首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Batten disease (juvenile-onset neuronal ceroid lipofuscinosis [JNCL]) is an autosomal recessive condition characterized by accumulation of lipopigments (lipofuscin and ceroid) in neurons and other cell types. The Batten disease gene, CLN3, was recently isolated, and four disease-causing mutations were identified, including a 1.02-kb deletion that is present in the majority of patients (The International Batten Disease Consortium 1995). One hundred eighty-eight unrelated patients with JNCL were screened in this study to determine how many disease chromosomes carried the 1.02-kb deletion and how many carried other mutations in CLN3. One hundred thirty-nine patients (74%) were found to have the 1.02-kb deletion on both chromosomes, whereas 49 patients (41 heterozygous for the 1.02-kb deletion) had mutations other than the 1.02-kb deletion. SSCP analysis and direct sequencing were used to screen for new mutations in these individuals. Nineteen novel mutations were found: six missense mutations, five nonsense mutations, three small deletions, three small insertions, one intronic mutation, and one splice-site mutation. This report brings the total number of disease-associated mutations in CLN3 to 23. All patients homozygous for mutations predicted to give rise to truncated proteins were found to have classical JNCL. However, a proportion of the patients (n = 4) who were compound heterozygotes for a missense mutation and the 1.02-kb deletion were found to display an atypical phenotype that was dominated by visual failure rather than by severe neurodegeneration. All missense mutations were found to affect residues conserved between the human protein and homologues in diverse species.  相似文献   

2.
3.
The ceroid-lipofuscinoses are a group of inherited neurodegenerative disorders characterized by the accumulation of autofluorescent lipopigment in neurons and other cell types. The underlying biochemical defect is unknown. Batten disease (Spielmeyer-Vogt disease, juvenile onset neuronal ceroid-lipofuscinosis) displays autosomal recessive inheritance. Genetic linkage studies were undertaken to determine the chromosomal location of the Batten disease mutation (CLN3). Following identification of linkage to the haptoglobin locus, linkage analysis has been carried out in 42 families by using DNA markers for loci on the long arm of human chromosome 16. The maximal lod score between Batten disease and the locus D16S148 calculated for combined sexes is 6.05 at a recombination fraction theta = 0.00. Multilocus analysis using five loci indicated the most likely order to be HP-D16S151-D16S150-CLN3-D16S148-D16S147. The maximal location score for CLN3 was 48 (equivalent to a lod score of 10.4) in that interval within this fixed marker map.  相似文献   

4.
5.
6.
Membrane topology of CLN3, the protein underlying Batten disease   总被引:5,自引:0,他引:5  
Mao Q  Foster BJ  Xia H  Davidson BL 《FEBS letters》2003,541(1-3):40-46
Juvenile neuronal ceroid lipofuscinosis, or Batten disease, is an autosomal recessive disorder characterized by progressive loss of motor and cognitive functions, loss of vision, progressively severe seizures, and death. The disease is associated with mutations in the gene CLN3, which encodes a novel 438 amino acid protein, the function of which is currently unknown. Protein secondary structure prediction programs suggest that the CLN3 protein has five to seven membrane-spanning domains (MSDs). To distinguish among a number of hypothetical models for the membrane topology of CLN3 we used in vitro translation of native, Flag epitope-labeled and glycosylation site-mutated CLN3 protein in the presence or absence of canine pancreatic microsomes. These were immunoprecipitated using antibodies specific for Flag or peptide sequences within CLN3 or left untreated. The results indicate that CLN3 contains five MSDs, an extracellular/intraluminal amino-terminus, and a cytoplasmic carboxy-terminus.  相似文献   

