首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To characterize mesenchymal stem cells (MSC), we compared gene expression profiles in human bone marrow MSC (11 lines) and human fibroblasts (4 lines) by RT-PCR and real time PCR. Messenger RNA levels of MHC-DR-alpha, MHC-DR-beta, MHC-DR-associated protein CD74, tissue factor pathway inhibitor-2, and neuroserpin were much higher in MSC than in fibroblasts, even in the presence of large interindividual variations. Those of adrenomedullin, apolipoprotein D, C-type lectin superfamily member-2, collagen type XV alpha1, CUG triplet repeat RNA-binding protein, matrix metalloproteinase-1, protein tyrosine kinase-7, and Sam68-like phosphotyrosine protein/T-STAR were lower in MSC than in fibroblasts. FACS analysis showed that cell surface expression of MHC-DR was also higher in MSC than in fibroblasts. MHC-DR expression decreased after osteogenic differentiation, whereas the expression of adrenomedullin-a potent stimulator of osteoblast activity-along with collagen XV alpha1 and apolipoprotein D increased after osteogenic differentiation. The marker genes identified in this study should be useful for characterization of MSC both in basic and clinical studies.  相似文献   

2.
Galanin peptide has recently been found to be highly abundant in early embryonic mouse mesenchyme, while galanin and its receptors are expressed in embryonic mouse stem cells. Bone marrow mesenchymal stem cells (BMMSCs) represent the primary source for adult stem cell therapy. In this study we examined the abundance of galanin and its receptors in BMMSCs and evaluated its possible function. Galanin mRNA and protein were highly expressed in BMMSCs cultures up to four passages, while among the three galanin receptor subtypes (GalR1, GalR2, and GalR3) only GalR2 and to a lesser extent GalR3 were expressed. Using chemotaxis and wound assays we found that galanin protein increased the migration of BMMSCs. Furthermore, increased serum galanin levels in a galanin transgenic model enhanced the mobilization (homing) of injected BMMSCs in vivo. These data suggest a role for galanin in BMMSC migration, probably through activation of the GalR2 receptor.  相似文献   

3.
Mesenchymal stem cells (MSCs) are a population of primary and non-specialized cells, which can be isolated from various tissues. Currently, MSCs are key players in cellular therapy and regenerative medicine. However, the possibility of using MSCs in the treatment of many diseases needs to be preceded, though, by in-depth analysis of their properties, especially by determining the mechanism of tissue homing as well as the mechanism, due to which cells contribute to tissue regeneration. This review is intended to present information on recent findings regarding the mechanism of recruitment and tissue homing by MSCs and discuss current hypotheses for how MSCs can reach target tissues.  相似文献   

4.
Lots of evidence showed that bone marrow stem cells can differentiate into cardiac myocytes so as to treat damaged hearts. However, the following studies revealed that bone marrow stem cells also produced protective effects on hearts by releasing some beneficial cytokines and suppressing inflammatory effects and so on. Therefore, we speculated that the cardiac differentiation of bone marrow stem cells did not play an important role in cardiac repair.  相似文献   

