首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stabilization of Torpedo californica acetylcholinesterase by the divalent cations Ca+2, Mg+2, and Mn+2 was investigated. All three substantially protect the enzyme from thermal inactivation. Electron paramagnetic resonance revealed one high‐affinity binding site for Mn+2 and several much weaker sites. Differential scanning calorimetry showed a single irreversible thermal transition. All three cations raise both the temperature of the transition and the activation energy, with the transition becoming more cooperative. The crystal structures of the Ca+2 and Mg+2 complexes with Torpedo acetylcholinesterase were solved. A principal binding site was identified. In both cases, it consists of four aspartates (a 4D motif), within which the divalent ion is embedded, together with several water molecules. It makes direct contact with two of the aspartates, and indirect contact, via waters, with the other two. The 4D motif has been identified in 31 acetylcholinesterase sequences and 28 butyrylcholinesterase sequences. Zebrafish acetylcholinesterase also contains the 4D motif; it, too, is stabilized by divalent metal ions. The ASSAM server retrieved 200 other proteins that display the 4D motif, in many of which it is occupied by a divalent cation. It is a very versatile motif, since, even though tightly conserved in terms of RMSD values, it can contain from one to as many as three divalent metal ions, together with a variable number of waters. This novel motif, which binds primarily divalent metal ions, is shared by a broad repertoire of proteins. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:Protein_Science:3.  相似文献   

2.
The Tet repressor (TetR) mediates the most important mechanism of bacterial resistance against tetracycline (Tc) antibiotics. In the absence of Tc, TetR is tightly bound to its operator DNA; upon binding of Tc with an associated Mg2+ ion, it dissociates from the DNA, allowing expression of the repressed genes. Its tight control by Tc makes TetR broadly useful in genetic engineering. The Tc binding site is over 20 Å from the DNA, so the binding signal must propagate a long distance. We use molecular dynamics simulations and continuum electrostatic calculations to test two models of the allosteric mechanism. We simulate the TetR:DNA complex, the Tc-bound, “induced” TetR, and the transition pathway between them. The simulations support the model inferred previously from the crystal structures and reveal new details. When [Tc:Mg]+ binds, the Mg2+ ion makes direct and water-mediated interactions with helix 8 of one TetR monomer and helix 6 of the other monomer, and helix 6 is pulled in towards the central core of the structure. Hydrophobic interactions with helix 6 then pull helix 4 in a pendulum motion, with a maximal displacement at its N-terminus: the DNA interface. The crystal structure of an additional TetR reported here corroborates this motion. The N-terminal residue of helix 4, Lys48, is highly conserved in DNA-binding regulatory proteins of the TetR class and makes the largest contribution of any amino acid to the TetR:DNA binding free energy. Thus, the conformational changes lead to a drastic reduction in the TetR:DNA binding affinity, allowing TetR to detach itself from the DNA. Tc plays the role of a specific Mg2+ carrier, whereas the Mg2+ ion itself makes key interactions that trigger the allosteric transition in the TetR:Tc complex.  相似文献   

3.
Opiate Receptor: Multiple Effects of Metal Ions   总被引:4,自引:4,他引:0  
Abstract: The opiate antagonist [3H]diprenorphine ([3H]dip), a universal ligand at the μ, δ, and k opiate receptor subtypes, was used to study the effects of Ca-II, Cu-II, Mg-II, Mn-II, and Na+ on the rat cerebral opiate receptor. Two categories of effects were observed: (a) those on the binding rate constants and (b) those on binding capacity. (a) Sodium ions increased on- and off-rates on [3H]dip with a rather small net change in receptor affinity. The effects of Na+ and the divalent ions Ca-II, Mg-II, and Mn-II were antagonistic to each other. Ca-II, Mg-II, and the more effective Mn-II decreased receptor association and dissociation rates, again with minimal changes in the overall binding affinity in washed membrane homogenates. Previous studies using equilibrium binding analysis alone failed to detect changes in [3H]dip binding kinetics caused by these metal ions. In untreated rat brain homogenates, however, Ca-II (and to a lesser extent Mg-II) decreased [3H]dip binding, an effect distinct from that on the binding rate constants in washed membrane homogenates. (b) In untreated, Tris-buffer homogenates not containing external metal ions, a gradual decline in [3H]dip binding was observed. Cu-II or an equivalent endogenous divalent metal ion was identified as a causative factor, and Mn-II partially reversed this effect. Moreover, the addition of Mn-II stabilized the [3H]dip binding sites at very low concentrations of the metal (nM to μM range) that did not change the binding rate constants and that were in the physiological range of Mn-II in rat brain. This unique effect of Mn-II may represent a physiological function in the regulation of the opiate receptor that is not shared by Mg-II and Ca-II. The opposite effects of Cu-II and Mn-II on the in vitro receptor stability may be related to their opposite pharmacological effect in vivo. Finally, multiple changes of the effects of the tested metal ions on [3H]dip binding were observed during in vitro membrane homogenate dilution, centrifugation, and washing. These changes indicate that the opiate receptor complex as it exists in vivo may lose some of its functions and control mechanisms in vitro.  相似文献   

