首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experiment was conducted to assess the effect of clitoral stimulation on pregnancy rate to artificial insemination in 1,856 beef females. For unadjusted data, pregnancy rate to first service in nonstimulated females was 61% for cows and 59% for heifers, and that of females receiving clitoral stimulation was 69% for cows and 58% for heifers. After adjusting the data for the influences of age, breed, technician, and postpartum interval, clitoral stimulation increased first service pregnancy rate in cows (74 +/- 3% vs 59 +/- 3%, P<0.05), but not in heifers (53 +/- 5% vs 57 +/- 5%, P>0.10). Postpartum interval significantly influenced pregnancy rate, regardless of treatment, and clitoral stimulation was beneficial when applied to cows with relatively short postpartum intervals. Variation in the effect of clitoral stimulation on pregnancy rate was observed among technicians. Clitoral stimulation improved pregnancy rate more effectively in 3 to 4 year old cows than in cows 2 years old and cows 5 years of age or older. We concluded that clitoral stimulation at the time of artificial insemination was an effective means of increasing pregnancy rate in cows, but not in heifers.  相似文献   

2.
The objective was to determine the efficacy of a previously used CIDR or melengestrol acetate (MGA; 0.5mg/head/day) for resynchronization of estrus in beef heifers not pregnant to timed-AI (TAI). In three experiments and a field trial, heifers were reinseminated 6-12 h after first detection of estrus. Pregnancy diagnosis was done from approximately 25-43 days after either TAI or reinsemination. In Experiment 1, 79 heifers received a once-used CIDR from 13 to 20 days after TAI and 80 heifers were untreated controls. For these two groups, there were 34 and 35 heifers, respectively, not pregnant to TAI; median +/- S.E. intervals from TAI to onset of estrus were 22 +/- 0.2 days versus 20 +/- 0.6 days (P < 0.001); estrus rates were 70.6% versus 85.7% (P = 0.1); conception rates were 62.5% versus 76.7% (P < 0.3); and pregnancy rates were 44.1% versus 65.7% (P = 0.07), for CIDR and untreated (control) groups, respectively. In Experiment 2, heifers (n = 651) were TAI (Day 0) and 13 days later randomly assigned to one of seven groups (n = 93 per group) to receive a once-used CIDR (three groups; Days 13-20), MGA (three groups; Days 13-19), or no treatment (control group). Groups given a CIDR or MGA also received: no further treatment (CIDR or MGA alone); 1.5mg estradiol-17beta (E-17beta) and 50 mg progesterone (P4) in 2 mL canola oil on Day 13; or E-17beta and P4 on Day 13 and 0.5 mg E-17beta on Day 21 (24 h after CIDR removal or 48 h after the last feeding of MGA). Pregnancy rate to TAI was lowest (P < 0.05) for the group given a CIDR plus E-17beta and P4 on Day 13 and E-17beta on Day 21. Variability in return to estrus was greater (P < 0.001) in the control and MGA groups than in CIDR groups. Conception and pregnancy rates in heifers given a CIDR (65.1 and 61.4%) were higher (P<0.01) than those fed MGA (49.6 and 40.4%), but not different from controls (62.2 and 54.9%, respectively). In Experiment 3, 616 heifers received a once- or twice-used CIDR for 7 days, beginning 13+/-1 days after TAI, with or without a concurrent injection of 150 mg of P4 (2 x 2 factorial design). Pregnancy rate to TAI was 47.2%. In heifers that returned to estrus, there was no significant difference between a once- or twice-used CIDR for rates of estrus (68.8%, P < 0.3), conception (65.9%, P < 0.6) and pregnancy (45.3%, P < 0.8). Injecting progesterone at CIDR insertion increased the median interval from CIDR removal to onset of estrus (P < 0.05) and reduced rates of estrus (63.8% versus 73.8%, P<0.05), conception (60.5% versus 70.6%, P = 0.1) and pregnancy (38.6% versus 52.2%, P < 0.02). In a field trial, 983 heifers received a once-used CIDR for 7 days, beginning 13 +/- 1 days after TAI. Pregnancy rate to TAI was 55.2%. The median (and mode) of the interval from CIDR removal to estrus was 2.5 days. Estrus, conception and pregnancy rates were 78.2, 70.3 and 55.0% (overall pregnancy rate to TAI and rebreeding, 78.7%). In summary, a once- or twice-used CIDR for 7 days, starting 13 +/- 1 days after TAI resulted in the majority of nonpregnant heifers detected in estrus over a 4-day interval, with acceptable conception rates; however, injecting progesterone at CIDR insertion significantly reduced both estrus and pregnancy rates, and estradiol treatment after CIDR removal was associated with a decreased pregnancy rate to TAI. Fertility was higher in heifers resynchronized with a once-used CIDR than with MGA.  相似文献   

