首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A slight DNA topoisomerase I activity was detected in highly purified poly(ADP-Rib)polymerase prepared from calf thymus. This copurified activity was found to be suppressed under conditions where the poly(ADP-ribosylation) reaction occurs in the presence of NAD. Purified topoisomerase I from calf thymus was shown to be ADP-ribosylated by poly(ADP-Rib) polymerase purified from the same tissue. Poly(ADP-ribosylation) of topoisomerase I produces an inhibition of the enzymatic activity in parallel to the extent of ADP-ribosylation. The fact that a slight poly(ADP-Rib) polymerase activity was also found to copurify with a topoisomerase I preparation and that topoisomerase I activity can be modified by ADP-ribosylation, may suggest a spatial and functional correlation of these two enzymes in chromatin.  相似文献   

2.
Poly(ADP-ribosylation) of DNA topoisomerase I from calf thymus   总被引:13,自引:0,他引:13  
We demonstrate that the activity of the major DNA topoisomerase I from calf thymus is severely inhibited after modification by purified poly(ADP-ribose) synthetase. Polymeric chains of poly(ADP-ribose) are covalently attached to DNA topoisomerase I. These observations with highly purified enzymes suggest that poly(ADP-ribosylation) may be a cellular mechanism for modulating DNA topoisomerase I activity in response to the state of DNA in the nucleus. Although extensive poly(ADP-ribosylation) of the Mr = 100,000 DNA topoisomerase I from calf thymus resulted in greater than 90% enzyme inhibition, exogenous poly(ADP-ribose) does not, by itself, inhibit topoisomerase activity. After modification, the apparent molecular weight of both the topoisomerase enzyme protein and of the topoisomerase enzyme activity was increased. In vitro, the extent of modification of DNA topoisomerase I could be controlled either by changing the ratio of topoisomerase to the synthetase or by varying the reaction time. More than 40 residues of ADP ribose per topoisomerase molecule could be added by the synthetase. Analysis of a poly(ADP-ribosylated) topoisomerase preparation that was about 50% inhibited revealed an average polymer chain length of 7.4, with 1-2 chains per enzyme molecule.  相似文献   

3.
We report here the large scale purification of DNA topoisomerase II from calf thymus glands, using the unknotting of naturally knotted P4 phage DNA as an assay for enzymatic activity. Topoisomerase II was purified more than 1300-fold as compared to the whole cell homogenate, with 22% yield. Analysis of the purified enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two bands of apparent molecular masses of 125 and 140 kDa. Tryptic maps of the two bands indicated that they derive from the same protein. Using these fragments, specific polyclonal antisera to topoisomerase II were raised in rabbits. Immunoblotting of whole cell lysates from various species indicated that topoisomerase II is well conserved among mammals and has a native subunit molecular mass of 180 kDa. Analytical sedimentation and gel filtration were used to determine a sedimentation coefficient of 9.8 S and a Stokes radius of 68 A. The calculated solution molecular mass of 277 kDa implies a dimer structure in solution. The purified topoisomerase II unknots P4 DNA in an ATP-dependent manner and is highly stimulated in its relaxation activity by ATP. A DNA-stimulated ATPase activity, as has been found with other type II topoisomerases, is associated with the purified enzyme. Approximate kinetic parameters for the ATPase reaction were determined to be: a Vmax of 0.06 nmol of ATP/(micrograms of protein) (min) and Km of 0.2 mM in the absence of DNA, and a Vmax of 0.2 nmol of ATP/(micrograms of protein) (min) and Km of 0.4 mM ATP in the presence of supercoiled plasmid DNA.  相似文献   