7.
The gene for Batten disease (CLN3) has been mapped to human chromosome 16 by demonstration of linkage to the haptoglobin locus, and its localization has been further refined using a panel of DNA markers. The aim of this work was to refine the genetic and physical mapping of this disease locus. Genetic linkage analysis was carried out in a larger group of families by using markers for five linked loci. Multipoint analysis indicated a most likely location for CLN3 in the interval between D16S67 and D16S148 (Z = 12.5). Physical mapping of linked markers was carried out using somatic cell hybrid analysis and in situ hybridization. A mouse/human hybrid cell panel containing various segments of chromosome 16 has been constructed. The relative order and physical location of breakpoints in the proximal portion of 16p were determined. Physical mapping in this panel of the markers for the loci flanking CLN3 positioned them to the bands 16p12.1----16p12.3. Fluorescent in situ hybridization of metaphase chromosomes by using these markers positioned them to the region 16p11.2-16p12.1. These results localize CLN3 to an interval of about 2 cM in the region 16p12.  相似文献   

8.
Juvenile neuronal ceroid lipofuscinosis is an inherited pediatric neurodegenerative disorder, which occurs as a result of mutations in the CLN3 gene that is located on chromosome 16p12.1. The encoded protein, CLN3P, is a putative transmembrane protein with no known function. In this study, we demonstrate that CLN3P resides on membrane lipid raft domains (detergent-resistant membranes) and provide important new data towards possible functions of the protein.  相似文献   

9.
The gene for Batten disease (juvenile-onset neuronal ceroid lipofuscinosis, or Spielmeyer-Sjögren disease), CLN3, maps to 16p11.2-12.1. Four microsatellite markers--D16S288, D16S299, D16S298, and SPN--are in strong linkage disequilibrium with CLN3 in 142 families from 16 different countries. These markers span a candidate region of approximately 2.1 cM. CLN3 is most prevalent in northern European populations and is especially enriched in the isolated Finnish population, with an incidence of 1:21,000. Linkage disequilibrium mapping was applied to further refine the localization of CLN3 in 27 Finnish families by using linkage disequilibrium data and information about the population history of Finland to estimate the distance of the closest markers from CLN3. CLN3 is predicted to lie 8.8 kb (range 6.3-13.8 kb) from D16S298 and 165.4 kb (132.4-218.1 kb) from D16S299. Enrichment of allele "6" at D16S298 (on 96% of Finnish and 92% of European CLN3 chromosomes) provides strong evidence that the same major mutation is responsible for Batten disease in Finland as in most other European countries and that it is therefore not a Finnish mutation. Genealogical studies show that Batten disease is widespread throughout the densely populated regions of Finland. The ancestors of two Finnish patients carrying rare alleles "3" and "5" at D16S298 in heterozygous form originate from the southwestern coast of Finland, and these probably represent other foreign mutations. Analysis of the number and distribution of CLN3 haplotypes from 12 European countries provides evidence that more than one mutation has arisen in Europe.  相似文献   

10.
Mao Q  Xia H  Davidson BL 《FEBS letters》2003,555(2):351-357
Juvenile neuronal ceroid lipofuscinoses (Batten disease) is a progressive neurodegenerative disorder resulting from mutations in the CLN3 gene, which encodes a hydrophobic 438 amino acid protein of unknown function. Prior studies have shown that CLN3 is expressed in multiple tissues, with highest levels in brain and testis. Experiments using cells overexpressing CLN3 indicate that CLN3 is a lysosomal resident protein. However, studies to date have not addressed trafficking of endogenous CLN3. As such, the purpose of the present study was two-fold. First, to develop a culture model to allow evaluation of native CLN3 transport. Second, to utilize available epitope-specific antibodies to determine if CLN3 reaches the plasma membrane en route to the lysosome. Our data using a NCCIT (embryonic testicular carcinoma) cell model coupled with surface biotinylation and antibody trapping demonstrated that at least a proportion of CLN3 trafficks to the lysosome via the cell membrane. Moreover, inhibition of the micro3A subunit of the AP-3 adapter protein complex increased levels of CLN3 at the cell surface.  相似文献   