5.
Seshi B 《Proteomics》2006,6(19):5169-5182
  相似文献   

6.
目的评价供体骨髓干细胞输注联合肝移植治疗终末期肝病的近期效果。方法2008年3月至2009年1月本中心30例肝移植受者分为两组,实验组8例,行同期供体骨髓干细胞联合肝脏移植;对照组22例,仅行肝脏移植,不行骨髓干细胞输注。观察两组受者术后免疫抑制剂(甲基强的松龙、他克莫司)用量、肝功能(谷氨酸转氨酶、天冬氨酸转氨酶等)变化、急性排斥反应和感染并发症发生情况,以及术后住院时间和费用。采用,检验、方差分析及确切概率法进行统计学分析。结果实验组术后甲基强的松龙总用量和出院时每日他克莫司用量显著低于对照组[甲基强的松龙分别为(1314±105)mg,(1884±256)mg,t=6.060,P=0.000;他克莫司分别为(3.73±0.35)mg/d,(4.93±0.62)mg/d,,=5.147,P=0.000]。术后第1天实验组血清谷氨酸转氨酶、天冬氨酸转氨酶均显著低于对照组[谷氨酸转氨酶分别为(875.2±325.5)IU/L,(1350.4±482.7)IU/L,t=2.543,P=0.016,天冬氨酸转氨酶分别为(646.2±184.9)IU/L,(1021.8±325.4)IU/L,t=3.067,P=0.005]。术后第3天也低于对照组[谷氨酸转氨酶分别为(252.9±35.8)IU/L,(343.5±47.8)IU/L,f=4.866,P=0.000,天冬氨酸转氨酶分别为(227.8±38.0)IU/L,(310.8±61.7)IU/L,t=3.545,P=0.001]。结论同期供体骨髓干细胞联合肝脏移植可以降低术后免疫抑制剂用量,减轻术后早期肝脏损伤,不增加治疗风险,是一种安全有效的治疗方法。  相似文献   

7.
Bone marrow stromal cells (BMSCs) are a mixture of cells differing in differentiation potential including mesenchymal stem cells, and so far no CD antigens were found to be predictable for the differentiation property of each BMSC. Here we attempted to isolate differentiation-associated CD antigens using 100 immortalized human BMSC (ihBMSC) clones. Among 13 CD antigens analyzed, only CD106/Vascular cell adhesion molecule-1 (VCAM-1) showed a clear correlation with the differentiation potential of each clone; CD106-positive ihBMSC clones were less osteogenic and more adipogenic than CD106-negative clones. This association was confirmed in primary BMSCs sorted by CD106, showing that the CD106-positive fraction contained less osteogenic and more adipogenic cells than the CD106-positive fraction. The evaluation of CD106 fraction of BMSC strains in early passages predicted clearly the osteogenic and adipogenic potential after in vitro induction of differentiation, indicating the usefulness of CD106 as a differentiation-predicting marker of BMSC.  相似文献   

8.
9.
Application of liver stem cells for cell therapy   总被引:3,自引:0,他引:3  
The worldwide shortage of donor livers to transplant end stage liver disease patients has prompted the search for alternative cell therapies for intractable liver disease. Embryonic stem cells can be readily differentiated into hepatocytes, and their transplantation into animals has improved liver function in the absence of teratoma formation: their use in bioartificial liver support is an obvious application. In animal models of liver disease, adopting strategies to provide a selective advantage for transplanted foetal or adult hepatocytes have proved highly effective in repopulating recipient livers, but the poor success of today's hepatocyte transplants can be attributed to the lack of a clinically applicable procedure to force a similar repopulation of the human liver. The activation of bipotential hepatic progenitor cells is clearly vital for survival in many cases of acute liver failure, but surprisingly little progress has been made with these cells in terms of transplantation. Finally there is the controversial subject of autologous bone marrow, and while the contribution of these indigenous cells to liver turnover seems at best, trivial, results from a small number of phase 1 studies of transplantation of bone marrow to cirrhotic patients have been moderately encouraging.  相似文献   

10.
Bone marrow (BM) transplantation in mice suggests the existence of pluripotent cells able to differentiate into skeletal muscle tissue, although sustained myofiber reconstitution has not yet been achieved. We investigated the myogenic potential of mouse BM cells and evaluated whether a BM fraction enriched for cells expressing skeletal muscle markers would ameliorate muscle repair, when compared to whole BM, into the dystrophic mdx mouse. We demonstrate that cells expressing striated-muscle-specific proteins are already present in the BM independently from experimentally forced myogenic conversion. We observed the presence of both markers of early myogenic program such as Pax3, Myf5, MyoD, desmin, and late myogenesis such as myosin heavy chain and alpha-sarcomeric actin. These myogenic cells are more represented in the early nonadherent BM fraction, which generates clones able to fully differentiate into myotubes. Transplantation in mdx mice by intravenous injection of whole BM and a tenfold BM myogenic enriched fraction resulted in BM reconstitution and limited dystrophin restoration. Taken together, these data show that a fraction of BM cells have a definite potential for differentiation along the skeletal muscle pathway and can be recruited by muscle repair mechanisms. They also indicate that factors limiting the degree of muscle recruitment and the host stem cell competition should be assessed in order to evaluate the usefulness of BM-derived myogenic cells into the context of cell-mediated gene therapy of inherited muscle diseases.  相似文献   