3.
Initiation of long-term treatment with rbST (Posilac, Monsanto, St. Louis, MO) coincident with first insemination increased pregnancy rates in dairy cattle, but neither the efficacy of using only the initial injection, nor its effects on retention of pregnancy are known. Lactating dairy cows, dairy heifers, and lactating beef cows were assigned at random to treatment (rbST) or control. Dairy cows, dairy heifers, and beef cows received 500 mg rbST (n = 48, 35, 137 inseminations, respectively) at artificial insemination or were left untreated (n = 62, 33, 130 inseminations, respectively). Pregnancy was diagnosed by ultrasonography at 28-36 days. Treatment with rbST at insemination improved conception rates in dairy cows (60.4% versus 40.3%; P < 0.05), but not in dairy heifers or beef cows. Conception rates did not differ in dairy cows at < or =100 days in milk (DIM), but were improved in cows treated with rbST after 100 DIM (64.3% versus 25.8%; P < 0.05). Retention of pregnancy to approximately 60 days and sizes of CL, diameter of follicles > or =5 mm, and crown-rump lengths of embryos were not affected by treatment. The second objective was to examine the effects of rbST at insemination on birth weight and post-natal calf growth in beef cows. However, birth and weaning weights of beef calves were not affected by treatment. In conclusion, a single treatment with rbST at insemination increased conception rates in dairy cows, specifically in those >100 DIM.  相似文献   

4.
Singh U  Khurana NK  Inderjeet 《Theriogenology》1998,50(8):1191-1199
Zebu cattle are notorious for poor fertility characterized by late maturity and long intercalving intervals attributed to a variety of factors, including genetic, nutritional and climatic. The aim of the present investigation, therefore, was to induce fertile estrus in acyclic pubertal heifers and postpartum anestrous Zebu cows by hormonal intervention. Pubertal Hariana and Sahiwal anestrous heifers (n=51) and postpartum cows (n=55) were either assigned a placebo (controls, N=6 for each breed and parity) or treated with 10-d norgestomet (3 mg) subcutaneous ear implants, with an initial injection of 3 mg, im norgestomet + 5 mg estradiol valerate, followed by 500 IU eCG at implant withdrawal (NOR-treated groups). Jugular venous plasma samples were obtained from a total of 28 animals (controls : 4 heifers and 4 cows; NOR-treated : 12 heifers and 8 cows) on Days 0 (implant insertion), 3, 7, 9 and Day 10 (implant withdrawal), every 12 h on Days 11 and 12, and then once daily on Days 17, 24 and 31. All the samples were assayed for progesterone. Almost all (97%) heifers and 81% cows were induced to estrus, the majority (92% heifers and 79% cows) within 120 h of implant removal. Synchrony of the induced estrus was better in cows, but interval to estrus and estrus duration were significantly longer in heifers (P<0.05). Post-treatment fertility, based on Day 28 nonretum rate, first service, and overall conception rates, was better in heifers (78.9, 60.5 and 73.7%, respectively) than cows (77.1, 48.6 and 62.9%, respectively), but the differences were significant only for the overall pregnancy rate (71.8% for heifers and 51.2% for cows; P<0.05). Low pre-treatment plasma progesterone values (<0.5ng/mL) were consistent with ovarian inactivity, confirming the true anestrus status of experimental animals. Controls failed to exhibit estrus and maintained low progesterone concentrations throughout the study. In treated animals, high progesterone values from Day 17 onwards suggested ovulatory estrus. These early luteal phase progesterone concentrations in nonpregnant (P=0.06) and nonpregnant, nonretum (P<0.05) animals were low in comparison with those of pregnant animals. Good fertility resulting from breeding according to estrus, inspite of variable intervals to estrus and estrus duration, advocates its advantage over fixed-time insemination in norgestomet-treated anestrous Zebu cattle.  相似文献   

5.
This study was performed in Western Maharastra (India). The 272 crossbred heifers were randomly allocated within herds to one of the four following groups: 1) silastic coils, 10 days treatment (n = 65); 2) Norgestomet implants, 10 days treatment (n = 71); 3) prostaglandin F(2alpha) two injections 11 days apart (n = 70); and 4) control (n = 66). Almost all heifers in the treated groups were detected in heat during the four days following treatment (88-100%) vs 26% in the control group in the first 21 days. Mean conception rates at first AIs were respectively 62,48 and 60% in groups 1,2 and 4 (p > 0.05) and only 29% in group 3. By 90 days after treatment, 66, 59, 46 and 33 per cent of the females were pregnant for groups 1 to 4, respectively (p < 0.001). In conclusion, progestogen treatments seemed to be highly satisfactory both in terms of conception rates and intervals from treatment to pregnancy.  相似文献   

