首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
抗旱基因HDCS1的植物表达载体构建   总被引:5,自引:0,他引:5  
在克隆了二棱大麦第3组LEAcDNA,抗旱基因HDCS1的基因上,将其连接于pB1121的CaMV35S启动子和NOS终止子之间,,构建了HDCS1的植物表达载体pBHC,并进行了PCR和酶切鉴定,为进行植物抗旱基因工程研究创造了条件。  相似文献   

2.
DNA cassette containing an AtDREB1A cDNA and a nos terminator,driven by a cauli- flower mosaic 35S promoter,or a stress-inducible rd29A promoter,was transformed into the ground cover chrysanthemum(Dendranthema grandiflorum)'Fall Color'genome.Compared with wild type plants,severe growth retardation was observed in 35S:DREB1A plants,but not in rd29A:DREB1A plants.RT-PCR analysis revealed that,under stress conditions,the DREB1A gene was over-expressed constitutively in 35S:DREB1A plants,but was over-expressed inductively in rd29A:DREB1A plants.The transgenic plants exhibited tolerance to drought and salt stress,and the tolerance was significantly stronger in rd29A:DREB1A plants than in 35S:DREB1A plants.Proline content and SOD activity were increased inductively in rd29A:DREB1A plants than in 35S:DREB1A plants under stress conditions.These results indicate that heterologous AtDREB1A can confer drought and salt tolerance in transgenic chrysanthemum,and improvement of the stress tolerance may be related to enhancement of proline content and SOD activity.  相似文献   

3.
DNA cassette containing an AtDREB1A cDNA and a nos terminator, driven by a cauliflower mosaic 35S promoter, or a stress-inducible rd29A promoter, was transformed into the ground cover chrysanthemum (Dendranthema grandiflorum) ‘Fall Color’ genome. Compared with wild type plants, severe growth retardation was observed in 35S:DREB1A plants, but not in rd29A:DREB1A plants. RT-PCR analysis revealed that, under stress conditions, the DREB1A gene was over-expressed constitutively in 35S:DREB1A plants, but was over-expressed inductively in rd29A:DREB1A plants. The transgenic plants exhibited tolerance to drought and salt stress, and the tolerance was significantly stronger in rd29A:DREB1A plants than in 35S:DREB1A plants. Proline content and SOD activity were increased inductively in rd29A:DREB1A plants than in 35S:DREB1A plants under stress conditions. These results indicate that heterologous AtDREB1A can confer drought and salt tolerance in transgenic chrysanthemum, and improvement of the stress tolerance may be related to enhancement of proline content and SOD activity.  相似文献   

4.
DNA cassette containing an AtDREB1A cDNA and a nos terminator, driven by a cauliflower mosaic 35S promoter, or a stress-inducible rd29A promoter, was transformed into the ground cover chrysanthemum (Dendranthema grandiflorum) ‘Fall Color’ genome. Compared with wild type plants, severe growth retardation was observed in 35S:DREB1A plants, but not in rd29A:DREB1A plants. RT-PCR analysis revealed that, under stress conditions, the DREB1A gene was over-expressed constitutively in 35S:DREB1A plants, but was over-expressed inductively in rd29A:DREB1A plants. The transgenic plants exhibited tolerance to drought and salt stress, and the tolerance was significantly stronger in rd29A:DREB1A plants than in 35S:DREB1A plants. Proline content and SOD activity were increased inductively in rd29A:DREB1A plants than in 35S:DREB1A plants under stress conditions. These results indicate that heterologous AtDREB1A can confer drought and salt tolerance in transgenic chrysanthemum, and improvement of the stress tolerance may be related to enhancement of proline content and SOD activity.  相似文献   

