首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of early developmental markers such as doublecortin (DCX) and the polysialylated-neural cell adhesion molecule (PSA-NCAM) has been used to identify immature neurons within canonical neurogenic niches. Additionally, DCX/PSA-NCAM+ immature neurons reside in cortical layer II of the paleocortex and in the paleo- and entorhinal cortex of mice and rats, respectively. These cells are also found in the neocortex of guinea pigs, rabbits, some afrotherian mammals, cats, dogs, non-human primates, and humans. The population of cortical DCX/PSA-NCAM+ immature neurons is generated prenatally as conclusively demonstrated in mice, rats, and guinea pigs. Thus, the majority of these cells do not appear to be the product of adult proliferative events. The immature neurons in cortical layer II are most abundant in the cortices of young individuals, while very few DCX/PSA-NCAM + cortical neurons can be detected in aged mammals. Maturation of DCX/PSA-NCAM+ cells into glutamatergic and GABAergic neurons has been proposed as an explanation for the age-dependent reduction in their population over time. In this review, we compile the recent information regarding the age-related decrease in the number of cortical DCX/PSA-NCAM+ neurons. We compare the distribution and fates of DCX/PSA-NCAM + neurons among mammalian species and speculate their impact on cognitive function. To respond to the diversity of adult neurogenesis research produced over the last number of decades, we close this review by discussing the use and precision of the term “adult non-canonical neurogenesis.”  相似文献   

2.
The piriform cortex receives input from the olfactory bulb and (via the entorhinal cortex) sends efferents to the hippocampus, thereby connecting the two canonical neurogenic regions of the adult rodent brain. Doublecortin (DCX) is a cytoskeleton-associated protein that is expressed transiently in the course of adult neurogenesis. Interestingly, the adult piriform cortex, which is usually considered non-neurogenic (even though some reports exist that state otherwise), also contains an abundant population of DCX-positive cells. We asked how similar these cells would be to DCX-positive cells in the course of adult hippocampal neurogenesis. Using BAC-generated transgenic mice that express GFP under the DCX promoter, we studied DCX-expression and electrophysiological properties of DCX-positive cells in the mouse piriform cortex in comparison with the dentate gyrus. While one class of cells in the piriform cortex indeed showed features similar to newly generated immature granule neurons, the majority of DCX cells in the piriform cortex was mature and revealed large Na+ currents and multiple action potentials. Furthermore, when proliferative activity was assessed, we found that all DCX-expressing cells in the piriform cortex were strictly postmitotic, suggesting that no DCX-positive "neuroblasts" exist here as they do in the dentate gyrus. We conclude that DCX in the piriform cortex marks a unique population of postmitotic neurons with a subpopulation that retains immature characteristics associated with synaptic plasticity. DCX is thus, per se, no marker of neurogenesis but might be associated more broadly with plasticity.  相似文献   

3.
Essentially, three neuroectodermal-derived cell types make up the complex architecture of the adult CNS: neurons, astrocytes and oligodendrocytes. These elements are endowed with remarkable morphological, molecular and functional heterogeneity that reaches its maximal expression during development when stem/progenitor cells undergo progressive changes that drive them to a fully differentiated state. During this period the transient expression of molecular markers hampers precise identification of cell categories, even in neuronal and glial domains. These issues of developmental biology are recapitulated partially during the neurogenic processes that persist in discrete regions of the adult brain. The recent hypothesis that adult neural stem cells (NSCs) show a glial identity and derive directly from radial glia raises questions concerning the neuronal-glial relationships during pre- and post-natal brain development. The fact that NSCs isolated in vitro differentiate mainly into astrocytes, whereas in vivo they produce mainly neurons highlights the importance of epigenetic signals in the neurogenic niches, where glial cells and neurons exert mutual influences. Unravelling the mechanisms that underlie NSC plasticity in vivo and in vitro is crucial to understanding adult neurogenesis and exploiting this physiological process for brain repair. In this review we address the issues of neuronal/glial cell identity and neuronal-glial interactions in the context of NSC biology and NSC-driven neurogenesis during development and adulthood in vivo, focusing mainly on the CNS. We also discuss the peculiarities of neuronal-glial relationships for NSCs and their progeny in the context of in vitro systems.  相似文献   

