首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified aspartate carbamoyltransferase from Escherichia coli K12 (carbamoylphosphate: L-aspartate carbamyltransferase, EC 2.1.3.2) shows greater activity with nucleotide effectors as the magnesium nucleotide complex than with similar amounts of the sodium nucleotide. Regulation of aspartate carbamoyltransferase activity in vivo may occur by changes in the total concentration of regulatory nucleotides or, under conditions of magnesium-limited growth, by variation of the saturation of the nucleotides with magnesium.  相似文献   

2.
3.
Based on molecular modelling study, we propose that the reaction between L-aspartate an carbamoylphosphate, catalyzed by E. coli aspartate carbamoyltransferase, may proceed via a tetrahedral intermediate and that the breakdown of the intermediate is facilitated by an intramolecular proton transfer between the amino group of L-aspartate and a terminal phosphate oxygen of carbamoylphosphate.  相似文献   

4.
The pyr-3 gene of Neurospora crassa codes for the bifunctional enzyme pyrimidine-specific carbamoyl-phosphate synthetase/aspartate carbamoyltransferase (carbon dioxide: ammonia ligase (ADP-forming, carbamate-phosphorylating)/carbamoylphosphate: L-aspartate carbamoyltransferase), EC 6.3.4.16/EC 2.1.3.2). We describe the investigation of substrate- and product-binding sites of the enzyme by affinity chromatography, using the ligands aspartate, glutamate, and adenosine 5'-diphosphate, and investigate the channelling of carbamoyl phosphate, the product of the first function and substrate of the second, through the pathway. For this latter aspect of the investigation, two new enzyme assays were devised and described. The results of the competition studies on carbamoyl phosphate-binding are consistent with the existence of two different binding sites within the enzyme for this metabolic intermediate, one for it as the product of the first step and the other for it as the substrate of the second.  相似文献   

5.
In contrast to holo-enzyme (c6r6), catalytic subunits (c3) of Escherichia coli aspartate transcarbamylase (carbamoyl-phosphate:L-aspartate carbamoyltransferase, EC 2.1.3.2) do not exhibit allosteric interactions or inhibition effects that complicate kinetic investigations of substrate binding order. Equilibrium isotope-exchange kinetic probes of c3 at pH 7.0 and 30 degrees C produced kinetic saturation patterns consistent with a strongly preferred order random kinetic mechanism, in which carbamoyl phosphate binds prior to aspartate and carbamoyl aspartate is released before Pi. Weak substrate inhibition effects observed with c6r6 did not occur with c3, possibly due to decreased affinity for ligands at the dianion inhibition site.  相似文献   

6.
Liu D  Hwang CC  Cook PF 《Biochemistry》2002,41(40):12200-12203
The NAD-malic enzyme from Ascaris suum will utilize L-aspartate, (2S,3R)-tartrate, and meso-tartrate as substrates with V/K values 10(-4)-10(-5) with respect to malate. There is a strict requirement for the 2S stereochemistry for all of these reactants. Since aspartate is unique as an amino acid reactant for malic enzyme, it was informative to determine the details of its mechanism of oxidative decarboxylation. The initial rate of NADH appearance is directly proportional to the concentration of aspartate, and saturation is difficult to achieve. The pH dependence of V/K(aspartate)E(t) shows a decrease at low pH, giving a pK of 5.7. The pH-independent value of V/K(aspartate)E(t) is 3 M(-1) s(-1), 12500-fold lower than that obtained with L-malate. The dissociation constant for aspartate as a competitive inhibitor of malate is 60 mM at neutral pH, allowing an estimate of about 0.18 s(-1) for V/E(t) with L-aspartate compared to a value of 39 s(-1) obtained with L-malate. The deuterium isotope effect on V/K(aspartate) is pH independent over the range 5.1-6.9 with an average value of 3.3. Data suggest that the monoanion of L-aspartate binds to enzyme and that the same general base, general acid mechanism that is responsible for the oxidative decarboxylation of malate to pyruvate applies to the oxidative decarboxylation of aspartate to iminopyruvate. In addition, the oxidation step appears to be largely rate determining with aspartate as the substrate.  相似文献   