5.
The Arabidopsis FAD7 gene encodes a plastid omega-3 fatty acid desaturase that catalyzes the desaturation of dienoic fatty acids to trienoic fatty acids in chloroplast membrane lipids. The expression of FAD7 was rapidly and locally induced by ozone exposure, which causes oxidative responses equivalent to pathogen-induced hypersensitive responses and subsequently activates various defense-related genes. This induction was reduced in salicylic acid (SA)-deficient NahG plants expressing SA hydroxylase, but was unaffected in etr1 and jar1 mutants, which are insensitive to ethylene and jasmonic acid (JA), respectively. The SA dependence of the FAD7 induction was confirmed by the exogenous application of SA. SA-induced expression of FAD7 in the npr1 mutant which is defective in an SA signaling pathway occurred to the same extent as in the wild type. Furthermore, in the sid2 mutant which lacks an enzyme required for SA biosynthesis, the expression of FAD7 was induced by ozone exposure. These results suggest that the ozone-induced expression of FAD7 gene requires SA, but not ethylene, JA, NPR1 and SID2.  相似文献   

6.
A plant's ability to cope with salt stress is highly correlated with their ability to reduce the accumulation of sodium ions in the shoot. Arabidopsis mutants affected in the ABSCISIC ACID INSENSITIVE (ABI) 4 gene display increased salt tolerance, whereas ABI4‐overexpressors are hypersensitive to salinity from seed germination to late vegetative developmental stages. In this study we demonstrate that abi4 mutant plants accumulate lower levels of sodium ions and higher levels of proline than wild‐type plants following salt stress. We show higher HKT1;1 expression in abi4 mutant plants and lower levels of expression in ABI4‐overexpressing plants, resulting in reduced accumulation of sodium ions in the shoot of abi4 mutants. HKT1;1 encodes a sodium transporter which is known to unload sodium ions from the root xylem stream into the xylem parenchyma stele cells. We have shown recently that ABI4 is expressed in the root stele at various developmental stages and that it plays a key role in determining root architecture. Thus ABI4 and HKT1;1 are expressed in the same cells, which suggests the possibility of direct binding of ABI4 to the HKT1;1 promoter. In planta chromatin immunoprecipitation and in vitro electrophoresis mobility shift assays demonstrated that ABI4 binds two highly related sites within the HKT1;1 promoter. These sites, GC(C/G)GCTT(T), termed ABI4‐binding element (ABE), have also been identified in other ABI4‐repressed genes. We therefore suggest that ABI4 is a major modulator of root development and function.  相似文献   

7.
8.
9.
10.
11.
Transpiration and gas exchange occur through stomata. Thus, the control of stomatal aperture is important for the efficiency and regulation of water use, and for the response to drought. Here, we demonstrate that SIZ1mediated endogenous salicylic acid (SA) accumulation plays an important role in stomatal closure and drought tolerance. siz1 reduced stomatal apertures. The reduced stomatal apertures of siz1 were inhibited by the application of peroxidase inhibitors, salicylhydroxamic acid and azide, which inhibits SA‐dependent reactive oxygen species (ROS) production, but not by an NADPH oxidase inhibitor, diphenyl iodonium chloride, which inhibits ABA‐dependent ROS production. Furthermore, the introduction of nahG into siz1, which reduces SA accumulation, restored stomatal opening. Stomatal closure is generally induced by water deficit. The siz1 mutation caused drought tolerance, whereas nahG siz1 suppressed the tolerant phenotype. Drought stresses also induced expression of SA‐responsive genes, such as PR1 and PR2. Furthermore, other SA‐accumulating mutants, cpr5 and acd6, exhibited stomatal closure and drought tolerance, and nahG suppressed the phenotype of cpr5 and acd6, as did siz1 and nahG siz1. Together, these results suggest that SIZ1 negatively affects stomatal closure and drought tolerance through the accumulation of SA.  相似文献   