4.
We studied adult neurogenesis in the short‐lived annual fish Nothobranchius furzeri and quantified the effects of aging on the mitotic activity of the neuronal progenitors and the expression of glial fibrillary acid protein (GFAP) in the radial glia. The distribution of neurogenic niches is substantially similar to that of zebrafish and adult stem cells generate neurons, which persist in the adult brain. As opposed to zebrafish, however, the N. furzeri genome contains a doublecortin (DCX) gene. Doublecortin is transiently expressed by newly generated neurons in the telencephalon and optic tectum (OT). We also analyzed the expression of the microRNA miR‐9 and miR‐124 and found that they have complementary expression domains: miR‐9 is expressed in the neurogenic niches of the telencephalon and the radial glia of the OT, while miR‐124 is expressed in differentiated neurons. The main finding of this paper is the demonstration of an age‐dependent decay in adult neurogenesis. Using unbiased stereological estimates of cell numbers, we detected an almost fivefold decrease in the number of mitotically active cells in the OT between young and old age. This reduced mitotic activity is paralleled by a reduction in DCX labeling. Finally, we detected a dramatic up‐regulation of GFAP in the radial glia of the aged brain. This up‐regulation is not paralleled by a similar up‐regulation of S100B and Musashi‐1, two other markers of the radial glia. In summary, the brain of N. furzeri replicates two typical hallmarks of mammalian aging: gliosis and reduced adult neurogenesis.  相似文献   

5.
6.
Doublecortin (DCX), a microtubule-associated protein, specifically expresses in neuronal precursors. This protein has been used as a marker for neuronal precursors and neurogenesis. In the present study, we observed differences in DCX immunoreactivity and its protein levels in the hippocampal dentate gyrus between adult and aged dogs. In the adult dog, DCX immunoreactive cells with well-stained processes were detected in the subgranular zone of the dentate gyrus. Numbers of DCX immunoreactive cells in the dentate gyrus of the aged dog were significantly decreased compared to those in the adult dog. DCX immunoreactive cells in both adult and aged dog did not show NeuN (a marker for mature neurons) immunoreactivity. NeuN immunoreactivity in the aged dog was poor compared to that in the adult dog. DCX protein level in the aged dentate gyrus was decreased by 80% compared to that in the adult dog. These results suggest that the reduction of DCX in the aged hippocampal dentate gyrus may be involved in some neural deficits related to the hippocampus.  相似文献   

7.
Neural stem cells continually generate new neurons in very limited regions of the adult mammalian central nervous system. In the neurogenic regions there are unique and highly specialized microenvironments (niches) that tightly regulate the neuronal development of adult neural stem cells. Emerging evidence suggests that glia, particularly astrocytes, have key roles in controlling multiple steps of adult neurogenesis within the niches, from proliferation and fate specification of neural progenitors to migration and integration of the neuronal progeny into pre-existing neuronal circuits in the adult brain. Identification of specific niche signals that regulate these sequential steps during adult neurogenesis might lead to strategies to induce functional neurogenesis in other brain regions after injury or degenerative neurological diseases.  相似文献   

8.
Noggin antagonizes BMP signaling to create a niche for adult neurogenesis   总被引:70,自引:0,他引:70  
Large numbers of new neurons are born continuously in the adult subventricular zone (SVZ). The molecular niche of SVZ stem cells is poorly understood. Here, we show that the bone morphogenetic protein (BMP) antagonist Noggin is expressed by ependymal cells adjacent to the SVZ. SVZ cells were found to express BMPs as well as their cognate receptors. BMPs potently inhibited neurogenesis both in vitro and in vivo. BMP signaling cell-autonomously blocked the production of neurons by SVZ precursors by directing glial differentiation. Purified mouse Noggin protein promoted neurogenesis in vitro and inhibited glial cell differentiation. Ectopic Noggin promoted neuronal differentiation of SVZ cells grafted to the striatum. We thus propose that ependymal Noggin production creates a neurogenic environment in the adjacent SVZ by blocking endogenous BMP signaling.  相似文献   