6.
Blood and uterine concentrations of GH and insulin-like growth factor (IGF)-I are correlated with improved fertility in cattle. We tested incremental doses of a 14-d sustained release recombinant bovine GH (rbGH) to increase blood GH and IGF-I (Experiments 1 and 2). Conception rate after administration of an optimized rbGH dose was also tested (Experiment 3). In Experiment 1, lactating Holstein cows (n = 18) were randomly assigned to receive 0 (n = 5), 100 (n = 5), 200 (n = 5), or 500 (n = 3) mg sc rbGH. Increasing the doses of rbGH was associated with increased serum concentrations of GH and IGF-I. The 100- and 200-mg doses caused an IGF-I release that was below and above, respectively, the perceived optimum response. Therefore, Experiment 2 was designed to test a rbGH dose (167 mg), which was intermediate to the doses tested in Experiment 1. Lactating and nonlactating postpartum beef cows were treated with 0 (n = 9) or 167 (n = 9) mg rbGH at insemination. Plasma concentrations of GH and IGF-I were greater in rbGH-treated cows than in controls. Lactating cows had initial IGF-I concentrations that were lower than nonlactating cows. The 167-mg dose of rbGH increased plasma IGF-I concentrations in lactating cows to the levels of those of nonlactating cows. In Experiment 3, cows and heifers were administered either 0 or 167 mg rbGH at insemination. The conception rate for rbGH-treated and control cows was 54.4 and 49.5% (n = 617), and 46.0 and 46.3% for heifers (n = 1123), respectively. Herd (P<0.01) and parity (P<0.01) affected conception rate, but conception rates for rbGH and control cattle were similar. In summary, low doses of rbGH increased blood GH and restored blood IGF-I concentrations in lactating cows to those of nonlactating cows, but the conception rate in cows and heifers was not affected by administration of 14-d sustained-release rbGH at insemination.  相似文献   

7.
Our objective was to assess the effect on heifer pregnancy rate of deposition at three sites within the uterus of frozen-thawed sex-sorted sperm at a fixed time after estrus synchronization. Estrus was synchronized in 209 heifers by administration of PGF2a 14 days apart. At 80-82 h after the second PGF2a injection, X-chromosomes bearing fractions of semen with 2.2 x 10(6) sperm in insemination dose were used for single insemination into the uterine body (UB-AI, n=91) or for intracornual deposition in the middle of the uterine horn (MH-AI, n=57) or close to the utero-tubal junction (UTJ-AI, n=61). The overall pregnancy rate was 43.1%. Pregnancy rates did not differ (P>0.05) among sites of sperm sperm deposition, between the two farms at which the heifers were kept or between the two bulls producing the semen. Within UB-AI, MH-AI and UTJ-AI treatments, pregnancy rates were 41.8%, 49.1% and 39.3%, respectively (P>0.05). Pooled across classes for deposition site, pregnancy rate was 25.1% higher (P<0.01) for heifers showing strong signs of estrus than for heifers showing weak signs of estrus (45.9 versus 20.8%, respectively). Embryonic and fetal loss from diagnosis of pregnancy to term and at calving equalled 5.6%. Of 88 calves of identified sex, 93.2% were female. In conclusion, pregnancy rates of heifers did not differ significantly following deposition of 2.2 x 10(6) sex-sorted sperm 80-82 h after the second PGF2a injection near the utero-tubal junction, in the middle of the horn or into the uterine body.  相似文献   

8.
This study was conducted to determine the efficacy of feeding melengestrol acetate (MGA) for 14 days and administering prostaglandin F(2)alpha (PGF) 17 days after MGA to synchronize or induce estrus in yearling beef heifers. The study involved 56 Angus (n = 19), Hereford (n = 15) and Simmental (n = 22) heifers that were assigned by breed and pubertal status to either MGA+PGF or to control groups. Heifers in the synchronized group were fed 0.5 mg MGA per head per day for 14 days from a grain carrier and were injected with 25 mg, i.m. PGF 17 days after the last daily feeding of MGA. Control heifers were fed from a grain carrier without MGA and were not treated with PGF. Heifers were classified as pubertal when concentrations of progesterono in the serum exceeded 1 ng/ml in 1 of 2 samples collected prior to the initiation of treatments. Blood samples were collected 7 days before and on the day that treatment with MGA or carrier began and 7 days before and on the day that PGF was administered. Progesterone concentrations in the serum were elevated ( > 1 ng/ml) in 61% (17 28 ) of the MGA+PGF-treated heifers and in 61% (17 28 ) of the control heifers prior to feeding MGA. However, concentrations of progesterone in the serum at the time PGF was administered differed (P<0.05) between MGA+PGF and control groups. Concentrations of progesterone in the serum exceeded 1 ng/ml in 100% (28 28 ) of the MGA+PGF-treated heifers and in 71% (20 28 ) of control heifers at the time PGF was administered (P<0.05). All heifers were inseminated 12 hours after the first detected estrus. Twenty-two of 28 (79%) of the MGA+PGF-treated heifers exhibited estrus within 6 days after PGF compared with 9 of 28 (32%) of control heifers (P<0.05). The conception rate at first service did not differ between MGA+PGF and control groups (64% and 67%, respectively). Synchronized pregnancy rates were higher (P<0.05) for MGA+PGF-treated heifers than for control heifers (14 28 , 50% vs 6 28 , 21%). Increased concentrations of progesterone in serum at the time PGF was administered and higher pregnancy rates during the synchronized period among MGA+PGF-treated heifers demonstrate the efficacy of this treatment for use in estrus synchronization. Moreover, this treatment may have a potential effect on inducing puberty in breeding age heifers.  相似文献   