12.
Light regulates plant growth and development through a network of endogenous factors. By screening Arabidopsis activation-tagged lines, we isolated a dominant mutant (light-dependent short hypocotyls 1-D (lsh1-D)) that showed hypersensitive responses to continuous red (cR), far-red (cFR) and blue (cB) light and cloned the corresponding gene, LSH1. LSH1 encodes a nuclear protein of a novel gene family that has homologues in Arabidopsis and rice. The effects of the lsh1-D mutation were tested in a series of photoreceptor mutant backgrounds. The hypersensitivity to cFR and cB light conferred by lsh1-D was abolished in a phyA null background (phyA-201), and the hypersensitivity to cR and cFR light conferred by lsh1-D was much reduced in the phytochrome-chromophore synthetic mutant, hy1-1 (long hypocotyl 1). These results indicate that LSH1 is functionally dependent on phytochrome to mediate light regulation of seedling development.  相似文献   

13.
To investigate the role that drought tolerance plays in growth, abscisic acid (ABA) accumulation and electrolyte leakage during water stress were compared in fast- and slow-growing black spruce ( Picea mariana [Mill.] B. S. P.) progenies. Changes in the ABA content of the needles were quantified using an indirect enzyme-linked immuno-sorbent assay validated by gas chromatography electron capture detection. Needle electrolyte leakage was estimated using a conductivity bridge. Seedlings were stressed using (1) osmotic stress, induced by a stepwise increase in concentrations of polyethylene glycol 3 350 (PEG) for ABA study and (2) air drying for electrolyte leakage study. Progenies did not differ in ABA levels under unstressed conditions, but progeny differences were observed under osmotic stress. Needle ABA content increased up to 500% under osmotic stress. Slow-growing black spruce progenies (25 and 46) accumulated more ABA under moderate (18% PEG), but not severe (25% PEG), osmotic stress. The slow-growing progenies also leaked more electrolytes under moderate to severe water stress and lost 50% electrolytes at a higher xylem tension, suggesting they suffered more injury and were less dehydration tolerant. Our previously-published results showed that slow-growing progenies lost their photosynthesis and stomatal conductance more quickly during osmotic stress and recovered more slowly after rehydration. Therefore, tolerance of dehydration leading to a maintenance of physiological integrity during drought stress could explain the fast growth rates of more vigorous black spruce progenies.  相似文献   

14.
Responses of wheat (Triticum aestivum) to complete submergence are not well understood as research has focused on waterlogging (soil flooding). The aim of this study was to characterize the responses of 2 wheat cultivars differing vastly in submergence tolerance to test if submergence tolerance was linked to shoot carbohydrate consumption as seen in rice. Eighteen‐day‐old wheat cultivars Frument (intolerant) and Jackson (tolerant) grown in soil were completely submerged for up to 19 days while assessing responses in physiology, gene expression, and shoot metabolome. Results revealed 50% mortality after 9.3 and 15.9 days of submergence in intolerant Frument and tolerant Jackson, respectively, and significantly higher growth in Jackson during recovery. Frument displayed faster leaf degradation as evident from leaf tissue porosity, chlorophylla, and metabolomic fingerprinting. Surprisingly, shoot soluble carbohydrates, starch, and individual sugars declined to similarly low levels in both cultivars by day 5, showing that cultivar Jackson tolerated longer periods of low shoot carbohydrate levels than Frument. Moreover, intolerant Frument showed higher levels of phytol and the lipid peroxidation marker malondialdehyde relative to tolerant Jackson. Consequently, we propose to further investigate the role of ethylene sensitivity and deprivation of reactive O2 species in submerged wheat.  相似文献   

15.
Liu G  Chen J  Wang X 《Plant, cell & environment》2006,29(11):2091-2099
Calcium, one of the most ubiquitous second messengers, has been shown to be involved in a wide variety of responses in plants. Calcium-dependent protein kinases (CDPKs) (EC 2.7.1.37) are the predominant Ca(2+)-regulated serine/threonine protein kinase in plants and play an important role in plant calcium signal transduction. CDPKs are encoded by a large multigene family in many plants, which has been showed so far; however, the precise role of each specific CDPK is still largely unknown. A novel CDPK gene designated as VfCPK1 was cloned from epidermal peels of broad bean (Vicia faba L.) leaves using the rapid amplification of cDNA ends (RACE)-PCR technique and its expression was studied in detail. The VfCPK1 cDNA is 1783 bp long and contains an open reading frame of 1482 bp encoding 493 amino acids. VfCPK1 contains all conserved regions found in CDPKs and shows a high level of sequence similarity to many other plant CDPKs. VfCPK1 was highly expressed in leaves, especially in leaf epidermal peels of broad bean in mRNA and protein levels. Expressions of VfCPK1 at both the mRNA and protein levels were increased in leaves treated with abscisic acid or subjected to drought stress. Potential roles of VfCPK1 in epidermal peels are discussed. The nucleotide sequence data reported here were deposited in the GenBank database under accession number AY753552.  相似文献   