4.
The diffusion rates of [3H] adenine nucleotides across bimolecular lipid membranes were shown to be directly related to their organic/water partition coefficients, the order being ATP > ADP > AMP. Nucleotide diffusion was stimulated by divalent metal ions with the order of stimulation being Cu+2 ? Zn+2 > Mg+2. The ability of a divalent metal ion to stimulate diffusion appears to be related to its ability to bind to the N-7 of the adenine ring. The divalent metal ions increase adenine nucleotide diffusion both by complexing with the nucleotide thus decreasing the charge on the nucleotide and by increasing the permeability of the lipid bilayer.  相似文献   

5.
The cation exchange properties of cell walls isolated from collard (Bassica oleracea var acephala D.C.) leaves were investigated. Cation sorption on cell walls was described by mass-action expressions of ion exchange, rather than by the traditional Donnan equilibrium. The mass-action expressions enable the selectivity of the wall for one cation over another to be determined unambiguously from ion exchange isotherms. We found that: (a) the cation composition of the wall varied as a function of the solution cation concentration, solution cation composition, and pH in a way predicted by mass action; (b) the affinity of the wall for divalent cations increased as the equivalent fraction of divalent cation on the wall increased, and as the concentration of divalent cations in solution increased; (c) the selectivity of the wall for any metal cation pair was not altered by the concentration of H+ in solution or on the wall; (d) H+ sorption on the wall may be treated as a cation exchange reaction making it possible to calculate the relative affinity of the wall for metal cation pairs from H+-metal (Me) titration curves; and (e) the relative affinity of the wall for the cations we studied was: H+ (K+ ≥ Ca2+) > Mg2+. A cation-exchange model including surface complexes is consistent with observed cation selectivity. We conclude that metal cations interact with the wall to minimize or eliminate long-range electrostatic interactions and suggest that this may be due to the formation of site-specific cation-wall surface complexes.  相似文献   

6.
We report the synthesis of the Schiff base ligands, 4-[(4-bromo-phenylimino)-methyl]-benzene-1,2,3-triol (A1), 4-[(3,5-di-tert-butyl-4-hydroxy-phenylimino)-methyl]-benzene-1,2,3-triol (A2), 3-(p-tolylimino-methyl)-benzene-1,2-diol (A3), 3-[(4-bromo-phenylimino)-methyl]-benzene-1,2-diol (A4), and 4-[(3,5-di-tert-butyl-4-hydroxy-phenylimino)-methyl]-benzene-1,3-diol (A5), and their Cd(II) and Cu(II) metal complexes, stability constants and potentiometric studies. The structure of the ligands and their complexes was investigated using elemental analysis, FT-IR, UV-Vis, 1H and 13C NMR, mass spectra, magnetic susceptibility and conductance measurements. In the complexes, all the ligands behave as bidentate ligands, the oxygen in the ortho position and azomethine nitrogen atoms of the ligands coordinate to the metal ions. The keto-enol tautomeric forms of the Schiff base ligands A1-A5 have been investigated in polar and non-polar organic solvents. Antimicrobial activity of the ligands and metal complexes were tested using the disc diffusion method and the strains Bacillus megaterium and Candida tropicalis.Protonation constants of the triol and diol Schiff bases and stability constants of their Cu2+ and Cd2+ complexes were determined by potentiometric titration method in 50% DMSO-water media at 25.00 ± 0.02 °C under nitrogen atmosphere and ionic strength of 0.1 M sodium perchlorate. It has been observed that all the Schiff base ligands titrated here have two protonation constants. The variation of protonation constant of these compounds was interpreted on the basis of structural effects associated with the substituents. The divalent metal ions of Cu2+ and Cd2+ form stable 1:2 complexes with Schiff bases.The Schiff base complexes of cadmium inhibit the intense chemiluminescence reaction in dimethylsulfoxide (DMSO) solution between luminol and dioxygen in the presence of a strong base. This effect is significantly correlated with the stability constants KCdL of the complexes and the protonation constants KOH of the ligands; it also has a nonsignificant association with antibacterial activity.  相似文献   

