首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By enzymatic cleavage and ligation of tRNAVa1, its anticodon sequence IAC was altered to IAU, the anticodon of tRNAI1e. Valine acceptor activity of this variant tRNAVa1 (IAU) was reduced to the extent much lower than tyrosine acceptability of the previously prepared tRNATyr (GAA) (anticodon for tRNAPhe). Isoleucine acceptor activity was undetected, contrary to tRNATyr (GAA) which accepted phenylalanine weakly. Cleavage of tRNAVa1 (IAC) between IACA37 and C38 of its anticodon loop reduced the valine acceptor activity, suggesting some contribution of the conformation of the anticodon loop to the aminoacylation reaction.  相似文献   

2.
By utilizing an enzymatically reconstructed tRNA variant containing an altered anticodon sequence, we have examined the different biochemical behavior of translation between the Watson-Crick type and the wobble type base pair interactions at the first anticodon position. We have found that the Watson-Crick type base pair has an advantage in translation in contrast to the wobble type base pair by comparing the efficiency of transpeptidation of native tRNA(Phe) (anticodon; GmAA) with its variant tRNA (anticodon; AAA) in the poly(U)-programmed ribosome system. Thomas et al. [Proc. Natl. Acad. Sci. U.S. (1988) 85, 4242-4246] showed that the wobble codon at the ribosomal A-site accepted its cognate tRNA less efficiently than the Watson-Crick base pairing codon. We report here that the wobble interaction at the ribosomal P-site also affected the rate of translation. This variable translational rate may be a mechanism of gene regulation through preferential codon usage.  相似文献   

3.
Inactive, frozen and thawed cytoplasmic extracts of 3T3 and SV-101 (3T3 transformed by SV-40 virus) cells contain an inhibitor which blocks the poly(U)-directed incorporation of [14C]phenylalanine into polypeptides, catalyzed by active extracts of these cells. This inhibition is not reversed by adding increased amounts of poly(U). Furthermore, little or no inhibitory activity is observed when poly(U) translation is assayed using precharged [14C]Phe-tRNA. These results suggest that the observed inhibition is not due to the degradation of poly(U) by a nuclease. The inhibitor appears to act primarily at the level of tRNA charging since the synthesis of both Phe-tRNA and Lys-tRNA is impaired in its presence. Evidence is presented which indicates that the inhibitory activity is not due to a high molecular weight protein or nucleic acid. However, the inhibitor appears to be adsorbed to a macromolecule. The inhibitory activity is completely destroyed by ashing.  相似文献   

4.
The complexes of N-AcPhe-tRNAPhe (or non-aminoacylated tRNAPhe) from yeast with 70S ribosomes from E. coli have been studied fluorimetrically utilizing wybutine, the fluorophore naturally occurring next to the 3' side of the anticodon, as a probe for conformational changes of the anticodon loop. The fluorescence parameters are very similar for tRNA bound to both ribosomal sites, thus excluding an appreciable conformational change of the anticodon loop upon translocation. The spectral change observed upon binding of tRNAPhe to the P site even in the absence of poly(U) is similar to the one brought about by binding of poly(U) alone to the tRNA. This effect may be due to a hydrophobic binding site of the anticodon loop or to a conformational change of the loop induced by binding interactions of various tRNA sites including the anticodon.  相似文献   

5.
Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein would be a very useful technique to generate multiple chemical handles for bioconjugation and multivalent binding sites for the enhanced interaction. Previously combination of a mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA containing the AAA anticodon was used to incorporate a noncanonical amino acid into multiple UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selective codon recognition of the AAA anticodon, there was significant misincorporation of a noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity, we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Combined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine, into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine, these results successfully demonstrated that the concept of forced ambiguity of the genetic code can be achieved for the Leu codons, available for multiple-site-specific incorporation.  相似文献   