11.
目的探讨自体骨髓间充质干细胞(BM-MSCs)对二甲基甲酰胺(DMF)中毒致急性肝衰竭后肝功能延迟恢复患者的疗效和安全性。 方法1例DMF中毒性急性肝衰竭患者,在人工肝为主的内科综合治疗后肝功能持续得不到恢复时,采取患者骨髓,分离、培养制备BM-MSCs,经肝动脉介入输注到患者肝内,观察其临床表现、肝功生化、凝血、肝脏影像学、肝组织病理学等改变及BM-MSCs近期不良反应和远期的安全性。 结果BM-MSCs治疗后,患者持续不见好转的肝功生化指标开始改善,凝血功能恢复速度加快,凝血酶原活动度(PTA)逐渐恢复到40%以上,上腹部CT见肝脏再生结节较前增大,Child-Pugh分级由C级转为A级,终末期肝病模型(MELD)评分由21分降到7分;干细胞输注早期未出现相关的不良反应,8周后再生结节穿刺活检其病理特征为:肝细胞变性、坏死、纤维化、胆汁淤积与再生并存。随访3年患者肝功生化正常、肝硬化结节影像学观察无明显变化,未发生癌变。 结论BM-MSCs肝动脉介入治疗对DMF中毒致急性肝衰竭肝功能延迟恢复患者的肝功能改善具有一定促进作用,近期无明显不良反应,中远期安全性好。  相似文献   

12.
Chondrogenic differentiation in mesenchymal stromal cells (MSCs) has been actively studied due to their potential use in mesenchymal tissue repair. Our goal was to develop a simple isolation protocol for adherent mouse MSCs to simultaneously clear off hematopoietic cells and expand to obtain enough starting material for differentiation studies. CD34 and CD45 expressing cells were rapidly removed by inhibiting growth of hematopoietic cells to yield short-term selected (STS) cells. Further passaging enriched more primitive, uniformly Sca-1 expressing, long-term selected (LTS) cells. The efficacy of several BMPs to induce chondrogenesis in pellet culture was compared in STS and LTS cells. In STS cells, chondrogenesis progressed rapidly to terminal differentiation while LTS cells differentiated at a slower rate with no hypertrophy. In LTS cells, rhBMP homodimers -2, -4, -6 and rhBMP2/7 heterodimer were effective enhancers of chondrogenesis over that of rhBMP-5 and -7. In STS cells, rhBMP-2 and rhBMP-7 supported rapid chondrogenesis and terminal differentiation over that of rhBMP-6. These data indicate the impact of stromal cell composition on the chondrogenic differentiation profile, which is an important aspect to be considered when standardizing differentiation assay conditions as well as developing MSC based cartilage repair technologies.  相似文献   

13.
Bone resorption is linked to bone formation via temporal and spatial coupling within the remodeling cycle. Several lines of evidence point to the critical role of coupling factors derived from pre-osteoclasts (POCs) during the regulation of bone marrow-derived mesenchymal stem cells (BMMSCs). However, the role of glial cell-derived neurotrophic factor (GDNF) in BMMSCs is not completely understood. Herein, we demonstrate the role of POC-derived GDNF in regulating the migration and osteogenic differentiation of BMMSCs. RNA sequencing revealed GDNF upregulation in POCs compared with monocytes/macrophages. Specifically, BMMSC migration was inhibited by a neutralizing antibody against GDNF in pre-osteoclast-conditioned medium (POC-CM), whereas treatment with a recombinant GDNF enhanced migration and osteogenic differentiation. In addition, POC-CM derived from GDNF knockdowned bone marrow macrophages suppressed BMMSC migration and osteogenic differentiation. SPP86, a small molecule inhibitor, inhibits BMMSC migration and osteogenic differentiation by targeting the receptor tyrosine kinase RET, which is recruited by GDNF into the GFRα1 complex. Overall, this study highlights the role of POC-derived GDNF in BMMSC migration and osteogenic differentiation, suggesting that GDNF regulates bone meta-bolism.  相似文献   