9.
The effectiveness of treatments to induce estrus in prepubertal beef heifers was evaluated. Angus x Hereford (n = 148) and Brahman x Hereford (n = 148) heifers were sorted after weaning by body weight into light and heavy weight blocks. Heifers were assigned to diets, calculated to reach a target weight of 55% or 65% of their projected mature weight by the start of breeding. Cyclicity was determined after a 160-d observation period and from concentrations of progesterone in serum determined 10 d before and on the day that treatments began to induce puberty. The remaining nonpubertal heifers, with concentrations of progesterone in serum of less than 1 ng/ml (0 or 10 d before treatment), were assigned randomly within breed and nutrition group to either a melengestrol acetate + saline (MGA+S) or MGA + gonadotropin-releasing hormone (MGA+GnRH) treatment. Prepubertal Angus x Hereford heifers (n = 11) and Brahman x Hereford heifers (n = 49) were fed 0.5 mg MGA for 7 d. Forty-eight hours after MGA, heifers were injected with 500 ug s.c. GnRH or 5 ml of saline. Blood samples were collected from all prepubertal heifers every 3 d after GnRH or saline for 30 d. There was no difference between treatments in the proportion of heifers that exhibited estrus by Day 7 after treatment. However, a larger (P<0.05) proportion of MGA+S-treated heifers exhibited estrus within 14 d after treatment than MGA+GnRH-treated heifers (87 vs 63%). Among heifers that exhibited estrus during that time period, the proportion with increased progesterone was higher (P<0.10) for the MGA+GnRH group than for the MGA+S group (71 vs 41%, Day 7; 79 vs 54%, Day 14). There was no difference in conception rate at first service between treatment groups. Thirty-seven and 53%, respectively, of the MGA+S and MGA+GnRH-treated heifers had short estrous cycles after treatment, and 44 and 50%, respectively, of those short cycles were repeated. Pregnancy rates at the end of 45 d were numerically higher for MGA+S heifers than for MGA+GnRH treated counterparts (63 vs 53%).  相似文献   

10.
The effect of dietary energy and weight class on the fertility of yearling beef heifers (Angus, Hereford, and Angus x Hereford) was investigated over 2 years. In year 1, heifers (n=58) were classed as heavy (HW; > or =340 kg) or light weight (LW; <340kg) and then assigned to receive either a low (LE; 0.23 kg/day) or high energy (HE; 0.68 kg/day) diet. In year 2, heifers (n=60) were also classified as heavy (> or =335kg) or light weight (<335 kg), but the energy content of the diet was raised so that heifers on the LE and HE were targeted to gain 0.46 and 0.79 kg/day, respectively. Heifers in the four groups, LELW (n=14 and 12), LEHW (n=16 and 17), HELW (n=13 and 15), and HEHW (n=15 and 16) received restricted amounts of concentrate (HE > LE) and free choice hay over 47 or 42 days (year 1 and year 2, respectively). To synchronize estrus, heifers were fed capsules containing MGA (0.5 mg/animal each day) beginning 11 days before the end of the feeding trial (day 0), PGF(2alpha) (25mg i.m.) and estradiol benzoate (Ebeta; 400 microg i.m.) was given on days 8 and 10, respectively. Estrous behavior was observed (days 10 and 11) and all heifers were inseminated on day 11. Following AI, heifers were re-grouped and a bull was introduced (days 27-39) for the second service in both years. Pregnancy diagnosis for the first (days 41-42) and second services (days 69-97) was performed by transrectal ultrasonography. Transrectal ultrasonic observations of ovarian follicle number and size were completed for a subset of heifers (n=5-8) from each experimental group at the end of the feeding trial. The effect of year was not significant for any of the reproductive performance variables measured. The mean ADG was (0.72 +/- 0.04 kg/day) and was greater in LW than HW heifers and in heifers in the HE than LE treatment groups (P <0.05). In heifers receiving the LE diet, ADG was lower in HW than LW heifers (weight x diet; P=0.02; 0.54 +/- 0.04 and 0.62 +/- 0.03 kg/day for HW and LW heifers, respectively). The diameter of the largest follicle was greater in heifers receiving the HE diet (P < 0.05; 11.3 +/- 0.4 mm) than those on the LE diet (10.3 +/- 0.3), and in LW (P <0.05) compared to HW heifers. The HE diet increased the size of the largest follicle in LW but not HW heifers (diet x weight, P <0.05). The percentage of pubertal heifers at the end of the feeding period (59.3%), estrous response (56.4%), conception rate (47.7%), ovulation rate (88.9%), and first service pregnancy rate (36.2%) were not significantly affected by initial weight or diet. There was a tendency for first service pregnancy rates to be greater in LW than HW heifers consuming the LE diet (diet x weight, P <0.1; 54.2 +/- 15 and 30.3 +/- 10% for LELW and LEHW heifers, respectively). Pregnancy rate after two services was greater (P=0.01) in LW (82 +/- 10%) than in HW (64.5 +/- 10%). The LE diet achieved moderate rates of gain and allowed high level of reproductive performance in LW but not HW heifers.  相似文献   