7.
High concentrations of D-aspartate occur in blood shell Scapharca broughtonii (Mollusca) tissues. We purified aspartate racemase from the foot muscle of the bivalve to electrophoretic homogeneity. The molecular mass shown by sodium dodecyl sulfate polyacrylamide gel was 39 kDa, while that shown by gel filtration ranged from 51 to 63 kDa. Pyridoxal 5'-phosphate-dependency of the enzyme was demonstrated by its absorption spectrum as well as the effects of amino-oxyacetate and other reagents on the activity and spectrum. The enzyme is highly specific to aspartate and does not racemize L-alanine, L-serine and L-glutamate. It showed the highest activity at pH 8 both in the conversion of L- to D- and D- to L-aspartate, and the optimal temperature was 25 degrees C. V(max) and K(m) values for L-aspartate were 7.39 micromolmin(-1)mg(-1) and 60.4 mM and those for D-aspartate were 22.6 micromolmin(-1)mg(-1) and 159 mM, respectively.  相似文献   

8.
The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT.  相似文献   

9.
Aspartate transcarbamylase (carbamoyl-phosphate: L-aspartate carbamoyltransferase, EC 2.1.3.2) has been purified from Mycobacterium smegmatis TMC 1546 using streptomycin sulphate precipitation, ammonium sulphate precipitation, DE-52 chromatography, second ammonium sulphate precipitation, Sephadex G-200 gel filtration, and aspartate-linked CNBr-activated Sepharose 4B affinity chromatography in successive order. The enzyme was purified 231.6-fold, and the preparation was found to be homogeneous on column chromatography and polyacrylamide gel electrophoresis. The purified enzyme had a molecular weight of 246,000 and was composed of two asymmetrical subunits. The kinetic and regulatory properties of aspartate transcarbamylase from M. smegmatis were also studied. The enzyme was found to be an allosteric in nature with carbamyl phosphate showing positive cooperativity and UMP exhibiting a negative cooperativity. CTP was found to be the most potent inhibitor among nucleotides. Phosphate acted as a non-competitive product inhibitor with respect to aspartate. Succinate and maleate exerted a competitive inhibition when aspartate was the variable substrate.  相似文献   

10.
Activation of aspartate aminotransferase and alanine aminotransferase of mitochondria introduced to the incubation medium of pyridoxal-5'-phosphate (40 microM) is approximately 2 times higher than that of the corresponding cytoplasmic forms. At hypoxia aspartate aminotransferase activity in mitochondria and postmitochondrial supernatant tends to an increase while that of alanine aminotransferase decreases (above 2 times). The protection from hypoxic damage when using L-aspartate (100 mg/kg subcutaneously 3-5 min before hypoxia) intensifies an adaptive increase of aspartate aminotransferase activity and removes a decrease of alanine aminotransferase activity. Under these conditions stimulating effect of pyridoxal-5'-phosphate on transaminases activity in vitro weakens. A simultaneous administration of vitamin-coenzyme complex (thiamine pyrophosphate, lipoate, sodium 4-phospho-pantothenate, flavin-mononucleotide, nicotinate) intensifies these metabolic shifts and protective action of L-aspartate.  相似文献   

11.
Repression of biosynthetic enzyme synthesis in Pseudomonas putida is incomplete even when the bacteria are growing in a nutritionally complex environment. The synthesis of four of the enzymes of the arginine biosynthetic pathway (N-acetyl-alpha-glutamokinase/N-acetylglutamate-gamma-semialdehyde dehydrogenase, ornithine carbamoyltransferase and acetylornithine-delta-transaminase) could be repressed and derepressed, but the maximum difference observed between repressed and derepressed levels for any enzyme of the pathway was only 5-fold (for ornithine carbamoyltransferase). No repression of five enzymes of the pyrimidine biosynthetic pathway (aspartate carbamoyltransferase, dihydro-orotase, dihydro-orotate dehydrogenase, orotidine-5'-phosphate pyrophosphorylase and orotidine-5'-phosphate decarboxylase) could be detected on addition of pyrimidines to minimal asparagine cultures of P. putida A90, but a 1-5- to 2-fold degree of derepression was found following pyrimidine starvation of pyrimidine auxotrophic mutants of P. putida A90. Aspartate carbamoyltransferase in crude extracts of P. putida A90 was inhibited in vitro by (in order of efficiency) pyrophosphate, CTP, UTP and ATP, at limiting but not at saturating concentrations of carbamoyl phosphate.  相似文献   

12.
A N-lambda bacteriophage transducing the structural genes for Escherichia coli K-12 carbamoylphosphate synthase (glutamine) (CPSase; EC 2.7.2.9) has been isolated and analyzed both genetically and physically. The whole int-N region is substituted for a short chromosomal segment corresponding almost exactly to the car locus. The study of CPSase, ornithine carbamoyltransferase, and aspartate carbamoyltransferase regulation in carriers of lambdadcar confirms the previously reported participation of the argR gene product in the control of CPSase synthesis and points to the existence of a regulatory molecule involved in the control of both CPSase and aspartate carbamoyltransferase synthesis. The general usefulness of using N- lambda transducing bacteriophages for the recovery of large amounts of gene products is discussed.  相似文献   

