首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Carboxypeptidases were purified from guts of larvae of corn earworm (Helicoverpa armigera), a lepidopteran crop pest, by affinity chromatography on immobilized potato carboxypeptidase inhibitor, and characterized by N-terminal sequencing. A larval gut cDNA library was screened using probes based on these protein sequences. cDNA HaCA42 encoded a carboxypeptidase with sequence similarity to enzymes of clan MC [Barrett, A. J., Rawlings, N. D. & Woessner, J. F. (1998) Handbook of Proteolytic Enzymes. Academic Press, London.], but with a novel predicted specificity towards C-terminal acidic residues. This carboxypeptidase was expressed as a recombinant proprotein in the yeast Pichia pastoris. The expressed protein could be activated by treatment with bovine trypsin; degradation of bound pro-region, rather than cleavage of pro-region from mature protein, was the rate-limiting step in activation. Activated HaCA42 carboxypeptidase hydrolysed a synthetic substrate for glutamate carboxypeptidases (FAEE, C-terminal Glu), but did not hydrolyse substrates for carboxypeptidase A or B (FAPP or FAAK, C-terminal Phe or Lys) or methotrexate, cleaved by clan MH glutamate carboxypeptidases. The enzyme was highly specific for C-terminal glutamate in peptide substrates, with slow hydrolysis of C-terminal aspartate also observed. Glutamate carboxypeptidase activity was present in larval gut extract from H. armigera. The HaCA42 protein is the first glutamate-specific metallocarboxypeptidase from clan MC to be identified and characterized. The genome of Drosophila melanogaster contains genes encoding enzymes with similar sequences and predicted specificity, and a cDNA encoding a similar enzyme has been isolated from gut tissue in tsetse fly. We suggest that digestive carboxypeptidases with sequence similarity to the classical mammalian enzymes, but with specificity towards C-terminal glutamate, are widely distributed in insects.  相似文献   

3.
Carboxypeptidase inhibitors from Ascaris suum: the primary structure   总被引:1,自引:0,他引:1  
The carboxypeptidase A inhibitor from Ascaris suum was isolated from aqueous extracts by affinity chromatography toward immobilized carboxypeptidase A. The amino acid sequence is DQVRKCLSDT10DCTNGEKCVQ20KNKICSTIVE30IQRCEKEHFT40IPCKSNNDCQ50VWAHEKICN K60LPWGL65 . The carboxypeptidase A inhibitor is not homologous with the chymotrypsin/elastase or trypsin inhibitors from Ascaris, but shows homology in a 9-residue internal sequence with the 37/39-residue carboxypeptidase inhibitors from tomato and potato. The carboxy-terminal 5 (4) residues in the three inhibitors are similar, suggesting a common mechanism of inhibition.  相似文献   

4.
5.
We describe the identification, cDNA cloning, and biochemical characterization of a new human blood plasma glutamate carboxypeptidase (PGCP). PGCP was co-purified from human placenta with lysosomal carboxypeptidase, cathepsin A, lysosomal endopeptidase, cathepsin D, and a gamma-interferon-inducible protein, IP-30, using an affinity chromatography on a Phe-Leu-agarose column. A PGCP cDNA was obtained as an expressed sequence tag clone and completed at 5'-end by rapid amplification of cDNA ends polymerase chain reaction. The cDNA contained a 1623-base pair open reading frame predicting a 541-amino acid protein, with five putative Asn glycosylation sites and a 21-residue signal peptide. PGCP showed significant amino acid sequence homology to several cocatalytic metallopeptidases including a glutamate carboxypeptidase II also known as N-acetyl-aspartyl-alpha-glutamate carboxypeptidase or as prostate-specific membrane antigen and expressed glutamate carboxypeptidase activity. Expression of the PGCP cDNA in COS-1 cells, followed by Western blotting and metabolic labeling showed that PGCP is synthesized as a 62-kDa precursor, which is processed to a 56-kDa mature form containing two Asn-linked oligosaccharide chains. The mature form of PGCP was secreted into the culture medium, which is consistent with its intracellular localization in secretion granules. In humans, PGCP is found principally in blood plasma, suggesting a potential role in the metabolism of secreted peptides.  相似文献   