7.
Previous studies [Wasylewskiet al. (1996),J. Protein Chem. 15, 45–58] have shown that the W43 residue localized within the helix-turn-helix structure domain of Tet repressor can exist in the ground state in two conformational states. In this paper we investigate the fluorescence properties of W43 of TetR upon binding of tetracycline inducer and its chemical analogs such as anhydro- and epitetracycline. Binding of the drug inducer to the protein indicates that the W43 residue still exists in two conformational states; however, its environment changes drastically, as can be judged by the changes in fluorescence parameters. The FQRS (fluorescence-quenching-resolved spectra) method was used to decompose the total emission spectrum. The resolved spectra exhibit maxima of fluorescence at 346 and 332 nm and the component quenchable by KI (346 nm) is shifted 9 nm toward the blue side of the spectrum upon inducer binding. The observed shift does not result from the changes in the exposure of W43, since the bimolecular quenching rate constant remains the same and is equal to about 2.7×109M–1sec–1. The binding of tetracycline leads to drastic decrease of the W43 fluorescence intensity and increase of the tetracycline intensity as well as the decrease of fluorescence lifetime, especially of the W43 component characterized by the emission at 332 nm. The observed energy transfer from W43 to tetracycline is more efficient for the state characterized by the fluorescence emission at 332 nm (88%) than for the component quenchable by iodide (53%) Tetracycline and several of its derivatives were also used to observe how chemical modifications of the hydrophilic groups in tetracycline influence the mechanism of binding of the antibiotic to Tet repressor. By use of pulsed-laser photoacoustic spectroscopy it is shown that the binding of tetracyclines to Tet repressor leads to significant increase of tetracycline fluorescence quantum yields. Steady-state fluorescence quenching of tetracycline analogs in complexes with Tet repressor using potassium iodide as a quencher allowed us to determine the dependence of the exposure of bound antibiotic on the modifications of hydrophilic substituents of tetracycline. Circular dichroism studies of the TetR-[Mg · tc]+ complex do not indicate dramatic changes in the secondary structure of the protein; however, the observed small decrease in the TetR helicity may occur due to partial unfolding of the DNA recognition helix of the protein. The observed changes may play an important role in the process of induction in which tetracycline binding results in the loss of specific DNA binding.Abbreviations FQRS fluorescence-quenching-resolved spectra - HTH helix-turn-helix motif - tc tetracycline - TetR tetracycline repressor from Escherichia coli - TetR WT wild-type TetR - TetR W43 single point mutant with phenylalanine substituted for tryptophan at position 75 in both subunits  相似文献   

8.
Summary (1) When salts are added to buffered suspensions of membrane fragments containing the fluorochrome 1-anilino-8-naphthalenesulfonate (ANS), there is an increased fluorescence. This is caused by increased binding of the fluorochrome; the intrinsic fluorescence characteristics of the bound dye remain unaltered. These properties make ANS a sensitive and versatile indicator of ion association equilibria with membranes. (2) Alkali metal and alkylammonium cations bind to membranes in a unique manner. Cs+ binds most strongly to rat brain microsomal material, with the other alkali metals in the order Cs+>Rb+>K+>Na+>Li+. The reaction is endothermic and entropy driven. Monovalent cations are displaced by other monovalent cations. Divalent cations and some drugs (e. g., cocaine) displace monovalent cations more strongly. (3) Divalent cations bind to membranes (and to lecithin micelles) at four distinct sites, having apparent association constants between 50 and 0.2mm –1. The characteristics of the titration suggest that only one species of binding site is present at any one time, and open the possibility that structural transitions of the unassociated coordination sites may be induced by divalent cation binding. Divalent cation binding at the weakest site (like monovalent cation binding) is endothermic and entropy driven. At the next stronger site, the reaction is exothermic. Monovalent cations affect divalent cation binding by reducing the activity coefficient: they do not appear to displace divalent cations from their binding sites.  相似文献   

9.
We report for the first time the in vitro characterization of a reverse tetracycline repressor (revTetR). The dimeric wild-type repressor (TetR) binds to tet operator tetO in the absence of the inducer anhydrotetracycline (atc) to confer tight repression. We have isolated the revTetR G96E L205S mutant, which, contrary to TetR, binds tetO only in the presence of atc. This reverse acting mutant was overproduced and purified. Effector and DNA binding properties were analyzed by EMSA and quantified by fluorescence titration and surface plasmon resonance. The association constant KA of revTetR for binding of [atcMg]+ is ~108 M–1, four orders of magnitude lower than that of TetR. The affinity of TetR for tetO is 5.6 ± 2 × 109 M–1 and that for revTetR in the presence of atc is 1 ± 0.2 × 108 M–1. Both induced forms, the atc-bound TetR and the free revTetR, have the same low affinity of 4 ± 1 × 105 M–1 for DNA. Therefore, atc does not act as a dimerization agent for revTetR. We discuss the structural differences between TetR and revTetR potentially underlying this reversal of activity.  相似文献   

10.

