首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Horseradish peroxidase (HRP)-dependent oxidation of 3, 4-dihydroxyphenylalanine (dopa) was studied to elucidate the mechanism of its oxidation. The oxidation of dopa was enhanced by hydroxycinnamic acid esters and dopa supressed HRP-dependent oxidation of the esters. These results indicate that phenoxyl radicals of hydroxycinnamic acid esters that are formed at first, can oxidize dopa. Among hydroxycinnamic acid esters used, affinity of the phenoxyl radicals for dopa was in order 4-coumaric>caffeic>ferulic acid ester radicals.  相似文献   

2.
Mechanisms of oxidation of 3,4-dihydroxyphenylalanine (dopa) in leaves ofVicia faba have not yet been elucidated in details. The author hypothesized its oxidation by radicals of hydroxycinnamic acid esters that were generated by a peroxidase-dependent reaction in vacuoles. The results obtained in this study were followings. 1) Vacuolar peroxidase isolated from the leaves oxidized dopa more slowly than 4-coumaric and caffeic acid esters isolated from the leaves. 2) The hydroxycinnamic acid esters enhanced peroxidase-dependent oxidation of dopa and dopa suppressed their oxidation. 3) Degree of the enhancement was roughly correlated with rates of the oxidation of hydroxycinnamic acid esters. 4) The hydroxycinnamic acid esters increased levels of dopa radical in the presence of peroxidase. 5) In protoplasts of mesophyll cells ofV. faba, hydrogen peroxide-induced oxidation of dopa was faster than that of 4-coumaric acid and caffeic acid esters. These results support the above hypothesis that dopa in vacuoles is oxidized by phenoxyl radicals of hydroxycinnamic acid esters that are generated by vacuolar peroxidase.  相似文献   

3.
Tyrosinase from normal human skin was purified to high specific activity; 228 nmol of dopa formed/min/mg protein. The properties of the purified enzyme differ from those of the same enzyme in crude homogenates. The activity of the purified enzyme is not affected by dopa. It is not inhibited by excess tyrosine and exhibits no lag in its rate at 4 mm concentration of ascorbic acid. This preparation is free of peroxidase and yet will catalyze both hydroxylation of tyrosine to dopa and its further oxidation to dopa quinone with fourfold more activity with dopa as substrate suggesting that mammalian tyrosinase catalyzes both reactions rather than dopa oxidation alone as suggested by M. Okun, L. Edelstein, R. Patel, and B. Donnellan (1973, Yale J. Biol. Med.46, 535–540). A protein present in the cytosol and melanosomes that constitutes 30% of soluble epidermal proteins was purified and found to inhibit tyrosinase competitively with tyrosine. Its molecular weight was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 66,000.  相似文献   

4.
The claim that peroxidase (rather than tyrosinase) is the enzyme responsible for the conversion of tyrosine into dopa (3,4-dihydroxyphenylalanine) in melanogenesis was investigated. The spectral changes that occurred during the action of horseradish peroxidase in the presence of H2O2 on dopa, tyrosine and mixtures of dopa with tyrosine or other phenolic compounds were studied. The effect of ascorbic acid or dihydroxyfumaric acid on some of these changes was also investigated. No evidence was found that tyrosine was hydroxylated by peroxidase in the presence of H2O2 and dopa as cofactor, although tyrosine or other phenolic compounds increased the rate of oxidation of dopa to dopachrome (indoline-5,6-quinone-2-carboxylic acid). Peroxidase was, however, effective in oxidizing tyrosine to dopa in the presence of dihydroxyfumaric acid and oxygen.  相似文献   