6.
近年来的研究发现 ,抗菌蛋白在生物体非专一性防御系统有着重要的作用 ,已有数十种具有抗菌活性的多肽被分离 ,这些多肽可大致分为 3类 ,即含分子内二硫桥的抗菌肽 ;具有双亲α 螺旋结构的抗菌肽 ;以及富含某种氨基酸残基的抗菌肽[1 ] ,一般来说 ,这些抗菌肽具有分子量小 ,稳定性好 ,无细胞毒性 ,抗菌谱广等特点。多种抗菌肽的一级结构和二级结构已经确定[2 ] ,但作用机理仍不明了。一般认为可能存在两种作用模式 ,即 1)通过肽 脂膜相关作用杀菌 ;2 )通过受体介导的识别过程起作用[1 ] 。CecropinB是一种较早从家蚕中分离得到 ,由 …  相似文献   

7.
A novel plasminogen-binding protein has been isolated from human plasma utilizing plasminogen-Sepharose affinity chromatography. This protein copurified with alpha 2 antiplasmin when the plasminogen affinity column was eluted with high concentrations of epsilon-aminocaproic acid (greater than 20 mM). Analysis by sodium dodecyl sulfate suggests this protein has an apparent Mr of 60,000. The amino-terminal amino acid sequence showed no similarity to other protein sequences. Based on the amino-terminal amino acid sequence, oligonucleotide probes were designed for polymerase chain reaction primers, and an approximately 1,800 base pair cDNA was isolated that encodes this Mr 60,000 protein. The deduced amino acid sequence reveals a primary translation product of 423 amino acids that is very similar to carboxypeptidase A and B and consists of a 22-amino acid signal peptide, a 92-amino acid activation peptide, and a 309-amino acid catalytic domain. This protein shows 44 and 40% similarity to rat procarboxypeptidase B and human mast cell procarboxypeptidase A, respectively. The residues critical for catalysis and zinc and substrate binding of carboxypeptidase A and B are conserved in the Mr 60,000 plasminogen-binding protein. The presence of aspartic acid at position 257 of the catalytic domain suggests that this protein is a basic carboxypeptidase. When activated by trypsin, it hydrolyzes carboxypeptidase B substrates, hippuryl-Arg and hippuryl-Lys, but not carboxypeptidase A substrates, and it is inhibited by the specific carboxypeptidase B inhibitor (DL-5-guanidinoethyl)mercaptosuccinic acid. We propose that the Mr 60,000 plasminogen-binding protein isolated here is a novel human plasma carboxypeptidase B and that it be designated pCPB.  相似文献   

8.
alpha 2-Antiplasmin (AP) inhibits plasmin in a two-step reaction in which AP reversibly binds to lysine-binding sites of plasmin and, then, more slowly complexes covalently with the enzyme's active site. Here, we show that the C-terminal lysine residue of AP has a key role in binding of the inhibitor to plasmin. A synthetic peptide corresponding to the C-terminal 26 amino acid residues of AP blocked association of AP with plasmin, but this activity of the peptide was lost when its C-terminal lysine residue was removed with carboxypeptidase B. The essential role of this lysine residue was shown more directly by treating AP with carboxypeptidase B and observing that AP lost its ability to inhibit plasmin rapidly.  相似文献   