11.
Yearling beef heifers (n = 193) were used to evaluate reproductive performance attained with 2 MGA-PGF(2)alpha synchronization systems. These treatments were compared with an untreated control group. The 14-d MGA heifers were synchronized by feeding 0.5 mg MGA/h/d for 14 d. At 17 d after the last MGA feeding, these heifers were injected with PGF(2)alpha (25 mg, im). Heifers in the 7-d MGA treatment group were fed 0.5 mg MGA/h/d for 7 d and received a 25-mg, im injection of PGF(2)alpha on the last day of the MGA feeding period. Heifers in all 3 treatment groups were observed for estrus every 12 h for 7 d beginning 24 h after the PGF(2)alpha injection. Heifers observed in estrus during this 7-d period were artificially inseminated approximately 12 h after the onset of estrus. The percentages of heifers in estrus during the 7-d synchronized period were 75.4, 56.3 and 17.2% for the 14-d MGA, 7-d MGA and control groups, respectively. The estrous responses were significantly different in each treatment. The percentage of heifers in estrus during the peak 24-h period was higher (P < 0.05) in heifers synchronized with the 14-d MGA system than in heifers synchronized with the 7-d MGA system (75.5 vs 50.0%). The synchronized conception rate of the 14-d MGA heifers was significantly higher (65.3%) than that of both the 7-d MGA (41.7%) and control (45.4%) heifers. Synchronized conception rates were similar (P = 0.79) in the 7-d MGA and control treatments. Synchronized pregnancy rates were 55.2, 32.4 and 15.2% for the 14-d MGA, 7-d MGA and control groups, respectively. Both synchronization treatments resulted in significantly higher synchronized pregnancy rates compared with that of the controls. The synchronized pregnancy rate was higher (P < 0.05) in the 14-d MGA group than it was in the 7-d MGA group. The mean day of conception within the breeding season was 11.5 and 9.3 d shorter in the 14-d MGA heifers than in the 7-d MGA and control heifers, respectively. Our results indicate that using the 14-d MGA system to synchronize estrus in beef heifers results in better reproductive performance than that attained in heifers synchronized with the 7-d MGA system or in control heifers.  相似文献   

12.
The capacity of heifer calves of a late sexually maturing Zebu (Bos indicus) genotype to respond to superstimulation with FSH at a young age and in vitro oocyte development were examined. Some calves were treated with a GnRH agonist (deslorelin) or antagonist (cetrorelix) to determine whether altering plasma concentrations of LH would influence follicular responses to FSH and oocyte developmental competency. Brahman calves (3-mo-old; 140 +/- 3 kg) were randomly assigned to 3 groups: control (n = 10); deslorelin treatment from Day -8 to 3 (n = 10); and cetrorelix treatment from Day -3 to 2 (n = 10). All calves were stimulated with FSH from Day 0 to 2, and were ovariectomized on Day 3 to determine follicular responses to FSH and to recover oocytes for in vitro procedures. Before treatment with FSH, heifers receiving deslorelin had greater (P < 0.001) plasma LH (0.30 +/- 0.01 ng/ml) than control heifers (0.17 +/- 0.02 ng/ml), while plasma LH was reduced (P < 0.05) in heifers treated with cetrorelix (0.13 +/- 0.01 ng/ml). Control heifers had a surge release of LH during treatment with FSH, but this did not occur in heifers treated with deslorelin or cetrorelix. All heifers had large numbers of follicles > or = 2 mm (approximately 60 follicles) after superstimulation with FSH, and there were no differences (P > 0.10) between groups. Total numbers of oocytes recovered and cultured also did not differ (P > 0.05) for control heifers and heifers treated with deslorelin or cetrorelix. Fertilization and cleavage rates were similar for the 3 groups, and developmental rates to blastocysts were also similar. Zebu heifers respond well to superstimulation with FSH at a young age, and their oocytes are developmentally competent.  相似文献   