14.
15.
Bone marrow stromal cells (BMSCs) are common progenitors of both adipocytes and osteoblasts. We recently suggested that increased [Ca2+]o caused by bone resorption might accelerate adipocyte accumulation in response to treatment with both insulin and dexamethasone. In this study, we investigated the mechanism by which high [Ca2+]o enhances adipocyte accumulation.We used primary mouse BMSCs and evaluated the levels of adipocyte accumulation by measuring Oil Red O staining. CaSR agonists (both Ca2+ and Sr2+) enhanced the accumulation of adipocytes among BMSCs in response to treatment with both insulin and dexamethasone. We showed that high [Ca2+]o decreases the concentration of cAMP using ELISA. Real-time RT-PCR revealed that increasing the intracellular concentration of cAMP (both chemical inducer (1 μM forskolin and 200 nM IBMX) and a cAMP analog (10 μM pCPT-cAMP)) suppressed the expression of PPARγ and C/EBPα. In addition, forskolin, IBMX, and pCPT-cAMP inhibited the enhancement in adipocyte accumulation under high [Ca2+]o in BMSCs. However, this inhibited effect was not observed in BMSCs that were cultured in a basal concentration of [Ca2+]o. We next observed that the accumulation of adipocytes in the of bone marrow of middle-aged mice (25–40 weeks old) is higher than that of young mice (6 weeks old) based on micro CT. ELISA results revealed that the concentration of cAMP in the bone marrow mononuclear cells of middle-aged mice is lower than that of young mice. These data suggest that increased [Ca2+]o caused by bone resorption might accelerate adipocyte accumulation through CaSR following a decrease in cAMP.  相似文献   

16.
Mesenchymal stem cells (MSCs) lack major histocompatibility complex (MHC)-II and only show minimal MHC-I expression. Despite MSCs demonstrating T-cell anergy, there are no established methods to evaluate their suitability. It is crucial to evaluate the complete mismatch of MHC compatibility in view of the hypo-immunogenic nature and immunomodulatory properties of MSCs with respect to their proliferation potential (PP) and utility in terms of passage number. With bone marrow (BM) being the major source of MSCs, the use of these cells becomes even more complicated, due to many other receptors coming to fore and triggering alternative pathways. This prospective study included five BM aspirates for MSC cultures and five allogeneic peripheral blood mono nuclear cells (PBMNCs) from healthy volunteers. MHC compatibility was assessed by polymerase chain reaction-sequence specific primer (PCR-SSP). The PP and a T-cell response to MSCs was addressed in mixed cultures and evaluated on the basis of their stimulation index (SI). Allogeneic circulatory antibodies against the donor MSCs was performed by cytotoxicity assay. The PP of MSCs during interactions with PBMNCs (T-cells) demonstrated T-cell anergy and the response to circulatory antibodies was minimal, in consonance with other published reports. Although, the results are encouraging for potential clinical application of MSC transplantation, autologous is always preferable to allogeneic, at least until the long-term safety of these cells is established in clinical trials.  相似文献   