9.
Recombinant forms of the dengue 2 virus NS3 protease linked to a 40-residue co-factor, corresponding to part of NS2B, have been expressed in Escherichia coli and shown to be active against para-nitroanilide substrates comprising the P6-P1 residues of four substrate cleavage sequences. The enzyme is inactive alone or after the addition of a putative 13-residue co-factor peptide but is active when fused to the 40-residue co-factor, by either a cleavable or a noncleavable glycine linker. The NS4B/NS5 cleavage site was processed most readily, with optimal processing conditions being pH 9, I = 10 mm, 1 mm CHAPS, 20% glycerol. A longer 10-residue peptide corresponding to the NS2B/NS3 cleavage site (P6-P4') was a poorer substrate than the hexapeptide (P6-P1) para-nitroanilide substrate under these conditions, suggesting that the prime side substrate residues did not contribute significantly to protease binding. We also report the first inhibitors of a co-factor-complexed, catalytically active flavivirus NS3 protease. Aprotinin was the only standard serine protease inhibitor to be active, whereas a number of peptide substrate analogues were found to be competitive inhibitors at micromolar concentrations.  相似文献   

10.
Carboxypeptidase M, a widely distributed membrane-bound carboxypeptidase that can regulate peptide hormone activity, was purified to homogeneity from human placenta (Skidgel, R. A., Davis, R. M., and Tan, F. (1989) J. Biol. Chem. 264, 2236-2241). The NH2-terminal 31 amino acids were sequenced, and two complementary oligonucleotide probes were synthesized and used to isolate a carboxypeptidase M clone from a human placental cDNA library. Sequencing of the cDNA insert (2009 base pairs) revealed an open reading frame of 1317 base pairs coding for a protein of 439 residues. The NH2-terminal protein sequence matched the deduced amino acid sequence starting with residue 14. Hydropathic analysis revealed hydrophobic regions at the NH2 and COOH termini. The NH2-terminal 13 amino acids probably represent part of the signal peptide, and the COOH-terminal hydrophobic region may act either as a transmembrane anchor or as a signal for attachment to a phosphatidylinositol glycan moiety. The carboxypeptidase M sequence contains six potential Asn-linked glycosylation sites, consistent with its glycoprotein nature. The sequence of carboxypeptidase M was 41% identical with that of the active subunit of human plasma carboxypeptidase N, 41% identical with bovine carboxypeptidase H (carboxypeptidase E, enkephalin convertase), and 15% with either bovine pancreatic carboxypeptidase A or B. Many of the active site residues identified in carboxypeptidases A and B, including all of the zinc-binding residues (2 histidines and a glutamic acid), are conserved in carboxypeptidase M. These data indicate that all of the metallocarboxypeptidases are related, but the nondigestive carboxypeptidases with more specialized functions, present in cell membranes, blood plasma, or secretory granules (i.e., carboxypeptidase M, carboxypeptidase N and carboxypeptidase H), are more closely related to each other (41-49% identity) than they are to carboxypeptidase A or B (15-20% identity).  相似文献   

11.
Reexamination of the molecular mass and the amino acid composition of Serratia protease revealed the presence of 1 mol of methionine per mol of protein (about 46K daltons), and this was confirmed by BrCN cleavage followed by separation of the two fragments. The sole methionine residue was located near the middle region of the molecule. The amino(N)-terminal sequence was determined by Edman degradation of the protein and studies of several proteolytic peptides, establishing a sequence of 18 residues with a heterogeneous N-terminus. The carboxyl(C)-terminal sequence was determined by carboxypeptidase A digestion and tritium-labeling of the citraconylated C-terminal half segment to be -Phe-Ile-Val. The sequences of a total of 53 residues containing the methionine residue and a total of 38 residues containing two histidine residues were established by the application of various conventional methods to a BrCN peptide and several proteolytic peptides. The segment containing the histidine residues was homologous with that containing the two histidine residues chelating the zinc atom of thermolysin. The 38-residue segment may be directly connected to the 53-residue segment.  相似文献   