5.
Summary Preincubation with the copper-chelator, sodium diethyldithiocarbamate (DDC) and the presence of catalase in the incubation media allowed an accurate and reproducible differentiation of the role of tyrosinase from that of peroxidase in the oxidation of tyrosine and dopa in melanocytes, mast cells and eosinophils. These studies indicated that mammalian peroxidase in melanocytes, mast cells and eosinophils can mediate the conversion of tyrosine to melanin in the presence of dopa co-factor, as well as the conversion of dopa to melanin. With the methods employed, there was no evidence that tyrosinase in the preparations studied had significant ability to mediate the oxidation of tyrosine to melanin (even in the presence of dopa co-factor), although there was abundant evidence that it can mediate the conversion of dopa to melanin. Mammalian peroxidase may have roles in initiating melanin synthesis and catechol amine synthesis in vivo.Supported by USPHS Grant T1 AM 5,220, The General Research Support Fund, Boston City Hospital, and The Pathology Research Fund, St. Vincent Hospital.  相似文献   

6.
6-Tetrahydrobiopterin is known to bind to an allosteric site of tyrosinase to directly inhibit the enzyme. However, simultaneous measurements of ultraviolet-visible absorption spectra and oxygen consumption led us to conclude that the inhibition was due to oxidation of 6-tetrahydrobiopterin by dopaquinone. Immediately after addition of 6-tetrahydrobiopterin, tyrosinase stopped producing dopachrome from either tyrosine or dopa. Duration of inhibition was proportional to the concentration of added 6-tetrahydrobiopterin and the enzyme activity was fully restored after the inhibition. Surprisingly, there was a rapid consumption of oxygen during the inhibition period. In addition, absorption spectra indicated that the only reaction that occurred during the inhibition was oxidation of 6-tetrahydrobiopterin to 7,8-dihydrobiopterin. In the absence of tyrosine or dopa, tyrosinase did not oxidize 6-tetrahydrobiopterin, suggesting that a reaction intermediate between dopa and dopachrome was a target for the inhibition. We propose a new mechanism in which dopa is oxidized to dopaquinone and the latter, instead of producing dopachrome, is reduced back to dopa by 6-tetrahydrobiopterin.  相似文献   

7.
1. Melanosomal tyrosinase was isolated from normal C57B1 mice, and a comparison of the tyrosine-hydroxylation and dopa (3,4-dihydroxyphenylalanine)-oxidation activities of this enzyme was made. 2. The results indicate that in the absence of dopa cofactor, this enzyme is capable of tyrosine hydroxylation, but with very little subsequent dopa oxidation and melanin formation. 3. This mechanism of enzyme action may play an important role in the intracellular regulation of melanin formation. 4. Further, dopa appears to act as a positive allosteric effector for tyrosine hydroxylation by tyrosinase, in addition to its known activity as a hydrogen donor for the reaction.  相似文献   

8.
We investigated the effect of dopa and dopamine on creatine kinase (CK) activity in the presence of ferrylmyoglobin (ferrylMb). CK was sharply inhibited by dopa and dopamine in the presence of ferrylMb. Dopa and dopamine markedly promoted the reduction of ferrylMb to metmyoglobin (metMb). The semiquinone from dopa and dopamine may be involved in CK inactivation. During inactivation of the enzyme, both kinetic parameters Vmax and Km changed. In addition, reduced glutathione restored the activity of CK at an early stage. These results suggest that inactivation of CK is dominantly due to oxidation of sulfhydryl (SH) groups of the enzyme. Other catechols, such as adrenaline and noradrenaline, little inactivated CK activity, whereas they promoted the reduction of ferrylMb to metMb. Other SH enzymes, including alcohol dehydrogenase (ADH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were inactivated to a lesser extent by dopa and dopamine in the presence of ferrylMb. Adrenaline and noradrenaline did not significantly prevent the inactivation of ADH and very slightly inhibited GAPDH. These results suggest that dopa and dopamine act as prooxidants to inactivate SH enzymes in the presence of ferrylMb.  相似文献   

9.
Human glutathione transferase M2-2 prevents the formation of neurotoxic aminochrome and dopachrome by catalyzing the conjugation of dopamine and dopa o-quinone with glutathione. NMR analysis of dopamine and dopa o-quinone-glutathione conjugates revealed that the addition of glutathione was at C-5 to form 5-S-glutathionyl-dopamine and 5-S-glutathionyl-dopa, respectively. Both conjugates were found to be resistant to oxidation by biological oxidizing agents such as O(2), H(2)O(2), and O(*-)(2), and the glutathione transferase-catalyzed reaction can therefore serve a neuroprotective antioxidant function.  相似文献   