9.
10.
The neurogenic niche within the subgranular zone (SGZ) of the dentate gyrus is a source of new neurons throughout life. Interestingly, SGZ proliferative capacity is regulated by both physiological and pathophysiological conditions. One outstanding question involves the molecular mechanisms that regulate both basal and inducible adult neurogenesis. Here, we examined the role of the MAPK‐regulated kinases, mitogen‐ and stress‐activated kinase (MSK)1 and MSK2. as regulators of dentate gyrus SGZ progenitor cell proliferation and neurogenesis. Under basal conditions, MSK1/2 null mice exhibited significantly reduced progenitor cell proliferation capacity and a corollary reduction in the number of doublecortin (DCX)‐positive immature neurons. Strikingly, seizure‐induced progenitor proliferation was totally blocked in MSK1/2 null mice. This blunting of cell proliferation in MSK1/2 null mice was partially reversed by forskolin infusion, indicating that the inducible proliferative capacity of the progenitor cell population was intact. Furthermore, in MSK1/2 null mice, DCX‐positive immature neurons exhibited reduced neurite arborization. Together, these data reveal a critical role for MSK1/2 as regulators of both basal and activity‐dependent progenitor cell proliferation and morphological maturation in the SGZ.  相似文献   

11.
Ongoing neurogenesis in the adult mammalian dentate gyrus and olfactory bulb is generally accepted, but its existence in other adult brain regions is highly controversial. We labeled newly born cells in adult rats with the S-phase marker bromodeoxyuridine (BrdU) and used neuronal markers to characterize new cells at different time points after cell division. In the neocortex and striatum, we found BrdU-labeled cells that expressed each of the eight neuronal markers. Their size as well as staining for gamma-aminobutyric acid (GABA), glutamic acid decarboxylase 67, calretinin and/or calbindin, suggest that new neurons in both regions are GABAergic interneurons. BrdU and doublecortin-immunoreactive (BrdU+/DCX+) cells were seen within the striatum, suggesting migration of immature neurons from the subventricular zone. Surprisingly, no DCX+ cells were found within the neocortex. NG2 immunoreactivity in some new neocortical neurons suggested that they may instead be generated from the NG2+ precursors that reside within the cortex itself.  相似文献   

12.
Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX), a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque) and density of white matter neurons (humans) during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n?=?37) and matched controls (n?=?37) and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in schizophrenia.  相似文献   

13.
The regulation of adult neurogenesis by opiates has been implicated in modulating different addiction cycles. At which neurogenesis stage opiates exert their action remains unresolved. We attempt to define the temporal window of morphine’s inhibition effect on adult neurogenesis by using the POMC-EGFP mouse model, in which newborn granular cells (GCs) can be visualized between days 3–28 post-mitotic. The POMC-EGFP mice were trained under the 3-chambers conditioned place preference (CPP) paradigm with either saline or morphine. We observed after 4 days of CPP training with saline, the number of EGFP-labeled newborn GCs in sub-granular zone (SGZ) hippocampus significantly increased compared to mice injected with saline in their homecage. CPP training with morphine significantly decreased the number of EGFP-labeled GCs, whereas no significant difference in the number of EGFP-labeled GCs was observed with the homecage mice injected with the same dose of morphine. Using cell-type selective markers, we observed that morphine reduced the number of late stage progenitors and immature neurons such as Doublecortin (DCX) and βIII Tubulin (TuJ1) positive cells in the SGZ but did not reduce the number of early progenitors such as Nestin, SOX2, or neurogenic differentiation-1 (NeuroD1) positive cells. Analysis of co-localization between different cell markers shows that morphine reduced the number of adult-born GCs by interfering with differentiation of early progenitors, but not by inducing apoptosis. In addition, when NeuroD1 was over-expressed in DG by stereotaxic injection of lentivirus, it rescued the loss of immature neurons and prolonged the extinction of morphine-trained CPP. These results suggest that under the condition of CPP training paradigm, morphine affects the transition of neural progenitor/stem cells to immature neurons via a mechanism involving NeuroD1.  相似文献   