Background

Serum albumin is the most abundant protein in the blood and cerebrospinal fluid and plays a fundamental role in the distribution of essential transition metal ions in the human body. Human serum albumin (HSA) is an important physiological transporter of the essential metal ions Cu2 +, and Zn2 + in the bloodstream. Its binding of metals like Ni2 +, Co2 +, or Cd2 + can occur in vivo, but is only of toxicological relevance. Moreover, HSA is one of the main targets and hence most studied binding protein for metallodrugs based on complexes with Au, Pt and V.

Scope of Review

We discuss i) the four metal-binding sites so far described on HSA, their localization and metal preference, ii) the binding of the metal ions mentioned above, i.e. their stability constants and association/dissociation rates, their coordination chemistry and their selectivity versus the four binding sites iii) the methodology applied to study issues of items i and ii and iv) oligopeptide models of the N-terminal binding site.

Major Conclusions

Albumin has four partially selective metal binding sites with well-defined metal preferences. It is an important regulator of the blood transport of physiological Cu(II) and Zn(II) and toxic Ni(II) and Cd(II). It is also an important target for metal-based drugs containing Pt(II), V(IV)O, and Au(I).

General Significance

The thorough understanding of metal binding properties of serum albumin, including the competition of various metal ions for specific binding sites is important for biomedical issues, such as new disease markers and design of metal-based drugs. This article is part of a Special Issue entitled Serum Albumin.  相似文献   

11.
STIM1 acts as an endoplasmic reticulum Ca2 + sensor that communicates the filling state of the intracellular stores to the store-operated channels. In addition, STIM1 is expressed in the plasma membrane, with the Ca2 + binding EF-hand motif facing the extracellular medium; however, its role sensing extracellular Ca2 + concentrations in store-operated Ca2 + entry (SOCE), as well as the underlying mechanism remains unclear. Here we report that divalent cation entry stimulated by thapsigargin (TG) is attenuated by extracellular Ca2 + in a concentration-dependent manner. Expression of the Ca2 +-binding defective STIM1(D76A) mutant did not alter the surface expression of STIM1 but abolishes the regulation of divalent cation entry by extracellular Ca2 +. Orai1 and TRPC1 have been shown to play a major role in SOCE. Expression of the STIM1(D76A) mutant did not alter Orai1 phosphoserine content. TRPC1 silencing significantly attenuated TG-induced Mn2 + entry. Expression of the STIM1(K684,685E) mutant impaired the association of plasma membrane STIM1 with TRPC1, as well as the regulation of TG-induced divalent cation entry by extracellular Ca2 +, which suggests that TRPC1 might be involved in the regulation of divalent cation entry by extracellular Ca2 + mediated by plasma membrane-resident STIM1. Expression of the STIM1(D76A) or STIM1(K684,685E) mutants reduced store-operated divalent cation entry and resulted in loss of dependence on the extracellular Ca2 + concentration, providing evidence for a functional role of plasma membrane-resident STIM1 in the regulation of store-operated divalent cation entry, which at least involves the EF-hand motif and the C-terminal polybasic lysine-rich domain.  相似文献   

12.
The formation reactions of hydrophobic metal complexes of divalent typical element and transition metal ions with a novel chelating ligand containing N and O donor atoms, 4,5-bis(diphenylphosphinoyl)-1,2,3-triazole (LTH), were investigated by the liquid-liquid distribution method carried out on metal ions between chloroform and aqueous solutions. The liquid-liquid distribution reaction formulae of metal ions via the formation of hydrophobic metal complexes were revealed, along with their equilibrium constants. Three types of hydrophobic mononuclear and binuclear metal complexes distributed into chloroform solutions were found, namely, ML2 (M = Mg2+, Zn2+, Pb2+; L = LT−), ML2(HL) (M = Cd2+, Mn2+), and M2L3(OH) (M = Co2+, Ni2+, Cu2+). Linear free energy relationships were found between the equilibrium constants of the liquid-liquid distribution reactions and the stability constants of 1:1 complexes consisting of a divalent metal ion and a glycinate. These relationships suggest the chelate formation of N,O-coordination with a heterocyclic five-membered ring in the metal complexes with LTH.  相似文献   