6.
7.
8.
A synthetic ribooligonucleotide, r(CCAGACUGm-AAGAUCUGG), corresponding to the unmodified yeast tRNA(Phe) anticodon arm is shown to bind to poly(U) programmed small ribosomal subunits of both E. coli and rabbit liver with affinity two order less than that of a natural anticodon arm. Its deoxyriboanalogs d(CCAGACTGAAGATCTGG) and d(CCAGA)r(CUGm-AAGA)d(TCTGG), are used to study the influence of sugar-phosphate modification on the interaction of tRNA with programmed small ribosomal subunits. The deoxyribooligonucleotide is shown to adopt a hairpin structure. Nevertheless, as well as oligonucleotide with deoxyriboses in stem region, it is not able to bind to 30S or 40S ribosomal subunits in the presence of ribo-(poly(U] or deoxyribo-(poly (dT) template. The deoxyribooligonucleotide also has no inhibitory effect on tRNA(Phe) binding to 30S ribosomes at 10-fold excess over tRNA. Neomycin does not influence binding of tRNA anticodon arm analogs used. Complete tRNA molecule and natural modifications of anticodon arm are considered to stabilize the arm structure needed for its interaction with a programmed ribosome.  相似文献   

9.
The phenylalanine analogues p-chlorophenylalanine and alpha-methylphenylalanine were used to inhibit phenylalanine hydroxylase in animal models for phenylketonuria. The present report examines the affects of these analogues on the metabolism of neuroblastoma cells. p-Chlorophenylalanine inhibited growth and was toxic to neuroblastoma cells. Although in vivo this analogue increased cell monoribosomes by 42%, it did not significantly affect poly(U)-directed protein synthesis in vitro. P-Chlorophenylalanine did not compete with phenylalanine or tyrosine for aminoacylation of tRNA and was therefore not substituted for those amino acids in nascent polypeptides. The initial cellular uptake of various large neutral amino acids was inhibited by this analogue but did not affect the flux of amino acids already in the cell; this suggested that an alteration of the cell's amino acid pools was not responsible for the cytotoxicity of the analogues. In contrast with p-chlorophenylalanine, alpha-methylphenylalanine did not exert these direct toxic effects because the administration of alpha-methylphenylalanine in vivo did not affect brain polyribosomes and a comparable concentration of this analogue was neither growth inhibitory nor cytotoxic to neuroblastoma cells in culture. The suitability of each analogue as an inhibitor of phenylalanine hydroxylase in animal models for phenylketonuria is discussed.  相似文献   

10.
Imidazole catalysis of phenylalanyl transfer from phenylalanine adenylate anhydride to the hydroxyl groups of homopolyribonucleotides was investigated as a chemical model of the biochemical aminoacylation of tRNA. Imidazole catalyzed transfer of phenylalanine to poly(U) increases from pH 6.5 to 7.7 and decreases above pH 7.7. At pH 7.7 approximately 10% of the phenylalanyl residues are transferred to poly(U). At pH 7.1, transfer to poly(U) was five times as great as to poly(A) and transfer to a poly(A) poly(U) double helix was negligible. At pH 7.1 approximately 45 mole percent linkages to poly(U) were monomeric phenylalanine; the remainder of the linkages were peptides of phenylalanine. The number of linkages and their lability to base and neutral hydroxylamine indicates that phenylalanine and its peptides are attached as esters to the 2' hydroxyl groups throughout poly(U) and the 2' (3') hydroxyl groups at the terminus of poly(U). These results do model the contemporary process of aminoacyl transfer to tRNA and continue to suggest that a histidine residue is in the active site of aminoacyl-tRNA-synthetases.  相似文献   

11.
Binding of yeast tRNAPhe anticodon arm to Escherichia coli 30 S ribosomes   总被引:7,自引:0,他引:7  
A 15-nucleotide fragment of RNA having the sequence of the anticodon arm of yeast tRNAPhe was constructed using T4 RNA ligase. The stoichiometry and binding constant of this oligomer to poly(U)-programmed 30 S ribosomes was found to be identical to that of deacylated tRNAPhe. The anticodon arm and tRNAPhe also compete for the same binding site on the ribosome. These data indicate that the interaction of tRNAPhe with poly(U)-programmed 30 S ribosomes is primarily a result of contacts in the anticodon arm region and not with other parts of the transfer RNA. Since similar oligomers which cannot form a stable helical stem do not bind ribosomes, a clear requirement for the entire anticodon arm structure is demonstrated.  相似文献   