4.
Calf thymus DNA topoisomerase I, which belongs to the eukaryotic type I topoisomerases, is in a typical preparation purified as a set of five major polypeptides with Mr between 70000 and 100000. At least four of these proteins have binding affinity for DNA as was shown by incubating them with radioactive single-stranded DNA after separation in dodecylsulfate polyacrylamide gels and blotting onto nitrocellulose filters. That these polypeptides have DNA relaxing activity was directly demonstrated with protein extracted from single bands of dodecylsulfate/polyacrylamide gels. We consider the 100000-Mr protein to be the native enzyme. The smaller components are catalytically active fragments of the native topoisomerase most probably arising from limited proteolysis either within the nucleus or during the purification of the enzyme. In two-dimensional non-equilibrium pH-gradient electrophoresis gels the topoisomerase size variants exhibit apparent pI values between 8.1 and 8.3, with small but distinct differences between the components. The calf thymus topoisomerase I, upon binding to phage fd-DNA, protects a stretch of 15-25 nucleotides against digestion with DNase I.  相似文献   

5.
A type I topoisomerase has been purified more than 4000-fold from calf thymus mitochondria. The enzyme is membrane associated and is effectively solubilized by 1% Triton X-100 treatment of purified mitochondrial inner membranes. This ATP-independent enzyme relaxes positively and negatively supercoiled DNA with delta LK = 1. At low ionic strength, the native enzyme appears to be a monomer (sedimentation coefficient of 4.3 S and Stokes radius of 34 A), but it can form a weakly associated dimer at higher salt concentrations (sedimentation coefficient of 7.0 S and Stokes radius of 47.5 A). The mitochondrial type I topoisomerase is distinguishable from the nuclear enzyme by its (1) pH profile, (2) thermal stability, (3) response to dimethyl sulfoxide and Berenil, and (4) molecular weight. The mitochondrial enzyme is inhibited by elevated concentrations of the bacterial DNA gyrase inhibitor novobiocin, but not nalidixic or oxolinic acids. Sensitivity to N-ethylmaleimide indicates the importance of cysteine for catalytic activity. It is estimated that there are at least five copies of topoisomerase I per mammalian mitochondrion or a minimum of one to two per mitochondrial genome. In a manner similar to that observed with leukemia (nuclear and mitochondrial), calf thymus (nuclear), and HeLa (nuclear) cell type I topoisomerase, the calf thymus mitochondrial enzyme is inhibited by physiological concentrations of ATP.  相似文献   

6.
The partial amino acid sequence of p140 calf thymus DNA topoisomerase II was determined by analysis of cyanogen bromide peptides. Five peptides were aligned and shared extensive homology with sequences derived from cDNA clones for the human topoisomerase II isoenzyme forms. Less homology was seen with the Drosophila, yeast and bacterial type II enzymes. Calf and human enzymes shared epitopes allowing isolation of a cDNA clone to human topoisomerase II isoenzyme alpha. Our results indicate that calf thymus p140 topoisomerase II is an active N-terminal proteolytic fragment of the native p180 enzyme and demonstrate that mammalian type II enzymes exhibit close sequence similarity.  相似文献   

7.
We have found that two nuclear enzymes, i.e. poly(ADP-ribose) polymerase (EC 2.4.2.30) and poly(ADP-ribose) glycohydrolase, may cooperate to function as a histone shuttle mechanism on DNA. The mechanism involves four distinct reaction intermediates that were analyzed in a reconstituted in vitro system. In the first step, the enzyme poly(ADP-ribose) polymerase is activated in the presence of histone-DNA complexes and converts itself into a protein carrying multiple ADP-ribose polymers. These polymers attract histones that dissociate from the DNA as a histone-polymer-polymerase complex. The DNA assumes the electrophoretic mobility of free DNA and becomes susceptible to nuclease digestion (second step). In the third step, poly(ADP-ribose) glycohydrolase degrades ADP-ribose polymers and thereby eliminates the binding sites for histones. In the fourth step, histones reassociate with DNA, and the histone-DNA complexes exhibit the electrophoretic mobilities and nuclease susceptibilities of the original complexes prior to dissociation. Our results are compatible with the view that the poly(ADP-ribosylation) system acts as a catalyst of nucleosomal unfolding of chromatin in DNA excision repair.  相似文献   