14.
While it is well known that production of new neurons from neural stem/progenitor cells (NSC) in the dentate gyrus (DG) diminishes greatly by middle age, the phases and mechanisms of major age-related decline in DG neurogenesis are largely unknown. To address these issues, we first assessed DG neurogenesis in multiple age groups of Fischer 344 rats via quantification of doublecortin-immunopositive (DCX+) neurons and then measured the production, neuronal differentiation and initial survival of new cells in the subgranular zone (SGZ) of 4-, 12- and 24-month-old rats using four injections (one every sixth hour) of 5'-bromodeoxyuridine (BrdU), and BrdU-DCX dual immunostaining. Furthermore, we quantified the numbers of proliferating cells in the SGZ of these rats using Ki67 immunostaining. Numbers of DCX+ neurons were stable at 4-7.5 months of age but decreased progressively at 7.5-9 months (41% decline), 9-10.5 months (39% decline), and 10.5-12 months (34% decline) of age. Analyses of BrdU(+) cells at 6 h after the last BrdU injection revealed a 71-78% decline in the production of new cells per day between 4-month-old rats and 12- or 24-month-old rats. Numbers of proliferating Ki67+ cells (putative NSCs) in the SGZ also exhibited similar (72-85%) decline during this period. However, the extent of both neuronal differentiation (75-81%) and initial 12-day survival (67-74%) of newly born cells was similar in all age groups. Additional analyses of dendritic growth of 12-day-old neurons revealed that newly born neurons in the aging DG exhibit diminished dendritic growth compared with their age-matched counterparts in the young DG. Thus, major decreases in DG neurogenesis occur at 7.5-12 months of age in Fischer 344 rats. Decreased production of new cells due to proliferation of far fewer NSCs in the SGZ mainly underlies this decline.  相似文献   

15.
The Collapsin Response Mediator Proteins (CRMPS) are highly expressed in the developing brain, and in adult brain areas that retain neurogenesis, ie: the olfactory bulb (OB) and the dentate gyrus (DG). During brain development, CRMPs are essentially involved in signaling of axon guidance and neurite outgrowth, but their functions in the adult brain remain largely unknown. CRMP5 has been initially identified as the target of auto-antibodies involved in paraneoplasic neurological diseases and further implicated in a neurite outgrowth inhibition mediated by tubulin binding. Interestingly, CRMP5 is also highly expressed in adult brain neurogenic areas where its functions have not yet been elucidated. Here we observed in both neurogenic areas of the adult mouse brain that CRMP5 was present in proliferating and post-mitotic neuroblasts, while they migrate and differentiate into mature neurons. In CRMP5(-/-) mice, the lack of CRMP5 resulted in a significant increase of proliferation and neurogenesis, but also in an excess of apoptotic death of granule cells in the OB and DG. These findings provide the first evidence that CRMP5 is involved in the generation and survival of newly generated neurons in areas of the adult brain with a high level of activity-dependent neuronal plasticity.  相似文献   

16.
Glial cells provide support and protection for neurons in the embryonic and adult brain, mediated in part through the phagocytic activity of glia. Glial cells engulf apoptotic cells and pruned neurites from the developing nervous system, and also clear degenerating neuronal debris from the adult brain after neural trauma. Studies indicate that Drosophila melanogaster is an ideal model system to elucidate the mechanisms of engulfment by glia. The recent studies reviewed here show that many features of glial engulfment are conserved across species and argue that work in Drosophila will provide valuable cellular and molecular insight into glial engulfment activity in mammals.  相似文献   