12.
Steady-state fluorescence and fluorescence anisotropy measurements have been carried out on isolated complexes of fluorescent derivatives of N-AcPhe-tRNAPhe with 70 S ribosomes from Escherichia coli. As a fluorescent probe, proflavine was inserted into either the anticodon loop or the D loop.Upon binding to the A site of poly(U)-programmed ribosomes, the probe in the anticodon loop is highly immobilized and effectively shielded against solvent access in a hydrophobic binding site. Elongation factor G-dependent translocation to the P site does not change any of the fluorescence parameters. These observations indicate that in both sites the environment of the probe with respect to hydrophobicity and shielding against solvent access is rather similar. Moreover, substantial conformational changes of the anticodon loop upon translocation are made unlikely.In contrast to the anticodon loop, the D loop is fully exposed to the solvent in both A and P sites, indicating that the variable region in the middle of the D loop is oriented away from the ribosomal surface.On the other hand, depolarization measurements show that the D loop is strongly immobilized in the A site, possibly by binding interactions of invariant bases of the loop. Upon translocation, the D loop gains considerable flexibility, indicating that in the P site it is neither fixed by contacts with the ribosome nor by intramolecular base-pairing with the T loop.In the absence of poly(U) or in the presence of poly(C), the fluorescence parameters of the probes in the anticodon loop and, more significantly, in the D loop, differ from those observed in the presence of poly(U). These differences are best explained by assuming a codon-induced conformational change of the anticodon loop, which in turn is transmitted to the D loop.When the non-aminoacylated tRNAPhe derivatives are studied, spectroscopic differences as compared to the respective N-AcPhe-tRNAPhe derivatives are observed only for the A site complexes. It appears that the aminoacylation influences the binding of transfer RNA in the A site, but not in the P site.  相似文献   

13.
The phosphorescence of brewers' yeast phenylalanine transfer RNA has been investigated at 77 °K and at 1.2 °K in pumped liquid helium. Although the phosphorescence at 77 °K originates almost completely from the Y base in the anticodon loop, independent of excitation wavelength, the phosphorescence originates from normal bases with 270 nm excitation at temperatures in the helium range. The low-temperature phosphorescence is assigned to the triplet state of adenosine by optical detection of magnetic resonance measurements. The adenosine phosphorescence at 1.2 °K is quenched by the binding of the codon poly(U), as well as by the removal of Mg2+. The former result indicates that the adenosine phosphorescence originates from the anticodon, -Gm-A-A-, while the second shows that a conformational change introduced by removing Mg2+ (possibly involving unstacking of the anticodon) prevents energy trapping in the anticodon triplet state. The lack of triplet energy transfer from anticodon to Y indicates that Y cannot be stacked with the anticodon in the conformation that is stable at helium temperature. The adenosine phosphorescence of transfer RNAPhe is nearly completely quenched at 77 °K, at least partially due to energy transfer to Y. We think that the thermally activated energy transfer is associated with some mobility of the Y base at 77 °K. Our observations are in contrast with previous results on bakers' yeast tRNAPhe where there is apparently little, if any, energy transfer to Y from the normal nucleotides at 80 °K with 265 nm excitation. Optically detected magnetic resonance measurements on the triplet state of Y base in various environments indicate that removal of Mg2+ causes a shift of the Y base in tRNAPhe to a more solvent-exposed position, whereas the binding of poly(U) has little effect on the environment of Y.  相似文献   