8.
DNA ligase II has been purified about 4,000-fold to apparent homogeneity from a calf thymus extract. The ligase consists of a single polypeptide with a molecular weight of 68,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On fluorography after electrophoresis, a DNA ligase-[3H]AMP complex gave a single band corresponding to a molecular weight of 68,000. The Km values of the ligase for ATP and nicked DNA (5'-phosphoryl ends) were obtained to be 40 and 0.04 microM, respectively. Antibody against calf thymus DNA ligase II was prepared by injecting the purified enzyme into a rabbit. The antibody cross-reacted with DNA ligase II but not with calf thymus DNA ligase I. DNA ligase II was not affected by antibody against calf thymus DNA ligase I with a molecular weight of 130,000 (Teraoka, H. and Tsukada, K. (1982) J. Biol. Chem. 257, 4758-4763). These results indicate that DNA ligase II (Mr = 68,000) is immunologically distinct from DNA ligase I (Mr = 130,000).  相似文献   

9.
10.
Poly(ADP-ribosylation) of a DNA topoisomerase   总被引:11,自引:0,他引:11  
A DNA topoisomerase activity, copurifying with poly(ADP-ribose) synthetase from calf thymus, is greater than 95% inhibited if extensive poly(ADP-ribosylation) is allowed to occur. The inhibited DNA topoisomerase, which has drastically different elution properties on hydroxylapatite, can be reactivated by mild alkaline treatment. These results are consistent with a poly(ADP-ribosylation) of the DNA topoisomerase and covalent attachment of the poly(ADP-ribose) moieties to the topoisomerase by alkali-labile bonds.  相似文献   

11.
We found that some triterpene compounds could not only selectively inhibit the activities of mammalian DNA polymerase alpha (pol alpha) and beta (pol beta), but could also potently inhibit DNA topoisomerase II (topo II) [Biochem. J. 350 (2000) 757]. Here, we report that natural triterpenes produced by callus from an ancient Chinese medicinal plant were also inhibitors of the enzymes, and some were more selective than others. The natural triterpenes with a carboxyl group equally inhibited the activities of pol alpha, pol beta, and topo II, while the olide-type triterpenes with a ketone group suppressed the activities of pol beta and topo II, but not pol alpha. The other triterpenes from the callus hardly influenced these enzyme activities. As also described previously [J. Biochem. 130 (2001) 657], pol beta and topo II have a three-dimensionally similar triterpene-binding region, which is a pocket in which specific compounds can insert. The newly found triterpene inhibitors might structure-dependently insert into the pocket, and the pocket structure of each enzyme might, three-dimensionally but slightly, differ among them. The triterpene frames could be used for screening new inhibitors of the enzymes, and computer-simulated drug design using the frame and pocket structure may in theory be a possible approach to develop new inhibitors.  相似文献   

12.
13.
1-beta-D-Arabinofuranosylcytosine 5'-triphosphate (araCTP), an active form of a inhibitor of DNA replication, 1-beta-D-arabinofuranosylcytosine (araC) was tested for its inhibitory action on the DNA polymerase-alpha and -beta (EC 2.7.7.7) purified from calf thymus. The reaction of DNA polymerase-alpha was shown to be more sensitive to the inhibition by araCTP than that of DNA polymerase-beta. The mode of the inhibition by araCTP was competitive to dCTP in the reaction catalysed by either DNA polymerase-alpha or -beta. The Ki value of DNA polymerase-beta for araCTP was 32 micron; eight times higher than that of DNA polymerase-alpha (4 micron) for this inhibition.  相似文献   

14.
Studies suggest that the anticancer drugs VP16-213 and VM26 produce cytotoxicity by inducing protein-associated DNA breakage in vivo through interaction with a yet unknown nuclear component. The effects of these drugs and their congeners on topoisomerase activities was investigated. VP16-213, VM26, and congeners active toward inducing DNA breaks also inhibited the catenation activity of eukaryote type II topoisomerase in vitro at very low drug concentrations. A structure-activity relationship was obtained for inhibition of catenation that parallels in vivo DNA breakage and cytotoxic activities. Type I topoisomerase activity was totally unaffected by these drugs.  相似文献   