11.
The neuronal ceroid lipofuscinoses (NCLs, Batten disease) are a group of inherited childhood-onset neurodegenerative disorders characterized by the lysosomal accumulation of undigested material within cells. To understand this dysfunction, we analysed trafficking of the cation-independent mannose 6-phosphate receptor (CI-MPR), which delivers the digestive enzymes to lysosomes. A common form of NCL is caused by mutations in CLN3, a multipass transmembrane protein of unknown function. We report that ablation of CLN3 causes accumulation of CI-MPR in the trans Golgi network, reflecting a 50% reduction in exit. This CI-MPR trafficking defect is accompanied by a fall in maturation and cellular activity of lysosomal cathepsins. CLN3 is therefore essential for trafficking along the route needed for delivery of lysosomal enzymes, and its loss thereby contributes to and may explain the lysosomal dysfunction underlying Batten disease.  相似文献   

12.
Juvenile neuronal ceroid lipofuscinosis (JNCL, Batten disease) is the most common progressive neurodegenerative disorder of childhood. CLN3, the transmembrane protein underlying JNCL, is proposed to participate in multiple cellular events including membrane trafficking and cytoskeletal functions. We demonstrate here that CLN3 interacts with the plasma membrane-associated cytoskeletal and endocytic fodrin and the associated Na+, K+ ATPase. The ion pumping activity of Na+, K+ ATPase was unchanged in Cln3−/− mouse primary neurons. However, the immunostaining pattern of fodrin appeared abnormal in JNCL fibroblasts and Cln3−/− mouse brains suggesting disturbances in the fodrin cytoskeleton. Furthermore, the basal subcellular distribution as well as ouabain-induced endocytosis of neuron-specific Na+, K+ ATPase were remarkably affected in Cln3−/− mouse primary neurons. These data suggest that CLN3 is involved in the regulation of plasma membrane fodrin cytoskeleton and consequently, the plasma membrane association of Na+, K+ ATPase. Most of the processes regulated by multifunctional fodrin and Na+, K+ ATPase are also affected in JNCL and Cln3-deficiency implicating that dysregulation of fodrin cytoskeleton and non-pumping functions of Na+, K+ ATPase may play a role in the neuronal degeneration in JNCL.  相似文献   

13.
Mevalonic aciduria is the first proposed inherited disorder of the cholesterol/isoprene biosynthetic pathway in humans, and it is presumed to be caused by a mutation in the gene coding for mevalonate kinase. To elucidate the molecular basis of this inherited disorder, a 2.0-kilobase human mevalonate kinase cDNA clone was isolated and sequenced. The 1188-base pair open reading frame coded for a 396-amino acid polypeptide with a deduced M(r) of 42,450. The predicted protein sequence displayed similarity to those of galactokinase and the yeast RAR1 protein, indicating that they may belong to a common gene family. Southern hybridization studies demonstrated that the mevalonate kinase gene is located on human chromosome 12 and is a single copy gene. No major rearrangements were detected in the mevalonic aciduria subject. The relative size (2 kilobases) and amounts of human mevalonate kinase mRNA were not changed in mevalonic aciduria fibroblasts. Approximately half of the mevalonic aciduria cDNA clones encoding mevalonate kinase contained a single base substitution (A to C) in the coding region at nucleotide 902 that changed an asparagine residue to a threonine residue. The presence of this missense mutation was confirmed by polymerase chain reaction amplification and allele-specific hybridization of the genomic DNAs from the proband and the proband's father and brother. Similar analysis failed to detect this mutation in the proband's mother, seven normal subjects, or four additional mevalonic aciduria subjects, indicating that the mutation does not represent a common gene polymorphism. Functional analysis of the defect by transient expression confirmed that the mutation produced an enzyme with diminished activity. Our data suggest that the index case is a compound heterozygote for a mutation in the mevalonate kinase gene.  相似文献   