17.
The cystatins are physiological cysteine proteinase inhibitors. Here we report the cloning of a novel human cystatin-like molecule (CLM) from human bone marrow stromal cell (BMSC) cDNA library. The putative CLM protein contained 159 residues with a 29-residue signal peptide. CLM protein was highly homologous to family 2 cystatins, especially mouse and human testatin. The CLM gene spanned two exons and was mapped on chromosome 20p11.2, among cystatin superfamily gene clusters. CLM mRNA was barely detected in most tumor cell lines except for breast adenocarcinoma MCF-7 cells and glioblastoma U251 cells, but after LPS or PMA stimulation, CLM expression was increased in myelogenous leukemia cell lines HL-60 and U-937. Northern blot analysis revealed CLM was ubiquitously expressed in normal tissues, which was clearly different from the testis-specific expression pattern of most family 2 cystatins. When overexpressed in 293 cells, GFP-fused CLM targeted extracellularly through secretory pathway by Golgi apparatus. The results indicated that the secreted CLM protein might play roles in hematopoietic differentiation or inflammation.  相似文献   

18.
Stem cell therapy is not a new field, as indicated by the success of hematopoietic stem cell reconstitution for various hematological malignancies and immune-mediated disorders. In the case of tissue repair, the major issue is whether stem cells should be implanted, regardless of the type and degree of injury. Mesenchymal stem cells have thus far shown evidence of safety, based on numerous clinical trials, particularly for immune-mediated disorders. The premise behind these trials is to regulate the stimulatory immune responses negatively. To apply stem cells for other disorders, such as acute injuries caused by insults from surgical trauma and myocardial infarction, would require other scientific considerations. This does not imply that such injuries are not accompanied by immune responses. Indeed, acute injuries could accompany infiltration of immune cells to the sites of injuries. The implantation of stem cells within a milieu of inflammation will establish an immediate crosstalk among the stem cells, microenvironmental molecules, and resident and infiltrating immune cells. The responses at the microenvironment of tissue injury could affect distant and nearby organs. This editorial argues that the microenvironment of any tissue injury is a key consideration for effective stem cell therapy.  相似文献   

19.
With the ever-increasing clinical application of cell-based therapies, it is considered critical to develop systems that facilitate the storage and distribution of cell therapy products (CTPs) between sites of manufacture and the clinic. For such systems to be realized, it is essential that downstream bioprocessing strategies be established that are scalable, reproducible and do not influence the viability or function of the living biologic. To this end, we examined alginate-encapsulation as a method to heighten the preservation of human adipose-derived stem cells (hASCs) during hypothermic storage, and establish a scalable process for high-volume production. A drop-wise method for scalable alginate bead generation, using calcium as the cross-linker, was modified to enable the yield of up to 3500 gelled beads per minute. The effect of alginate concentration on the viscosity of non-gelled sodium alginate and the mechanical properties and internal structure of calcium-crosslinked alginate in response to different alginate and calcium concentrations were investigated. Mechanical strength was chiefly dependent on alginate concentration and 1.2% alginate cross-linked with 100 mM calcium chloride could withstand stress in the order of 35 kPa. Upon selection of appropriate parameters, we demonstrated the suitability of using this method for immobilizing human stem cells. Encapsulated hASCs demonstrated no loss in cell viability, and had a uniform distribution after high-volume production. Following storage, released cells were able to attach and recover a normal morphology upon return to culture conditions. Thus we present a scalable method for stem cell encapsulation and storage for application within the cell therapy supply chain.  相似文献   

20.
Functional impairment of mesenchymal stem cells(MSCs), osteoblast progenitor cells, has been proposed to be a pathological mechanism contributing to bone disorders, such as osteoporosis(the most common bone disease) and other rare inherited skeletal dysplasias. Pathological bone loss can be caused not only by an enhanced bone resorption activity but also by hampered osteogenic differentiation of MSCs. The majority of the current treatment options counteract bone loss, and therefore bone fragility by blocking bone resorption. These socalled antiresorptive treatments, in spite of being effective at reducing fracture risk, cannot be administered for extended periods due to security concerns.Therefore, there is a real need to develop osteoanabolic therapies to promote bone formation. Human MSCs emerge as a suitable tool to study the etiology of bone disorders at the cellular level as well as to be used for cell therapy purposes for bone diseases. This review will focus on the most relevant findings using human MSCs as an in vitro cell model to unravel pathological bone mechanisms and the application and outcomes of human MSCs in cell therapy clinical trials for bone disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号