13.
《Inorganica chimica acta》1986,125(3):173-182
The pre-resonance Raman spectra of 2-formylpyridine thiosemicarbazone have been measured at three pH values corresponding to the fully protonated (H2FPT+), half protonated (HFPT) and deprotonated (FPT) forms of the ligand. Assignments of the vibrations coupled with the π→π* transition have been made by comparison with the spectrum of the deuterated form (DFPT). The pre-resonance Raman spectra of the Zn(II) and Cu(II) complexes, [ZnFPT]+, [CuFPT]+ and [CuHFPT]2+, have also been measured. The spectral pattern of the Cu(II) complexes shows resonance enhancement of vibrations coupled with the π→π*, as well as with the ligand to metal charge transfer transitions. In addition, it is consistent with coordination through thiolate sulfur in [CuFPT]+ and thione sulfur in [CuHFPT]2+.  相似文献   

14.
Chloride salts of Li+, Na+, K+, Mg2+, Ca2+, Cr3+, Mn2+, Fe2+, and Fe3+ had no effect on [3H]diazepam binding. Chloride salts of Co2+, Ni2+, Cu2+, and Zn2+ increased [3H]diazepam binding by 34 to 68% in a concentration-dependent fashion. Since these divalent cations potentiated the GABA-enhanced [3H]diazepam binding and the effect of each divalent cation was nearly additive with GABA, these cations probably act at a site different from the GABA recognition site in the benzodiazepine-receptor complex. Scatchard plots of [3H]diazepam binding without an effective divalent cation showed a single class of binding, with a Kd value of 5.3 mM. In the presence of 1 mM Co2+, Ni2+, Cu2+, or Zn2+, two distinct binding sites were evident with apparent Kd values of 1.0 nM and 5.7 nM. The higher-affinity binding was not detected in the absence of an effective divalent cation and is probably a novel, super-high-affinity binding site.  相似文献   

15.
A detailed study has been made of the permeability characteristics of human erythrocyte ghosts prepared under isoionic conditions by a glycol-induced lysis (Billah, M.M., Finean, J.B., Coleman, R. and Michell, R.H. (1976) Biochim. Biophys. Acta 433, 45–54). Impermeability to large molecules such as dextran (average molecular weight 70 000) was restored immediately and spontaneously after each of the 5–7 lyses that were required to remove all of the haemoglobin. Permeabilities to smaller molecules such as MgATP2?, [3H]inositol and [14C]choline were initially high but could be greatly reduced by incubation at 37°C for an hour. The extent of such resealing decreased as the number of lyses to which the ghosts had been subjected increased. Both removal of haemoglobin and permeabilities to small molecules were affected significantly by pH, Ca2+ concentrations and divalent cation chelators. Maximum resealing was achieved in ghosts prepared in the basic ionic medium (130 mM KCl, 10 mM NaCl, 2 mM MgCl2, 10 mM N-2-hydroxyethylpiperazine-N′-2-ethanesulphonic acid (HEPES)) at pH 7.0 (0°C) and with a calcium level around 10?5 M. Acidic pH facilitated the removal of haemoglobin whilst the presence of divalent cation chelators slowed down its release. Retention of K+ by ghosts loaded with K+ during the first lysis and subsequently incubated at 37° C was substantial but little K+ could be retained within the haemoglobin-free ghosts. Permeability of the ghosts to K+ after one lysis was affected by temperature, pH, Ca2+ concentrations and by the presence of divalent cation chelators.  相似文献   

16.
The crystal structure of zinc citrate [Zn(II) (C6H5O7)2·4NH4+] shows isolated zinc ions octahedrally coordinated to two equivalent citrates via a central hydroxyl, central carboxyl, and one terminal carboxyl from each citrate. The clusters are linked through hydrogen bonds to ammonium ions in the lattice. The structure is distinctly different from that of other divalent cation triply ionized citrate complexes, which are polymeric. Crystal data : space group P21/C, a = 8.784(3) Å, b = 13.499(4) Å, c = 9.083(3) Å, β = 113.4°(1), V = 988(1) Å3. Citrate has been identified as the low molecular weight ligand that complexes zinc in human milk; this may be of interest in relation to intestinal zinc absorption.  相似文献   