12.
A glycoprotein with Mr 63,000 purified from rat serum was found to inhibit trypsin activity but not chymotrypsin or elastase activity, resembling contrapsin purified from mouse serum. To obtain further information on the molecular structure, a cDNA clone (lambda CPi-21) for this contrapsin-like protease inhibitor was isolated from a rat liver cDNA library. The 1.6-kb cDNA insert contained an open reading frame that encodes a 416-residue polypeptide (CPi-21), in which the first 29 residues were suggested to comprise a signal peptide by comparison with the NH2-terminal sequence of the purified protein. The predicted structure also contained other peptide sequences determined by Edman degradation. Four potential N-linked glycosylation sites were found in the molecule, presumably accounting for the larger molecular mass of the mature form. Further screening of the cDNA library with a Pst-XbaI fragment (302 bp) of lambda CPi-21 as a probe yielded two other cDNA clones (lambda CPi-23 and lambda CPi-26), which encode 413-residue and 418-residue polypeptides, respectively. A comparison of their amino acid sequences revealed that CPi-21 has 89 and 71% homology with CPi-23 and CPi-26, respectively. The primary structure of each of the three proteins has about 70% homology with that of mouse contrapsin, in contrast to 43-46% homology with that of rat alpha 1-protease inhibitor. These results indicate that all the CPi proteins presented here belong to a subfamily of "serpins" of which mouse contrapsin was the first member to be identified.  相似文献   

13.
Carboxypeptidase activity participates in the protein digestion process in the gut of lepidopteran insects, supplying free amino-acids to developing larvae. To study the role of different carboxypeptidases in lepidopteran protein digestion, the effect of potato carboxypeptidase inhibitor (PCI) on the digestive system of larvae of the pest insect Helicoverpa zea was investigated, and compared to that of Soybean Kunitz Trypsin Inhibitor. Analysis of carboxypeptidase activity in the guts showed that ingested PCI remained active in the gut, and completely inhibited the activity of carboxypeptidases A and O. Interestingly, carboxypeptidase B activity was not affected by PCI. All previously described enzymes from the same family, both from insect or mammalian origin, have been found to be very sensitive to PCI. Analysis of several lepidopteran species showed the presence of carboxypeptidase B activity resistant to PCI in most of them. The H. zea carboxypeptidase B enzyme (CPBHz) was purified from gut content by affinity chromatography. N-terminal sequence information was used to isolate its corresponding full-length cDNA, and recombinant expression of the zymogen of CPBHz in Pichia pastoris was achieved. The substrate specificity of recombinant CPBHz was tested using peptides. Unlike other CPB enzymes, the enzyme appeared to be highly selective for C-terminal lysine residues. Inhibition by PCI appeared to be pH-dependent.  相似文献   

14.
Thrombin-activable fibrinolysis inhibitor (TAFI) is a zymogen that inhibits the amplification of plasmin production when converted to its active form (TAFIa). TAFI is structurally very similar to pancreatic procarboxypeptidase B. TAFI also shares high homology in zinc binding and catalytic sites with the second basic carboxypeptidase present in plasma, carboxypeptidase N. We investigated the effects of altering residues involved in substrate specificity to understand how they contribute to the enzymatic differences between TAFI and carboxypeptidase N. We expressed wild type TAFI and binding site mutants in 293 cells. Recombinant proteins were purified and characterized for their activation and enzymatic activity as well as functional activity. Although the thrombin/thrombomodulin complex activated all the mutants, carboxypeptidase B activity of the activated mutants against hippuryl-arginine was reduced. Potato carboxypeptidase inhibitor inhibited the residual activity of the mutants. The functional activity of the mutants in a plasma clot lysis assay correlated with their chromogenic activity. The effect of the mutations on other substrates depended on the particular mutation, with some of the mutants possessing more activity against hippuryl-His-leucine than wild type TAFIa. Thus mutations in residues around the substrate binding site of TAFI resulted in altered C-terminal substrate specificity.  相似文献   