13.
Fine structural localization of aspartate carbamoyltransferase in rat liver   总被引:2,自引:0,他引:2  
Summary A new procedure for demonstrating aspartate carbamoyltransferase (carbamoyl phosphate: L aspartate carbamoyltransferase, E. C.2.1,3.2) is described. The method is based on precipitating the released orthophosphate by lead ions. The resulting lead phosphate deposits serve for electron microscopic localization of aspartate carbamoyltransferase. There is a correlation of the morphological demonstration at rough endoplasmic reticulum and the biochemical determination in the microsomal fraction. Enzyme activity is found at the nucleus too.  相似文献   

14.
1H-NMR was used to follow the aspartate aminotransferase-catalysed exchange of the alpha-protons of aspartate and glutamate. The effect of the concentrations of both the amino acids and the cognate keto acids on exchange rates was determined for wild-type and the R386A and R292V mutant forms of aspartate aminotransferase. The wild-type enzyme is found to be highly stereospecific for the exchange of the alpha-protons of L-aspartate and L-glutamate. The R386A mutation which removes the interaction of Arg-386 with the alpha-carboxylate group of aspartate causes an approximately 10,000-fold decrease in the first order exchange rate of the alpha-proton of L-aspartate. The R292V mutation which removes the interaction of Arg-292 with the beta-carboxylate group of L-aspartate and the gamma-carboxylate group of L-glutamate causes even larger decreases of 25,000- and 100,000-fold in the first order exchange rate of the alpha-proton of L-aspartate and L-glutamate respectively. Apparently both Arg-386 and Arg-292 must be present for optimal catalysis of the exchange of the alpha-protons of L-aspartate and L-glutamate, perhaps because the interaction of both these residues with the substrate is essential for inducing the closed conformation of the active site.  相似文献   

15.
The genes coding for aspartate carbamoyltransferase (ATCase) in the extremely thermophilic archaeon Sulfolobus acidocaldarius have been cloned by complementation of a pyrBI deletion mutant of Escherichia coli. Sequencing revealed the existence of an enterobacterial-like pyrBI operon encoding a catalytic chain of 299 amino acids (34 kDa) and a regulatory chain of 170 amino acids (17.9 kDa). The deduced amino acid sequences of the pyrB and pyrI genes showed 27.6-50% identity with archaeal and enterobacterial ATCases. The recombinant S. acidocaldarius ATCase was purified to homogeneity, allowing the first detailed studies of an ATCase isolated from a thermophilic organism. The recombinant enzyme displayed the same properties as the ATCase synthesized in the native host. It is highly thermostable and exhibits Michaelian saturation kinetics for carbamoylphosphate (CP) and positive homotropic cooperative interactions for the binding of L-aspartate. Moreover, it is activated by nucleoside triphosphates whereas the catalytic subunits alone are inhibited. The holoenzyme purified from recombinant E. coli cells or present in crude extract of the native host have an Mr of 340 000 as estimated by gel filtration, suggesting that it has a quaternary structure similar to that of E. coli ATCase. Only monomers could be found in extracts of recombinant E. coli or Saccharomyces cerevisiae cells expressing the pyrB gene alone. In the presence of CP these monomers assembled into trimers. The stability of S. acidocaldarius ATCase and the allosteric properties of the enzyme are discussed in function of a modeling study.  相似文献   

16.
Excitatory amino-acid transporters (EAATs) are structurally related plasma membrane proteins that mediate the high-affinity uptake of the acidic amino acids glutamate and aspartate released at excitatory synapses, and maintain the extracellular concentrations of these neurotransmitters below excitotoxic levels [1] [2] [3] [4]. Several members of the EAAT family have been described previously. So far, all known EAATs have been reported to transport glutamate and aspartate with a similar affinity. Here, we report that dEAAT2 - a nervous tissue-specific EAAT homologue that we recently identified in the fruit fly Drosophila [5] - is a selective Na(+)-dependent high-affinity aspartate transporter (K(m) = 30 microM). We found that dEAAT2 can also transport L-glutamate but with a much lower affinity (K(m) = 185 microM) and a 10- to 15-fold lower relative efficacy (V(max)/K(m)). Competition experiments showed that the binding of glutamate to this transporter is much weaker than the binding of D- or L-aspartate. As dEAAT2 is the first known EAAT to show this substrate selectivity, it suggests that aspartate may play a specific role in the Drosophila nervous system.  相似文献   