14.
The interaction of ethidium-labeled tRNAPhe from yeast with ribosomes from yeast and Escherichia coli was studied by stead-state measurements of fluorescence intensity and polarization. The ethidium label was covalently inserted into either the anticodon or the dihydrouridine loop of the tRNA. The codon-independent formation of a tRNA-ribosome complex led to only a moderate increase of the observed fluorescence polarization indicating a considerable internal mobility of the labeled parts of the tRNA molecule in the ribosome complex. When the ribosome complex was formed in the presence of poly(U), the probes both in the dihydrouridine loop and in the anticodon loop were strongly immobilized, the latter exhibiting a substantial increase in fluorescence intensity. A smaller intensity change was observed when E. coli ribosomes were used, although the extent of immobilization was found to be similar in this case. Competition experiments with non-labeled tRNAPhe showed that the labeled tRNAPheEtd was readily released from the complex with yeast ribosomes when poly(U) was absent, whereas in the presence of poly(U) it was bound practically irreversibly. The finding that the mobility of a probe in the dihydrouridine loop is affected by the codon-anticodon interaction on the ribosome suggests a conformational change of the ribosome-bound tRNA which may involve opening of the tertiary structure interactions between the dihydrouridine and the TpsiC loop.  相似文献   

15.
Levengood JD  Roy H  Ishitani R  Söll D  Nureki O  Ibba M 《Biochemistry》2007,46(39):11033-11038
Aminoacyl-tRNA synthetases are normally found in one of two mutually exclusive structural classes, the only known exception being lysyl-tRNA synthetase which exists in both classes I (LysRS1) and II (LysRS2). Differences in tRNA acceptor stem recognition between LysRS1 and LysRS2 do not drastically impact cellular aminoacylation levels, focusing attention on the mechanism of tRNA anticodon recognition by LysRS1. On the basis of structure-based sequence alignments, seven tRNALys anticodon variants and seven LysRS1 anticodon binding site variants were selected for analysis of the Pyrococcus horikoshii LysRS1-tRNALys docking model. LysRS1 specifically recognized the bases at positions 35 and 36, but not that at position 34. Aromatic residues form stacking interactions with U34 and U35, and aminoacylation kinetics also identified direct interactions between Arg502 and both U35 and U36. Tyr491 was also found to interact with U36, and the Y491E variant exhibited significant improvement compared to the wild type in aminoacylation of a tRNALysUUG mutant. Refinement of the LysRS1-tRNALys docking model based upon these data suggested that anticodon recognition by LysRS1 relies on considerably fewer interactions than that by LysRS2, providing a structural basis for the more significant role of the anticodon in tRNA recognition by the class II enzyme. To date, only glutamyl-tRNA synthetase (GluRS) has been found to contain an alpha-helix cage anticodon binding domain homologous to that of LysRS1, and these data now suggest that specificity for the anticodon of tRNALys could have been acquired through relatively few changes to the corresponding domain of an ancestral GluRS enzyme.  相似文献   

16.
The effect of replacement of tRNA(Phe) recognition elements on positioning of the 3'-terminal nucleotide in the complex with phenylalanyl-tRNA synthetase (PheRS) from T. thermophilus in the absence or presence of phenylalanine and/or ATP has been studied by photoaffinity labeling with s(4)U76-substituted analogs of wild type and mutant tRNA(Phe). The double mutation G34C/A35U shows the strongest disorientation in the absence of low-molecular-weight substrates and sharply decreases the protein labeling, which suggests an initiating role of the anticodon in generation of contacts responsible for the acceptor end positioning. Efficiency of photo-crosslinking with the alpha- and beta-subunits in the presence of individual substrates is more sensitive to nucleotide replacements in the anticodon (G34 by A or A36 by C) than to changes in the general structure of tRNA(Phe) (as a result of replacement of the tertiary pair G19-C56 by U19-G56 or of U20 by A). The degree of disorders in the 3'-terminal nucleotide positioning in the presence of both substrates correlates with decrease in the turnover number of aminoacylation due to corresponding mutations. The findings suggest that specific interactions of the enzyme with the anticodon mainly promote the establishment (controlled by phenylalanine) of contacts responsible for binding of the CCA-end and terminal nucleotide in the productive complex, and the general conformation of tRNA(Phe) determines, first of all, the acceptor stem positioning (controlled by ATP). The main recognition elements of tRNA(Phe), which optimize its initial binding with PheRS, are also involved in generation of the catalytically active complex providing functional conformation of the acceptor arm.  相似文献   