13.
The present study was performed to test fertility after low dose insemination with sexed and non-sexed sperm in dairy cattle under field conditions in Switzerland. Spermatozoa were stained with Hoechst 33342 and sorted by flow cytometry. A total of 132 heifers and cows were inseminated with 2 x 10(6) X-bearing, frozen-thawed sperm (A) and 91 animals were inseminated with the same dose using non-sorted, frozen-thawed sperm (B). Pregnancy examination by ultrasound was performed twice, 30-40 days (PE1) and 70-90 days (PE2) after insemination. The pregnancy rates after PE1 were 33.3% (9/27) and 59.3% (16/27) in heifers (P=0.05) and 27.6% (29/105) and 28.1% (18/64) in cows (P>0.05) for groups A and B, respectively. Embryonic losses between PE1 and PE2 in heifers were 11.1% (1/9) and 0% (0/16) and in cows 17.2% (5/29) and 5.6% (1/18), the differences between groups A and B not being significant (P>0.05). Calving rates in heifers were 29.6% (8/27) and 57.8% (15/26), whereas in cows 22.1% (23/104) and 23.4% (16/63) gave birth to calves (for both groups P>0.05). The sex ratio was different (P<0.05) between A (85.3%) and B (58.6%). From our results it can be concluded that conception rates of sorted and non-sorted semen are similar using an insemination dose of 2 x 10(6). Fertility may be increased by improving sexing technology and animal management.  相似文献   

14.
The overall objective was to compare the efficacy of GnRH, porcine LH (pLH) and estradiol cypionate (ECP), in a modified Ovsynch/fixed-time AI (FTAI) protocol that included a controlled internal drug [progesterone] release (CIDR) device. In Experiment 1, heifers received a CIDR on Day -10, and PGF (25mg) on Day -3. At CIDR insertion, heifers received 100 microg of GnRH (n=6), 0.5mg of ECP (n=6), 5.0mg of pLH (n=6) or 2 mL of saline (n=7); these treatments were repeated on Day -1, except for ECP, that was repeated on Day -2, concurrent with CIDR-removal. The 5.0 mg pLH was the least effective with a longer interval to ovulation than the other groups combined (102 versus 64 h; P<0.05). Overall mean LH concentrations (1.6 ng/mL) and area under the curve (AUC) did not differ among treatments, but mean peak LH concentration was lower in heifers given 5 mg of pLH compared to all other groups (4.5 versus 10.3 ng/mL; P<0.05). In Experiment 2, heifers on CIDR-based Ovsynch protocols were given 12.5mg pLH (n=6; pLH-low), 25.0 mg pLH (n=6, pLH-high), or 100 microg GnRH (n=5; control). Heifers in the pLH-high group had greater (P<0.01) plasma LH concentrations (between 12 and 20 h) than GnRH-treated heifers, but the pLH treatments did not differ (P>0.10). Area under the curve for LH (ng/32 h) was at least 50% greater (P<0.01) in pLH-treated heifers compared to GnRH-treated heifers (mean, 41.3, 56.3 and 20.3 for pLH-low, pLH-high and GnRH, respectively). Ovulation occurred in 15 of 17 heifers. Progesterone concentrations were higher on Days 9 and 14 in heifers given 25mg of pLH, suggesting enhanced CL function. In Experiment 3, 240 heifers were assigned to CIDR-based Ovsynch/FTAI protocols. The first and second hormonal treatments (with an intervening PGF treatment on Day -3) were GnRH/GnRH (100 microg), ECP/ECP (0.5 mg), pLH/pLH (12.5 mg) or GnRH/ECP, respectively; pregnancy rates were 58.7, 66.1, 45.9 and 48.3%, respectively (ECP/ECP>both pLH/pLH and GnRH/ECP; P相似文献   

15.
Estrus synchronization contributes to optimizing the use of time, labor, and financial resources by shortening the calving season, in addition to increasing the uniformity of the calf crop. We determined whether acceptable pregnancy rates could be achieved after synchronization of ovulation and fixed-time artificial insemination (AI) in peripuberal replacement beef heifers using gonadotropin-releasing hormone (GnRH) and PGF2alpha. Crossbred heifers from two herds (MH, n=239; SS, n=330) were wintered at a single location. After a prebreeding examination revealed that 55 heifers had a reproductive tract score (RTS) of 1 (infantile reproductive tracts), they were culled and the remaining heifers were assigned randomly to one of three treatment groups: administration of 25mg PGF2alpha i.m. on Days -12 and 0 followed by estrus detection and insemination between 10 and 14 h after an observed estrus (Control; n=173); administration of 100 microg GnRH i.m. on Day -6, followed by 25 mg PGF2alpha i.m. on Day 0, then fixed-time AI and administration of 100 microg GnRH i.m. on Day +2 (GPG; n=172); and, treatment as for group GPG in addition to administration of 100 microg GnRH i.m. on Day -12 (GGPG; n=169). Bulls were introduced 10 days after AI for 60 days to breed heifers which did not conceive after AI (clean-up bulls). On Days -12, -6, and 0 transrectal ultrasonography was used to monitor ovarian structures in a subset of heifers (30 per treatment). At 30-35 days after AI, ultrasound was used to determine the presence of a viable fetus. Presence of a fetus and stage of pregnancy were determined via palpation per rectum 61-63 days after the conclusion of the breeding season. Heifers in the MH herd (309+/-1.9 kg) were heavier (P<0.001) than those in the SS herd (283+/-1.7 kg) at initiation of the breeding season. Synchronized pregnancy rates were greater (P<0.05) in GGPG (25.4%) and GPG (22.1%) than Control (12.7%) heifers. Pregnancy rates were 9, 21, 32, or 31% for heifers with RTS of 2, 3, 4, or 5, respectively. The average diameter of 22 follicles induced to ovulate in heifers treated with GnRH (GPG and GGPG treatments) was 14.2+/-0.8 mm (range=10.0-23.6 mm). In conclusion, a fixed-time ovulation synchronization program using GnRH and PGF2alpha improved pregnancy rates in peripuberal, lightweight replacement beef heifers.  相似文献   