17.
1. The steady-state kinetics of the bisubstrate reaction catalysed by aspartate transcarbamoylase purified from wheat (Triticum vulgare)-germ have been studied at 25 degrees C, pH 8.5 AND I 0.10-0.12. Initial-velocity and product-inhibition results are consistent with an ordered sequential mechanism in which carbamoyl phosphate is the first substrate to bind, followed by L-aspartate, and carbamoyl aspartate is the first product to leave, followed by Pi. The order of substrate addition is supported by dead-end inhibition studies using pyrophosphate and maleate as inhibitory analogues of the substrates. Product inhibition permitted a minimum value for the dissociation constant of L-aspartate from the ternary complex to be estimated. This minimum is of the same order as the dissociation constant (Ki) of succinate. 2. A range of dicarboxy analogues of L-aspartate were tested as possible inhibitors of the enzyme. These studies suggested that L-aspartate is bound with its carboxy groups in the eclipsed configuration, and that the stereochemical constraints around the binding site are very similar to those reported for the catalytic subunit of the enzyme from Escherichia coli [Davies, Vanaman & Stark (1970) J. Biol. Chem. 245, 1175-1179].  相似文献   

18.
Effect of factors of sealed non-aired space on the organism leads to the enhancement of catabolism of L-4-[14C]-aspartate in the mice encephalon to 14CO2. Preliminary administration of L-aspartate to the organism (100 mg/kg) leads to the intensification of these adaptative reactions and prolongs life of animals under these conditions. Accumulation of the introduced aspartate in the liver and encephalon gets more intensive and its supply to the blood is more rapid under these conditions. Simultaneous (together with L-aspartate) administration of the vitamin-coenzyme complex (pentapyruvate) which includes thiamine pyrophosphate, lipoate, sodium 4-phosphopantotenate, nicotinate and riboflavin-mononucleotide and stimulates the function of the key links of the Krebs cycle to animals has induced intensification of the protective effect of L-aspartate and evoked further activation of the L-aspartate catabolism in the encephalon, mainly at late, preagonal stages of the developing pathological state. The data presented confirm that protective effect of L-aspartate, provided the effect of the closed space factors on the organism, is a result of its quick introduction, into energy mebolism of tissues, in particular, of the nervous tissue.  相似文献   

19.
Tryptophan aminotransferase was purified from rat brain extracts. The purified enzyme had an isoelectric point at pH 6.2 and a pH optimum near 8.0. On electrophoresis the enzyme migrated to the anode. The enzyme was active with oxaloacetate or 2-oxoglutarate as amino acceptor but not with pyruvate, and utilized various L-amino acids as amino donors. With 2-oxoglutarate, the order of effectiveness of the L-amino acids was aspartate > 5-hydroxytryptophan > tryptophan > tyrosine > phenylalanine. Aminotransferase activity of the enzyme towards tryptophan was inhibited by L-glutamate. Sucrose density gradient centrifugation gave a molecular weight of approx. 55,000. The enzyme was present in both the cytosol and synaptosomal cytosol, but not in the mitochondria. The isoelectric focusing profile of tryptophan: oxaloacetate aminotransferase activity was identical with that of L-aspartate: 2-oxoglutarate aminotransferase (EC 2.6.1.1) activity, with both subcellular fractions. On the basis of these data, it is suggested that the enzyme is identical with the cytosol aspartate: 2-oxoglutarate aminotransferase.  相似文献   

20.
When the multifunctional protein that catalyses the first three steps of pyrimidine biosynthesis in hamster cells is treated with staphylococcal V8 proteinase, a single cleavage takes place. The activities of carbamoyl-phosphate synthetase (EC 6.3.5.5), aspartate carbamoyltransferase (EC 2.1.3.2) and dihydro-orotase (EC 3.5.2.3) and the allosteric inhibition by UTP are unaffected. One fragment, of Mr 182000, has the first and third enzyme activities, whereas the other fragment, of Mr 42000, has aspartate carbamoyltransferase activity and an aggregation site. A similar small fragment is observed in protein digested with low concentrations of trypsin. A similar large fragment is seen after digestion with trypsin and as the predominating form of this protein in certain mutants defective in pyrimidine biosynthesis. These results indicate that a region located adjacent to the aspartate carbamoyltransferase domain is hypersensitive to proteinase action in vitro and may also be sensitive to proteolysis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号