15.
In the course of experiments on the role of the COOH-terminal residues in pancreatic deoxyribonuclease, we undertook to ascertain whether the presence of sodium dodecyl sulfate would render the normally unavailable terminus susceptible to hydrolysis by carboxypeptidase A. When DNase A is dissolved in 0.005% sodium dodecyl sulfate the protein becomes enzymically inactive when assayed against DNA in the same sodium dodecyl sulfate concentration. The loss of activity caused by treatment with sodium dodecyl sulfate for 1 hour at 45 degrees can be fully restored if the detergent-containing solution is diluted 10-fold into 6 M guanidinium chloride and then 10-fold into a pH 7.0 buffer, 10 mM in CaCl2, prior to a 100-fold dilution for assay. The presence of Ca2+ is essential for the refolding process. If the same degree of dilution is made into sodium dodecyl sulfate-free buffer without the guanidinium chloride step, there is very little reversal of the inactivation. An almost complete loss of regenerable activity is caused by 1 hour of digestion by carboxypeptidase at 45 degrees in the presence of 0.03% sodium dodecyl sulfate. Although up to 6 amino acid residues can be removed from the COOH terminus, the loss of activity can be correlated with the removal of either 1 or 2 amino acid residues (-Leu-Thr) from the COOH-terminal sequence. Thus, DNase A is one of the several enzymes in which residues at the COOH terminus are essential to the active conformation. If the enzyme minus 2 to 6 terminal residues was mixed with a 15-residue COOH-terminal peptide (obtained by cyanogen bromide cleavage), only about 2% activity could be regenerated.  相似文献   

16.
The testis-specific isozyme of angiotensin-converting enzyme (ACE) is identical, from residue 68 to the C terminus, to the second half or C-terminal domain of somatic ACE. However, the first 67 residues, comprising the signal peptide and a Ser-/Thr-rich 36-residue sequence that constitutes the N terminus of mature testis ACE, are unique. We have expressed a mutant human testis ACE lacking this 36-residue N-terminal sequence and find that compared to the wild-type protein the mutant is 15 kDa smaller due to the loss of greater than 90% of all O-linked sugars, but that it retains full enzymatic activity and is stable in culture. Heavy O-glycosylation is a property of testis ACE that is not shared by the somatic enzyme and is attributable to this unique sequence.  相似文献   

17.
Unique sequence-binding sites are exposed on the surface of high molecular weight kininogen which complex prekallikrein or factor XI with high affinity and specificity. A sequence comprising 31 residues of the mature kininogen molecule (Asp565-Lys595) retains full binding activity for prekallikrein (K D =20 nM) and assumes a complex folded structure in solution which is stabilized by long-range interactions between N- and C-terminal residues. The sequence Trp569-Lys595 (27 residues) shows only 28% of this binding affinity and lacks the key structural features required for protein recognition (Scarsale, J. N., and Harris, R. B.,J. Prot. Chem. 9, 647–659, 1990). We were thus able to predict that N- or C-terminal truncations of the binding-site sequence would disrupt the conformational integrity required for binding. Two new peptides of 20- and 22- residues have now been synthesized and their solution phase structures examined. These peptides are N- and C-terminal truncations, respectively, of the 27-residue sequence and correspond to the sequences Asp576-Lys595 and Trp569-Asp590 of high molecular weight kininogen. The results of fluorescence emission and circular dichroism (CD) spectroscopies in the range 25–90°C and from differential scanning calorimetry (DSC) all substantiate the idea that the C-terminal truncation peptide binds prekallikrein 35-fold poorer than the 31-residue peptide because it is relatively unoredered and possesses a less stable structure. Surprisingly, the N-terminal truncation peptide (20-mer) shows structural stability even at elevated temperatures and, like the 31-residue peptide, undergoes cold-induced denaturation observable in the DSC. 2D-NMR analysis of the 20-residue peptide revealed two distinct structures; one conformer possesses a more compact, folded structure than the other. However, the predicted structures assumed by either conformer are very different from those of either the 31- or 27-residue peptides. Hence, the binding affinity of the 20-residue peptide is 60-fold poorer than that for the 31-residue peptide because it assumes a nonproductive binding conformation(s).  相似文献   