10.
The autoxidation of dopa to melanin in culture media causes toxicity to retinal pigment epithelial (RPE) cells and endothelial cells. The damage is specific to cell type and to the ambient oxygen concentration. To determine whether RPE cells influence the oxidation of dopa to media, we compared light absorbing dopa derivatives in the media exposed to cells with those found in the media incubated without cells. Dopa was extensively oxidized in the presence of RPE cells, and more light absorbing substances were generated with higher dopa and oxygen concentrations. However, an increase in ambient oxygen concentration decreased the quantity of several dopa derivatives which had been formed. The data provided evidence that RPE modulated dopa metabolism. Quinolic derivatives produced from a tyrosinase reaction and dopa-melanin formation moved the peak absorbance wavelength of dopa into the visible range. The spectrum between the dopa-derived compounds in the media has an absorbance at 240-275 nm and a maximum around 300 nm with a shoulder near 375 nm. Gaussian analysis (peak separation) resolved these spectra into five components: a sharp band at 248 nm, a band at 295 nm, a large band at 359 nm, and two broad bands at 459 and 585 nm.  相似文献   

11.
The autoxidation of dopa to melanin in culture media causes toxicity to retinal pigment epithelial (RPE) cells and endothelial cells. The damage is specific to cell type and to the ambient oxygen concentration. To determine whether RPE cells influence the oxidation of dopa to media, we compared light absorbing dopa derivatives in the media exposed to cells with those found in the media incubated without cells. Dopa was extensively oxidized in the presence of RPE cells, and more light absorbing substances were generated with higher dopa and oxygen concentrations. However, an increase in ambient oxygen concentration decreased the quantity of several dopa derivatives which had been formed. The data provided evidence that RPE modulated dopa metabolism. Quinolic derivatives produced from a tyrosinase reaction and dopa-melanin formation moved the peak absorbance wavelength of dopa into the visible range. The spectrum between the dopa-derived compounds in the media has an absorbance at 240–275 nm and a maximum around 300 nm wth a shoulder near 375 nm. Gaussian analysis (peak separation) resolved these spectra into five components: a sharp band at 248 nm, a band at 295 nm, a large band at 359 nm, and two broad bands at 459 and 585 nm.  相似文献   

12.
S Ito  T Kato  K Shinpo    K Fujita 《The Biochemical journal》1984,222(2):407-411
A simple and rapid method was developed for the determination of 3,4-dihydroxyphenylalanine (dopa) and 5-S-cysteinyl-3,4-dihydroxyphenylalanine (5-S-cysteinyldopa) in proteins with the use of high-pressure liquid chromatography. With this method, it is demonstrated that mushroom tyrosinase can catalyse hydroxylation of tyrosine residues in proteins to dopa and subsequent oxidation to dopaquinone residues. The dopaquinone residues in proteins combine with cysteine residues to form 5-S-cysteinyldopa in bovine serum albumin and yeast alcohol dehydrogenase, whereas dopa is the major product in bovine insulin, which lacks cysteine residues.  相似文献   

13.
The role of reactive oxygen (1O2 and O2-.) in skin photosensitization and tanning reaction has been examined. Riboflavin (RF), hematoporphyrin (HP), 3-carbethoxypsoralen (3-CP), and 8-methoxypsoralen (8-MOP), upon photoexcitation under aerobic conditions, produced singlet O2 (1O2). RF, 3-CP, and 8-MOP also produced superoxide anion (O2-.). Reactive O2 produced by photosensitized RF, 3-CP, and 8-MOP was found to oxidize tyrosine and dopa to dopachrome and subsequently their conversion to melanin. HP did not oxidize tyrosine to dopachrome, and 3-CP and RF revealed substantial oxidation of tyrosine. Dopa was oxidized to dopachrome and subsequently to melanin by all photosensitizers tested at a variable rate as follows: RF greater than 3-CP greater than HPD greater than 8-MOP. UVA alone and to a lesser extent UVB also produced 1O2 which induced the oxidation of tyrosine and dopa to dopachrome and subsequently to melanin. The production of dopachrome was higher with dopa compared to tyrosine under all irradiation conditions. These observations appear to have relevance to the O2-requiring immediate tanning reaction of the skin stimulated by solar radiation and in the induction of skin photosensitization.  相似文献   