17.
18.
Elliott MR  Ravichandran KS 《Cell》2008,133(3):393-395
During embryonic development, large numbers of apoptotic cells are rapidly cleared by phagocytes. In this issue, Kurant et al. (2008) describe a new phagocytic receptor, called six-microns-under (SIMU), that promotes engulfment of apoptotic neurons by glial cells in the developing nervous system of Drosophila.  相似文献   

19.
Depression and anxiety involve hippocampal dysfunction, but the specific relationship between these mood disorders and adult hippocampal dentate gyrus neurogenesis remains unclear. In both humans with MDD and rodent models of depression, administration of antidepressants increases DG progenitor and granule cell number, yet rodents with induced ablation of DG neurogenesis typically do not demonstrate depressive- or anxiety-like behaviors. The conflicting data may be explained by the varied duration and degree to which adult neurogenesis is reduced in different rodent neurogenesis ablation models. In order to test this hypothesis we examined how a transient–rather than permanent–inducible reduction in neurogenesis would alter depressive- and anxiety-like behaviors. Transgenic Nestin-CreERT2/floxed diphtheria toxin fragment A (DTA) mice (Cre+DTA+) and littermates (Cre+DTA-; control) were given tamoxifen (TAM) to induce recombination and decrease nestin-expressing stem cells and their progeny. The decreased neurogenesis was transient: 12 days post-TAM Cre+DTA+ mice had fewer DG proliferating Ki67+ cells and fewer DCX+ neuroblasts/immature neurons relative to control, but 30 days post-TAM Cre+DTA+ mice had the same DCX+ cell number as control. This ability of DG neurogenesis to recover after partial ablation also correlated with changes in behavior. Relative to control, Cre+DTA+ mice tested between 12–30 days post-TAM displayed indices of a stress-induced anxiety phenotype–longer latency to consume highly palatable food in the unfamiliar cage in the novelty-induced hypophagia test, and a depression phenotype–longer time of immobility in the tail suspension test, but Cre+DTA+ mice tested after 30 days post-TAM did not. These findings suggest a functional association between adult neurogenesis and stress induced anxiety- and depressive-like behaviors, where induced reduction in DCX+ cells at the time of behavioral testing is coupled with stress-induced anxiety and a depressive phenotype, and recovery of DCX+ cell number corresponds to normalization of these behaviors.  相似文献   

20.
Recent studies have led to the exciting idea that adult-born neurons in the olfactory bulb (OB) may be critical for complex forms of olfactory behavior in mice. However, signaling mechanisms regulating adult OB neurogenesis are not well defined. We recently reported that extracellular signal-regulated kinase (ERK) 5, a MAP kinase, is specifically expressed in neurogenic regions within the adult brain. This pattern of expression suggests a role for ERK5 in the regulation of adult OB neurogenesis. Indeed, we previously reported that conditional deletion of erk5 in adult neurogenic regions impairs several forms of olfactory behavior in mice. Thus, it is important to understand how ERK5 regulates adult neurogenesis in the OB. Here we present evidence that shRNA suppression of ERK5 in adult neural stem/progenitor cells isolated from the subventricular zone (SVZ) reduces neurogenesis in culture. By contrast, ectopic activation of endogenous ERK5 signaling via expression of constitutive active MEK5, an upstream activating kinase for ERK5, stimulates neurogenesis. Furthermore, inducible and conditional deletion of erk5 specifically in the neurogenic regions of the adult mouse brain interferes with cell cycle exit of neuroblasts, impairs chain migration along the rostral migratory stream and radial migration into the OB. It also inhibits neuronal differentiation and survival. These data suggest that ERK5 regulates multiple aspects of adult OB neurogenesis and provide new insights concerning signaling mechanisms governing adult neurogenesis in the SVZ-OB axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号