16.
脱水应答元件结合蛋白(Dehydration-responsive element binding proteins,DREBs)是一类重要的植物耐逆相关转录因子.蒙古沙冬青Ammopiptanthus mongolicus是中国西北荒漠区特有的强耐逆常绿阔叶灌木.为探明其AmDREB1F基因在耐受非生物逆境中的功能和...  相似文献   

17.
18.
RPP13-Nd-mediated resistance prevents parasitism by five isolates of Peronospora parasitica (At) in a transgenic Arabidopsis. Columbia background. We tested the effect of a number of known disease resistance mutations on the RPP13-Nd function and found that resistance remained unaltered in plants carrying mutations in either EDS1 or NDR1 and in double ndr1-1/eds1-2 mutant lines. Furthermore, we found that pbs2, pad4-1, npr1-1, and rps5-1, which compromise resistance to a number of P. parasitica (At) isolates, had no affect on RPP13-Nd function. In addition, RPP13-Nd-mediated resistance remained unchanged in a background of salicylic acid depletion (nahG). We conclude that RPP13-Nd is the first Arabidopsis R gene product reported to act via a novel signaling pathway that is independent of salicylic acid-mediated responses and is completely independent of NDR1 and EDS1.  相似文献   

19.
Salt stress is one important factor influencing the growth and development of plants, and salt tolerance of plants is a result of combined action of multiple genes and mechanisms. Rosa rugosa is not only an important ornamental plant, but also the natural aromatic plant of high value. Wild R. rugosa which is naturally distributed on the coast and islands of China has a good salt tolerance due to the special living environment. Here, the vacuolar Na+/H+ reverse transporter gene (NHX1) and the vacuolar H+-ATPase subunit C gene (VHA-c) closely related to plant salt tolerance were isolated from wild R. rugosa, and the expression patterns in R. rugosa leaves of the two genes under NaCl stress were determined by real-time quantitative fluorescence PCR. The results showed that the RrNHX1 protein is a constitutive Na+/H+ reverse transporter, the expression of the RrNHX1 gene first increased and then decreased with the increasing salt concentration, and had a time-controlled effect. The RrVHA-c gene is suggestive of the housekeeping feature, its expression pattern showed a similar variation trend with the RrNHX1 gene under the stress of different concentrations of NaCl, and its temporal expression level under 200 mM NaCl stress presented bimodal change. These findings indicated that RrNHX1 and RrVHA-c genes are closely associated with the salt tolerance trait of wild R. rugosa.  相似文献   

20.
Brassinosteroids (BRs) are plant steroidal hormones that regulate plant growth and development. An Arabidopsis dwarf mutant, shrink1-D (shk1-D), was isolated and the phenotype was shown to be caused by activation of the CYP72C1 gene. CYP72C1 is a member of the cytochrome P450 monooxygenase gene family similar to BAS1/CYP734A1 that regulates BR inactivation. shk1-D has short hypocotyls in both light and dark, and short petioles and siliques. The seeds are also shortened along the longitudinal axis indicating CYP72C1 controls cell elongation. The expression of CPD, TCH4 and BAS1 were altered in CYP72C1 overexpression transgenic lines and endogenous levels of castasterone, 6-deoxocastasterone and 6-deoxotyphasterol were also altered. Unlike BAS1/CYP734A1 the expression of CYP72C1 was not changed by application of exogenous brassinolide. We propose that CYP72C1 controls BR homeostasis by modulating the concentration of BRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号