14.
A method for the isolation of tyrosinase is described, which involves preparative polyacrylamide gel electrophoresis, requires only 24 to 36 h to carry out, and yields ostensibly homogeneous enzyme. The ability of purified tyrosinase to utilize 3,4-dihydroxyphenylalanine (dopa) analogs as cofactors was determined for both of the reactions catalyzed by tyrosinase: (i) tyrosine hydroxylation and (ii) dopa oxidation and melanin formation. The cofactor analogs studied included those in which steric modifying groups were added and those in which substitutions were made at the location of the amine, carboxylic acid, or hydroxyl groups of dopa. The results indicate that each of these groups is essential for maximal enzyme activity and that each is optimally located for tyrosinase activation when in the precise steric conformation found in l-dopa.  相似文献   

15.
The aim of this study was to investigate the effect of dopa and catecholamines on the generation of oxygen active species during oxidation of farmorubicin by "Fenton-like" reagents using chemiluminescent and spectrophotometric techniques. The tested catechols were found to reduce the light emission accompanying oxidation of farmorubicin by Co(II) + H2O2 and Cu(II) + H2O2 mixtures. The quenching effect was followed by their rapid oxidation to aminochromes possessing toxic activities.  相似文献   

16.
Mutational mapping of the catalytic activities of human tyrosinase.   总被引:7,自引:0,他引:7  
Tyrosinase (EC 1.14.18.1) is a copper-containing metalloglycoprotein that catalyzes several steps in the melanin pigment biosynthetic pathway; the hydroxylation of tyrosine to L-3,4-dihydroxyphenylalanine (dopa) and the subsequent oxidation of dopa to dopaquinone. It has been proposed that tyrosinase is also able to oxidize 5,6-dihydroxyindole (DHI), a later product in the melanogenic pathway, to indole-5,6-quinone. Tyrosinase enzymatic activity is deficient in patients with classic type I oculocutaneous albinism (OCA), and more than 50 distinct mutations have now been identified in the tyrosinase genes of such patients. To determine the effects of the various tyrosinase gene mutations on the catalytic activities of the enzyme, we carried out site-directed mutagenesis of human tyrosinase cDNA, transiently expressed the mutant cDNAs in transfected HeLa cells, and assayed the resultant encoded proteins for tyrosine hydroxylase, dopa, and DHI oxidase activities, and resulting melanin production. The tyrosine hydroxylase activity of normal tyrosinase is thermostable, whereas its dopa oxidase and DHI oxidase activities are temperature-sensitive. Although all amino acid substitutions tested generally affected the dopa oxidase and DHI oxidase activities in parallel, several exerted distinctly different effects on the tyrosine hydroxylase activities. Together, these results confirm the DHI oxidase activity of mammalian tyrosinase and suggest that the dopa oxidase and DHI oxidase activities of tyrosinase share a common catalytic site, whereas the tyrosine hydroxylase catalytic site is at least partially distinct in the tyrosinase polypeptide.  相似文献   

17.
Posttranslational modification of tyrosine to 3,4-dihydroxyphenylalanine (dopa) yields a unique functional group in biomolecular systems. Oxidation produces a quinone, which can undergo cross linking while deprotonation is well suited to metal binding. Mussels, tunicates and bacteria chelate iron and other metals with multiple dopa subunits. Solution equilibria between catechols and iron indicate favorable assembly though this interaction has not been studied with highly structured biomolecules, such as peptides, despite their widespread biological applications. Here, a series of β-hairpin peptides are generated. Dopa is involved in an aromatic interaction as the edge position. Despite the presence of the surrounding secondary structure dopa readily undergoes oxidation and cross linking. Formation of bispeptide:iron complexes also occur in the presence of mild to significant aromatic interactions.  相似文献   