18.
Jang WS  Kim CH  Kang MS  Chae HJ  Son SM  Seo SJ  Lee IH 《Peptides》2005,26(12):2360-2367
Halocidin is an antimicrobial peptide, which is isolated from hemocytes from the tunicate, Halocynthia aurantium. In this study, we cloned the full-length cDNA of halocidin from pharyngeal tissue, using a combination of RT-PCR and 5′-RACE-PCR. The observed cDNA structure indicated that halocidin is synthesized as a 10.37 kDa prepropeptide. Based on the cDNA structure and the known amino acid sequence of the mature peptide, it was concluded that the precursor of halocidin contains a 21-residue signal peptide, followed by the 18 residues of the mature peptide, and a 56-residue anionic C-terminal extension, which is removed later on in the process. The signal sequence of halocidin exhibited a high degree of similarity with the corresponding portion of the Ci-META4 protein, which had been previously discovered in the coelomic cells of another tunicate, Ciona intestinalis, and is considered to play a role in metamorphosis. However, in several respects, the cDNA structure of Ci-META4 suggested that it might constitute a precursor for an antimicrobial peptide. Thus, we prepared a synthetic peptide, which was comprised of 19 N-terminal amino acid residues in the predicted mature region of Ci-META4, and tested it with regard to its antimicrobial activity. As a result, we confirmed that the synthetic peptide exhibited potent antimicrobial activity against Gram (+) and (−) bacteria, while evidencing no hemolytic activity toward human erythrocytes.  相似文献   

19.
The vitamin K-dependent blood-clotting proteins contain a gamma-carboxylation recognition site in the propeptide, between the signal peptide and the mature protein, that directs gamma-carboxylation of specific glutamic acid residues. To develop a better substrate for the in vitro assay of the vitamin K-dependent gamma-carboxylase and to understand the substrate recognition requirements of the carboxylase, we prepared synthetic peptides based upon the structure of human proprothrombin. These peptides were employed as substrates for in vitro carboxylation using a partially purified form of the bovine liver carboxylase. A 28-residue peptide (HVFLAPQQARSLLQRVRRANTFLEEVRK), based on residues -18 to +10 in proprothrombin, includes the complete propeptide and the first 10 residues of acarboxyprothrombin. Carboxylation of this peptide is characterized by a Km of 3.6 microM. In contrast, FLEEL is carboxylated with a Km of about 2200 microM. A 10-residue peptide (ANTFLEEVRK), based on residues +1 to +10 in prothrombin, and a 20-residue peptide (ARSLLQRVRRANTFLEEVRK), based on residues -10 to +10 in proprothrombin, are also poor substrates for the carboxylase. Replacement of phenylalanine with alanine at residue 3 (equivalent to position -16 in proprothrombin) in the 28-residue peptide significantly alters the Km to 200 microM. A synthetic propeptide (HVFLAPQQARSLLQRVRRY), homologous to residues -18 to -1 in proprothrombin, inhibited carboxylation of the 28-residue peptide substrate with a Ki of 3.5 microM, but modestly stimulated the carboxylation of the 5- and 10-residue peptide substrates. These results indicate that an intact carboxylation recognition site is required for efficient in vitro carboxylation and that this site includes critical residues in region -18 to -11 of proprothrombin. The carboxylation recognition site in the propeptide binds directly to the carboxylase or to a closely associated protein.  相似文献   

20.
A cDNA clone encoding a novel papain-like cysteine protease was isolated from wheat germ (Triticum aestivum). This cDNA encoded a 371-residue protein, designated WCP2, composed of signal peptide followed by a propeptide and a mature protease containing active site residues that are highly conserved among the papain family. The mature WCP2 protein (26 kDa) was detected in the quiescent embryo and its level of expression in the germinating embryo was greatly increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号