16.
The objectives of this experiment were to compare estrous synchronization responses and AI pregnancy rates of beef heifers using protocols that included either CIDR or MGA as the progestin source. The hypotheses tested were that: (1) estrous synchronization responses after (a) progestin removal, and (b) PGF(2alpha); and, (2) AI pregnancy rates, do not differ between heifers synchronized with either progestin source. At the start of the experiment (Day 0) in both years, heifers were assigned randomly to receive, MGA supplement for 14 days (MGA-treated; n=79) or CIDR for 14 days (CIDR-treated; n=77). On Day 14 progestin was removed and heifers were observed for estrus up to and after PGF(2alpha) on Days 31 and 33 for CIDR-treated and MGA-treated heifers, respectively. Heifers that exhibited estrus within 60h after PGF(2alpha) were inseminated by AI 12h later; the remaining heifers were inseminated at 72h after PGF(2alpha) and given GnRH (100mug). More (P<0.05) CIDR-treated heifers exhibited estrus within 120h after progestin removal than MGA-treated heifers. Intervals to estrus after progestin removal were shorter (P<0.05) for CIDR-treated heifers than MGA-treated heifers. More (P<0.05) CIDR-treated heifers exhibited estrus and were inseminated within 60h after PGF(2alpha) than MGA-treated heifers. Pregnancy rates did not differ (P>0.10) between MGA-treated (66%) and CIDR-treated (62%) heifers. In conclusion, the use of CIDR as a progestin source in a 14-day progestin, PGF(2alpha), and timed AI and GnRH estrous synchronization protocol was as effective as the use of MGA to synchronize estrus and generate AI pregnancies in beef heifers.  相似文献   

17.
The objective was to compare pregnancy rates following fixed-time AI (FTAI) in beef cattle given a new or previously used CIDR insert and injections of estradiol, with or without progesterone, to synchronize follicular wave emergence. In Experiment 1, heifers (n=616) received a new or once-used CIDR insert for 9 days and were given 1mg estradiol cypionate (ECP), with or without 100 mg of a commercial progesterone preparation (CP4), at CIDR insertion. Heifers were treated with PGF at CIDR removal and 0.5 mg ECP i.m. 24h later, with FTAI 55 to 60 h after CIDR removal. Pregnancy rate was not affected by either the number of CIDR uses (P=0.59; 48.3% versus 46.2% for new versus once-used CIDRs, respectively) or the addition of progesterone (P=0.42; 45.6% versus 48.8% for ECP+CP4 and ECP, respectively). In Experiment 2 (replicated at two locations), heifers (n=56) and lactating beef cows (n=307) received a once- or twice-used CIDR and an i.m. injection of 1mg estradiol benzoate (EB), with or without 100 mg progesterone, at CIDR insertion. Cattle received PGF in the ischiorectal fossa at CIDR removal (Day 7) and 1mg EB i.m. 24h later, with FTAI 52 to 56 h after CIDR removal. Pregnancy rate was affected by location (P<0.002; 46.0% versus 61.1% for Locations A and B, respectively), parity (P<0.04; 67.9% versus 53.1% in heifers and cows, respectively), and numbers of times the CIDR had been used (P<0.03; 62.4% versus 48.4% for once- and twice-used CIDRs, respectively). However, the addition of progesterone to the injection of EB at CIDR insertion did not affect pregnancy rate (P=0.6). In Experiment 3, heifers (n=187) received one new, one once-used, one twice-used or two twice-used CIDRs for 7 days and 2 mg EB plus 50 mg of CP4 at the time of CIDR insertion. Heifers were treated with PGF at CIDR removal and 1mg EB i.m. 24 h later, with FTAI 52-56 h after CIDR removal. Pregnancy rate was not affected by treatments (P=0.28, 57.5, 63.8, 47.9, 47.9% for one new, one once-used, one twice-used, or two twice-used CIDRs, respectively). In summary, pregnancy rate to FTAI did not differ between cattle synchronized with a new or once-used CIDR, but pregnancy rate was lower in cattle synchronized with a twice-used CIDR; however, the insertion of two twice-used CIDRs did not affect pregnancy rates. The addition of an injection of progesterone to the estradiol treatment at CIDR insertion did not enhance pregnancy rate to FTAI.  相似文献   