18.
The oxidation of four catechol(amine)s by tyrosinase has been studied by electron spin resonance and optical methods. Rates of oxygen consumption and of dopaquinone and dopachrome formation during the oxidation of dopa have been measured, and compared with rates of dopasemiquinone production measured using spin-stabilization procedures. In the presence of spin-stabilizing metal ions, production of semiquinone is approximately quantitative. Time-dependent ESR spectra obtained from dopa and dopamine show a slow regeneration of semiquinone, suggesting that a semiquinone precursor is slowly reformed. In contrast, time-dependent spectra for 4-methylcatechol and N-acetyldopamine show decay of the primary semiquinone together with buildup of a secondary semiquinone apparently derived from the corresponding 6-hydroxy-catechol(amine). Thus, catecholamines that give rise to a cyclizable quinone show a pattern of behavior that differs from those that produce a non-cyclizable quinone. These results are discussed in terms of their possible significance to melanogenesis and the toxicity of catechol(amine)s, which has been attributed to production of semiquinones and/or other oxygen radicals.  相似文献   

19.
The conversion of tyrosine into dopa [3-(3,4-dihydroxyphenyl)alanine] is the rate limiting step in the biosynthesis of melanins catalysed by tyrosinase. This hydroxylation reaction is characterized by a lag period, the extent of which depends on various parameters, notably the presence of a suitable hydrogen donor such as dopa or tetrahydropterin. We have now found that catalytic amounts of Fe2+ ions have the same effect as dopa in stimulating the tyrosine hydroxylase activity of the enzyme. Kinetic experiments showed that the shortening of the induction time depends on the concentration of the added metal and the nature of the buffer system used and is not suppressed by superoxide dismutase, catalase, formate or mannitol. Notably, Fe3+ ions showed only a small delaying effect on tyrosinase activity. Among the other metals which were tested, Zn2+, Co2+, Cd2+ and Ni2+ had no detectable influence, whereas Cu2+ and Mn2+ exhibited a marked inhibitory effect on the kinetics of tyrosine oxidation. These findings are discussed in the light of the commonly accepted mechanism of action of tyrosinase.  相似文献   

20.
The role of pH in the melanin biosynthesis pathway   总被引:2,自引:0,他引:2  
Having oxidized 3,4-dihydroxyphenylalanine (dopa) with sodium periodate or mushroom tyrosinase in a pH range from 3.5 to 6.0, it has been possible to detect spectrophotometrically 4-(2-carboxy-2-aminoethyl)-1,2-benzoquinone with the amino group protonated (o-dopaquinone-H+), a postulated intermediate in the melanogenesis pathway. When the pH value was greater than 4, the final product obtained was 2-carboxy-2,3-dihydroindole-5,6-quinone (dopachrome); however, for pH values lower than 4, two different products were identified by means of cyclic voltammetry: 5-(2-carboxy-2-aminoethyl)-2-hydroxy-1,4-benzoquinone and dopachrome. These products appeared when oxidation was achieved with the enzyme as well as with periodate. This suggests that two chemical pathways can arise from alpha-dopaquinone-H+, whose relative importance is determined by the pH. The steps of these pathways would be dopa leads to o-dopaquinone-H+ leads to o-dopaquinone leads to leukodopachrome leads to dopachrome, for the first one, and dopa leads to o-dopaquinone-H+ leads to 2,4,5-trihydroxyphenylalanine leads to 5-(2-carboxy-2-aminoethyl)-2-hydroxy-1,4-benzoquinone very slowly leads to intermediate compound leads to dopachrome, for the second one. The stoichiometry for the conversion of dopaquinone-H+ into dopachrome for pH values greater than 4 followed equation of 2 o-dopaquinone-H+ leads to dopa + dopachrome. No participation of oxygen was detected in the conversion of leukodopachrome (2,3-dihydro-5,6-dihydroxyindole-2-carboxylate) into dopachrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号