17.
We have isolated and sequenced the minor species of tRNA(Ile) from Saccharomyces cerevisiae. This tRNA contains two unusual pseudouridines (psi s) in the first and third positions of the anticodon. As shown earlier by others, this tRNA derives from two genes having an identical 60 nt intron. We used in vitro procedures to study the structural requirements for the conversion of the anticodon uridines to psi 34 and psi 36. We show here that psi 34/psi 36 modifications require the presence of the pre-tRNA(Ile) intron but are not dependent upon the particular base at any single position of the anticodon. The conversion of U34 to psi 34 occurs independently from psi 36 synthesis and vice versa. However, psi 34 is not formed when the middle and the third anticodon bases of pre-tRNA(Ile) are both substituted to yield ochre anticodon UUA. This ochre pre-tRNA(Ile) mutant has the central anticodon uridine modified to psi 35 as is the case for S.cerevisiae SUP6 tyrosine-inserting ochre suppressor tRNA. In contrast, neither the first nor the third anticodon pseudouridine is formed, when the ochre (UUA) anticodon in the pre-tRNA(Tyr) is substituted with the isoleucine UAU anticodon. A synthetic mini-substrate consisting of the anticodon stem and loop and the wild-type intron of pre-tRNA(Ile) is sufficient to fully modify the anticodon U34 and U36 into psi s. This is the first example of the tRNA intron sequence, rather than the whole tRNA or pre-tRNA domain, being the main determinant of nucleoside modification.  相似文献   

18.
Rates of incorporation of [3H]phenylalanine and [14C]leucine from the aminoacylated transfer-RNA into polypeptides synthesized on poly(U) programmed Escherichia coli ribosomes have been determined in cell-free translation systems containing either elongation factors Tu and G with GTP, or just elongation factor Tu or G with GTP, or none of the elongation factors. The presence of elongation factor Tu with GTP has been shown to reduce the leucine to phenylalanine ratio in the product at relatively low concentrations of Mg2+. This error-reducing effect of elongation factor Tu has not been observed at high concentrations of Mg2+, although the factor still contributed to the speed of elongation. The results are discussed in terms of the kinetic proof-reading mechanism proposed by Hopfield (1974).  相似文献   

19.
At optimum magnesium concentration (10 mM) both yeast tRNA1Arg and tRNA3Arg are able to bind to poly (A,G) and A-G-A in presence of Escherichia coli robisomes. With A-G-G only tRNA1Arg ginds, wherea tRNA3Arg (anticodon mcm5 U-C-U) is not bound. This result means that the methylcarboxymethyl substituant in position 5 of U prevents its wobble with G.  相似文献   

20.
Queuosine is a modified pyrrolopyrimidine nucleoside found in the anticodon loop of transfer RNA acceptors for the amino acids tyrosine, asparagine, aspartic acid, and histidine. Because it is exclusively synthesized by bacteria, higher eukaryotes must salvage queuosine or its nucleobase queuine from food and the gut microflora. Previously, animals made deficient in queuine died within 18 days of withdrawing tyrosine, a nonessential amino acid, from the diet (Marks, T., and Farkas, W. R. (1997) Biochem. Biophys. Res. Commun. 230, 233-237). Here, we show that human HepG2 cells deficient in queuine and mice made deficient in queuosine-modified transfer RNA, by disruption of the tRNA guanine transglycosylase enzyme, are compromised in their ability to produce tyrosine from phenylalanine. This has similarities to the disease phenylketonuria, which arises from mutation in the enzyme phenylalanine hydroxylase or from a decrease in the supply of its cofactor tetrahydrobiopterin (BH4). Immunoblot and kinetic analysis of liver from tRNA guanine transglycosylase-deficient animals indicates normal expression and activity of phenylalanine hydroxylase. By contrast, BH4 levels are significantly decreased in the plasma, and both plasma and urine show a clear elevation in dihydrobiopterin, an oxidation product of BH4, despite normal activity of the salvage enzyme dihydrofolate reductase. Our data suggest that queuosine modification limits BH4 oxidation in vivo and thereby potentially impacts on numerous physiological processes in eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号