both HL60/pCEP4 and HL60/Bcl-2 cells prior to irradiation permitted a similar prolonged radiation-induced activation of JNK1. Furthermore, combined treatment with PD98059 and radiation in both cell types caused a large decrease in growth of cells in suspension culture, a large increase in apoptosis, and a 90% decline in clonogenicity when compared to either treatment alone. Reduced proliferation after combined irradiation and PD98059 treatment in both cell types correlated with reduced Cdc2 activity and arrest in G2/M phase of the cell cycle. These data demonstrate that inhibition of MEK1/2 leading to blockade of the MAPK activation increases the radiation sensitivity of HL60 cells and decreases the ability of these cells to recover from the radiation-induced arrest at the G2/M-phase cell cycle checkpoint. In addition, our data demonstrate that elevated expression of BCL2 does not abrogate the ability of inhibition of MAPK to potentiate radiation-induced cell death in HL60 cells.  相似文献   

18.
The mammary cancer cell line CAMA-1 synchronized at the G1/S boundary by thymidine block or at the G1/M boundary by nocodazole was used to evaluate 1) the sensitivity of a specific cell cycle phase or phases to 17 beta-estradiol (E2), 2) the effect of E2 on cell cycle kinetics, and 3) the resultant E2 effect on cell proliferation. In synchronized G1/S cells, E2-induced 3H-thymidine uptake, which indicated a newly formed S population, was observed only when E2 was added during, but not after, thymidine synchronization. Synchronized G2/M cells, enriched by Percoll gradient centrifugation to approximately 90% mitotic cells, responded to E2 added immediately following selection; the total E2-treated population traversed the cycle faster and reached S phase approximately 4 hr earlier than cells not exposed to E2. When E2 was added during the last hour of synchronization (ie, at late G2 or G2/M), or for 1 hr during mitotic cell enrichment, a mixed response occurred: a small portion had an accelerated G1 exit, while the majority of cells behaved the same as controls not incubated with E2. When E2 addition was delayed until 2 hr, 7 hr, or 12 hr following cell selection, to allow many early G1 phase cells to miss E2 exposure, the response to E2 was again mixed. When E2 was added during the 16 hr of nocodazole synchronization, when cells were largely at S or possibly at early G2, it inhibited entry into S phase. The E2-induced increase or decrease of S phase cells in the nocodazole experiments also showed corresponding changes in mitotic index and cell number. These results showed that the early G1 phase and possibly the G2/M phase are sensitive to E2 stimulation, late G1, G1/S, or G2 are refractory; the E2 stimualtion of cell proliferation is due primarily to an increased proportion of G1 cells that traverse the cell cycle and a shortened G1 period, E2 does not facilitate faster cell division; and estrogen-induced cell proliferation or G1/S transition occurs only when very early G1 phase cells are exposed to estrogen. These results are consistent with the constant transition probability hypothesis, that is, E2 alters the probability of cells entering into DNA synthesis without significantly affecting the duration of other cell cycle phases. Results from this study provide new information for further studies aimed at elucidating E2-modulated G1 events related to tumor growth.  相似文献   

19.
Phosphatidylinositol-3 kinase (PI3K) proteins are important regulators of cell survival and proliferation. PI3K-dependent signalling regulates cell proliferation by promoting G1- to S-phase progression during the cell cycle. However, a definitive role for PI3K at other times during the cell cycle is less clear. In these studies, we provide evidence that PI3K activity is required during DNA synthesis (S-phase) and G2-phase of the cell cycle. Inhibition of PI3K with LY294002 at the onset of S-phase caused a 4- to 5-h delay in progression through G2/M. LY294002 treatment at the end of S-phase caused an approximate 2-h delay in progression through G2/M, indicating that PI3K activity functions for both S- and G2-phase progression. The expression of constitutively activated Akt partially reversed the inhibitory effects of LY294002 on mitotic entry, which demonstrated that Akt was one PI3K target that was required during G2/M transitions. Inhibition of PI3K resulted in enhanced susceptibility of G2/M synchronized cells to undergo apoptosis in response to DNA damage as compared to asynchronous cells. Thus, similar to its role in promoting cell survival and cell cycle transitions from G1 to S phase, PI3K activity appears to promote entry into mitosis and protect against cell death during S- and G2-phase progression.  相似文献   

20.
The aim of this study is to investigate the effects of extremely low-frequency pulsed electromagnetic field (PEMF) on osteoblast-like cells. PEMF with a magnetic flux density of 1.55 mT at 48 Hz was employed to stimulate the MC3T3-E1 cell and the primary osteoblast cell derived from 2-day-old Sprague Dawley (SD) rat calvaria for different time. MTS method was applied to analyze cell proliferation and flow cytometry to detect cell cycle. The intracellular alkaline phosphatase (ALP) activity was measured by colorimetry. Our results demonstrated that PEMF of 1.55 mT at 48 Hz did not affect cell number of MC3T3-E1 cell, whereas the cell percentage of S and G(2)M phase decreased significantly. Although the cell number of the primary osteoblast cell did not alter by MTS assay after being exposed to PEMF for 24 h continuously, the cell percentage of S and G(2)M phase increased significantly. When culture time extended to 48 h, the cell number increased greatly and the cell percentage of S and G(2)M phase decreased significantly despite of the exposure type. After the primary osteoblast cell was exposed to PEMF for 24 h continuously, the ALP activity decreased significantly, whereas it increased significantly when being exposed to PEMF for 48 h continuously. From the results we concluded that PEMF of 1.55 mT at 48 Hz did not affect proliferation and differentiation of MC3T3-E1 cell, but it promoted proliferation, inhibited differentiation at proliferation stage, and promoted differentiation at differentiation stage of primary osteoblast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号