18.
Recombinant bovine somatotropin (rbST) has been shown to increase follicular growth in cattle and some studies have demonstrated an increase in superovulatory response for rbST-treated cows. Pregnancy rates have also been shown to increase when rbST was administered around the time of insemination or prior to embryo transfer. The application of rbST for the purpose of increasing superovulatory responses of donor cows and increasing pregnancy rates of recipient heifers was tested in a commercial embryo transfer program. In Experiment 1, embryo donor cows (n = 56) underwent three cycles of control superovulation (two before and one after weaning) and subsequently underwent up to four additional superovulations while being treated with either rbST (500 mg sustained-release rbST; Posilac, Monsanto, St. Louis, MO; n = 28) or excipient (control; n = 28) once every 14 days. In Experiment 2, lactating embryo donor cows (n = 37) underwent a control superovulation and then underwent a superovulation while lactating and being treated with either rbST (n = 16) or excipient (n = 21). In Experiment 3, embryo recipient heifers that were being implanted with either in vitro or in vivo produced embryos were treated with either rbST (n = 146) or excipient (n = 143) at the time of embryo transfer. Treatment of non-lactating (Experiment 1) or lactating (Experiment 2) donor cows with rbST during repeated superovulation did not affect the number of corpora lutea, the sum of transferable embryos, degenerate embryos, and unfertilized oocytes, or the number of transferable embryos. Treatment of recipient heifers with rbST (Experiment 3) did not affect pregnancy rates for either in vitro or in vivo produced embryos. We conclude that superovulatory response and pregnancy rates (respectively) are similar to control for rbST-treated cows undergoing repeated superovulations and rbST-treated recipient heifers treated at the time of embryo transfer.  相似文献   

19.
The objective of this study was to evaluate synchronization, conception, and pregnancy rates of yearling beef heifers synchronized with either the Select Synch protocol preceded by 7 days of MGA feeding (MGA/Select Synch) or the traditional MGA/PGF protocol. Heifers in the MGA/Select Synch group (n = 402) were fed MGA (0.5 mg/day/head) for 7 days, received an injection of GnRH (100 microg) the day following the last MGA feeding and an injection of PGF (25 mg) 7 days after GnRH. Heifers in the MGA/PGF group (n = 394) received MGA (0.5 mg/day/head) for 14 days, followed by an injection of PGF (25 mg) 17 days later. Synchronization rates tended (P = 0.08) to be higher for the MGA/Select Synch (82%) compared to the MGA/PGF (77%)-treated heifers. Conception and pregnancy rates to AI were similar (P > 0.10), 57 and 46% for the MGA/Select Synch heifers and 61 and 47% for the MGA/PGF heifers, respectively. Mean estrous response (h) was earlier (P < 0.05) for the MGA/Select Synch versus MGA/PGF treatment, 56 versus 61 h post-PGF treatment, respectively. In summary, short-term (7 days) MGA feeding preceding the Select Synch protocol produced similar synchronization, conception, and pregnancy rates as the traditional MGA/PGF protocol.  相似文献   

20.
The objective of this study was to evaluate the effects of treatment with an intravaginal progesterone-releasing device (CIDR) and estradiol benzoate (EB) on follicular dynamics in Bos indicus (n=23), Bos taurus (n=25), and cross-bred (n=23) heifers. To assess the influence of reduced serum progesterone concentrations during 8 days of treatment with a progesterone-releasing device on follicular dynamics, half of the heifers received PGF at CIDR insertion (Day 0; 3 x 2 factorial design). Mean (+/-S.E.M.) serum progesterone concentrations during CIDR treatment varied (P<0.05) among genetic groups: B. indicus (5.4+/-0.1 ng/mL), B. taurus (3.3+/-0.0 ng/mL), and cross-bred (4.3+/-0.1 ng/mL). Maximum diameter of the dominant follicle (DF) was smaller (P<0.01) in B. indicus heifers (9.5+/-0.5 mm) than in cross-bred (12.3+/-0.4 mm) or B. taurus heifers (11.6+/-0.5 mm). B. indicus experienced lower (P<0.01) ovulation rate (39.1%) than did B. taurus (72.7%) and cross-bred (84.0%). Heifers treated with PGF on Day 0 had lower (P<0.05) serum progesterone concentrations during progesterone treatment. The PGF treatment on Day 0 increased (P<0.01) the diameter of the DF (11.9+/-0.4 mm vs. 10.5+/-0.4 mm). Moreover, greater (P=0.02) ovulation rates (78.8 vs. 54.0%) occurred in heifers treated with PGF on Day 0. In summary, B. indicus heifers had greater serum progesterone concentrations, smaller DF diameter, and a lower ovulation rate compared to B. taurus heifers. Prostaglandin treatment on the day of CIDR insertion reduced serum progesterone during treatment, and resulted in increased maximum DF diameter and ovulation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号