15.
16.
Renaturation of calf thymus satellite DNA   总被引:6,自引:0,他引:6  
  相似文献   

17.
The calf thymus DNA polymerase-alpha-primase complex purified by immunoaffinity chromatography catalyzes the synthesis of RNA initiators on phi X174 single-stranded viral DNA that are efficiently elongated by the DNA polymerase. Trace amounts of ATP and GTP are incorporated into products that are full length double-stranded circular DNAs. When synthetic polydeoxynucleotides are used as templates, initiation and DNA synthesis occurs with both poly(dT) and poly(dC), but neither initiation nor DNA synthesis was observed with poly(dA) and poly(dI) templates. Nitrocellulose filter binding and sucrose gradient centrifugation studies show that the DNA polymerase-primase complex binds to deoxypyrimidine polymers, but not to deoxypurine polymers. Using d(pA)-50 with 3'-oligo(dC) tails and d(pI)-50 with 3'-oligo(dT) tails, initiator synthesis and incorporation of deoxynucleotide can be demonstrated when the average pyrimidine sequence lengths are 8 and 4, respectively. These results suggest that purine polydeoxynucleotides are used as templates by the DNA polymerase only after initiation has occurred on the oligodeoxypyrimidine sequence and that the pyrimidine stretch required by the primase activity is relatively short. Analysis of initiator chain length with poly(dC) as template showed a series of oligo(G) initiators of 19-27 nucleotides in the absence of dGTP, and 5-13 nucleotides in the presence of dGTP. The chain length of initiators synthesized by the complex when poly(dT) or oligodeoxythymidylate-tailed poly(dI) was used can be as short as a dinucleotide. Analysis of the products of replication of oligo(dC)-tailed poly(dA) shows that initiator with chain length as low as 4 can be used for initiation by the polymerase-primase complex.  相似文献   

18.
During purification of the type I DNA topoisomerase from calf thymus mitochondria, two polypeptides, p78 and p63, cofractionate with the enzymatic activity (Lazarus et al., (1987) Biochemistry 26, 6195-6203). The two polypeptides are released from a mitochondrial inner membrane preparation by nonionic detergent lysis and both adsorb strongly to a single-stranded DNA agarose column. We have attempted to characterize the relationship between these two polypeptides and have found the following: (i) the mitochondrial topoisomerase is active in free (monomer) and associated (heterodimer) form; (ii) the catalytic activity resides solely in p78, as adjudged by both the covalent linkage of the enzyme to substrate DNA and the ability of the enzyme to relax supercoils; (iii) at low ionic strength the enzyme is active in monomer form with p78 alone being sufficient for activity; (iv) in high salt, the high molecular weight species is a 140-kDa heterodimer composed of one p78 and one p63; and (v) the two polypeptides are not structurally related as digestion with V8 protease results in distinct proteolytic fragment patterns. These results suggest that p63 may have an important role in the metabolism of the mitochondrial topoisomerase.  相似文献   

19.
The inhibitors of poly(ADP-ribose) polymerase did not exert a radiomodifying effect on thymocytes. The inhibitors did not also influence single-strand breaks repair in DNA of nucleoids of irradiated cells. The participation of poly(ADP-ribosylation) system in increasing the availability of thymocyte DNA damages for repair enzymes was hardly probable since benzamide in these cells did not influence the level of spontaneous genome lesions recognized by endonucleases. A possible role of protein poly(ADP-ribosylation) in thymocyte DNA repair is discussed.  相似文献   

20.
m-AMSA, an established inhibitor of eukaryotic type II topoisomerases, exerts its cidal effect by binding to the enzyme–DNA complex thus inhibiting the DNA religation step. The molecule and its analogues have been successfully used as chemotherapeutic agents against different forms of cancer. After virtual screening using a homology model of the Mycobacterium tuberculosis topoisomerase I, we identified m-AMSA as a high scoring hit. We demonstrate that m-AMSA can inhibit the DNA relaxation activity of topoisomerase I from M. tuberculosis and Mycobacterium smegmatis. In a whole cell assay, m-AMSA inhibited the growth of both the mycobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号