17.
The ability of the Stern equation to describe the adsorption of divalent cations to phosphatidylglycerol membranes was tested by combining 31P-NMR and electrophoretic mobility measurements. In 0.1 M sodium chloride both the 31P-NMR and the zeta potential data are well described by the Stern equation. 31P-NMR and 13C-NMR results indicate that cobalt forms inner-sphere complexes only with the phosphate group of phosphatidylglycerol molecules and that a substantial fraction of the adsorbed cobalt ions form outer-sphere complexes. Evidence is presented that suggests the alkaline earth cations also bind to phospholipids mainly by forming outer sphere complexes. Electrophoretic mobility measurements were performed with several different divalent cations. In all cases the zeta potentials in 0.1 M sodium chloride were well described by the Stern equation. The intrinsic 1 : 1 association constants (M?1) for the phosphatidylglycerol complexes decreased in the sequence: Mn2+, 11.5; Ca2+, 8.5; Ni2+, 7.5; Co2+, 6.5; Mg2+, 6.0; Ba2+, 5.5 and Sr2+, 5.0.  相似文献   

18.
Conformational aspects of the complexation of bis(cyclic tetrapeptide), S,S′-bis[cyclo(Gly-l-hemiCys-Sar-l-Pro)] (BCGCSP) with a metal cation were studied. Binding constants of BCGCSP with several cations were determined in aqueous solution, using circular dichroism (c.d.) titration curves. The values were compared with those of two mono-cyclic tetrapeptides, cyclo[Gly-l-Cys[Bzl(OMe)]-Sar-l-Pro] and cyclo(Sar-l-Pro-Sar-l-Pro). When complexing with alkali metal cations, BCGCSP exhibits selective affinity for Rb+ in preference to Li+, Na+, and K+. Complexing with alkaline earth metal cations, the peptide binds Ba2+ selectively. In addition, BCGCSP shows a marked Ba2+/Ca2+ selectively compared with the other three cyclic peptides. In order to explain these characteristics, a pseudo-inclusion complex with a castanet type structure was proposed as a model of the bis(peptide)—cation complex. The c.d. band ascribed to disulphide (SS) bond transition, showed a red shift upon complex formation. From this observation, it is suggested that conformational fitting of bis(peptide) takes place by changing the geometry of the peptide backbone and covalent CSSC bridge upon complexation with a metal cation.  相似文献   

19.
Abstract

We have carried out B3LYP hybrid density functional studies of complexes formed by cyclic cytosine-, guanine-, thymine-, uracil- and mixed guanine cytosine-tetrads with Li+, Na+ and K+ ions to determine their structures and interaction energies. The conformations studied have been restricted to a hydrogen bond pattern closely related to the tetrads observed in experimental nucleic acid structures. A comparison of the alkali metal ion/tetrad complexes with the tetrads without cations indicates that alkali metal ions modulate the tetrad structures significantly and that even the hydrogen bond pattern may change. Guanine-tetrad cation complexes show the strongest interaction energy compared to other tetrads that occur less frequently in experimental structures. The most stable G-tetrad/metal ion structure adopts a nearly planar geometry that is especially suitable for tetraplex formation, which requires approximately parallel tetrad planes. In the cytosine-tetrad there is a very large central cavity suitable for cation recognition, but the complexes adopt a non-planar structure unsuitable for stacking, except possibly for ions with very large radii. Uracil and thymine tetrads show a significant different characteristics which may contribute to the differences between DNA and RNA.  相似文献   

20.
Complex formation with alkali and alkaline earth metal ions of cyclic octapeptides, cyclo(Phe-Pro)4, cyclo(Leu-Pro)4, and cyclo[Lys(Z)-Pro]4 was investigated in relation to conformation. In an alcohol solution, cyclo(Phe-Pro)4 did not form complexes. However, cyclo(Leu-Pro)4 and cyclo[Lys(Z)-Pro]4 formed complexes selectively with Ba2+ and Ca2+ ions. Changing the solvent from alcohol to acetonitrile, the complexation behavior was very different. In acetonitrile, cyclo(Phe-Pro)4 was found to form a complex with Ba2+, and CD spectra of cyclo(Leu-Pro)4 and cyclo[Lys(Z)-Pro]4 changed sharply on complexation with K+. Rate constants of the complex formation between the cyclic octapeptides and metal salts were in the range of 0.7–12 L mol?1 min?1 in an alcohol solution. One of the two types of complex formation in acetonitrile was much faster than that in an alcohol solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号