14.
Mutations in the CLN3 gene cause a fatal neurodegenerative disorder: juvenile CLN3 disease, also known as juvenile Batten disease. The two most commonly utilized mouse models of juvenile CLN3 disease are Cln3-knockout (Cln3−/−) and Cln3Δex7/8-knock-in mice, the latter mimicking the most frequent disease-causing human mutation. To determine which mouse model has the most pronounced neurological phenotypes that can be used as outcome measures for therapeutic studies, we compared the exploratory activity, motor function and depressive-like behavior of 1-, 3- and 6-month-old Cln3−/− and Cln3Δex7/8-knock-in mice on two different genetic backgrounds (129S6/SvEv and C57BL/6J). Although, in many cases, the behavior of Cln3−/− and Cln3Δex7/8 mice was similar, we found genetic-background-, gender- and age-dependent differences between the two mouse models. We also observed large differences in the behavior of the 129S6/SvEv and C57BL/6J wild-type strains, which highlights the strong influence that genetic background can have on phenotype. Based on our results, Cln3−/− male mice on the 129S6/SvEv genetic background are the most appropriate candidates for therapeutic studies. They exhibit motor deficits at 1 and 6 months of age in the vertical pole test, and they were the only mice to show impaired motor coordination in the rotarod test at both 3 and 6 months. Cln3−/− males on the C57BL/6J background and Cln3Δex7/8 males on the 129S6/SvEv background also provide good outcome measures for therapeutic interventions. Cln3−/− (C57BL/6J) males had serious difficulties in climbing down (at 1 and 6 months) and turning downward on (at 1, 3 and 6 months) the vertical pole, whereas Cln3Δex7/8 (129S6/SvEv) males climbed down the vertical pole drastically slower than wild-type males at 3 and 6 months of age. Our study demonstrates the importance of testing mouse models on different genetic backgrounds and comparing males and females in order to find the most appropriate disease model for therapeutic studies.KEY WORDS: Juvenile neuronal ceroid lipofuscinosis, Batten disease, CLN3, Cln3−/− mouse model, Cln3Δex7/8-knock-in mouse model, 129S6/SvEv, C57BL/6J  相似文献   

15.
16.
17.
18.
A novel missense mutation was detected in the L12 region of keratin 5 (K5) in a Slovene family diagnosed with a Weber-Cockayne variant of epidermolysis bullosa simplex (EBS). Direct sequencing identified a heterozygous GAC to GAA substitution altering codon 328 of K5 from Asp to Glu in all affected family members, while no mutation was observed either in the healthy individual or the 50 unrelated control samples. Asp(328) of K5 (position 12 in the L12 domain) is remarkably conserved among all type II keratins. K5 L12:D12E is the third mutation found to affect this residue in K5-related EBS, indicating the importance of Asp(328) for K5 structure and the dramatic effect that fine changes can have on keratin intermediate filament integrity.  相似文献   

19.
We have investigated a patient of English ancestry with familial chylomicronemia caused by lipoprotein lipase (LPL) deficiency. DNA sequence analysis of all exons and intron-exon boundaries of the LPL gene identified two single-base mutations, a T----C transition for codon 86 (TGG) at nucleotide 511, resulting in a Trp86----Arg substitution, and a C----T transition at nucleotide 571, involving the codon CAG encoding Gln106 and producing Gln106----Stop, a mutation described by Emi et al. The functional significance of the two mutations was confirmed by in vitro expression and enzyme activity assays of the mutant LPL. Linkage analysis established that the patient is a compound heterozygote for the two mutations. The Trp86----Arg mutation in exon 3 is the first natural mutation identified outside exons 4-6, which encompass the catalytic triad residues.  相似文献   

20.
The plasma enzyme, human lecithin-cholesterol acyltransferase (LCAT) is responsible for the majority of cholesterol ester formation in human plasma and is a key enzyme of the reverse transport of cholesterol from peripheral tissue to the liver. We sequenced genomic DNA of the LCAT gene from a Japanese male patient who was clinically and biochemically diagnosed as a familial LCAT deficiency. Analysis of all exons and exon-intron boundaries revealed only a single G to A transition within the sixth exon of both allele of the gene, leading to the substitution of methionine for isoleucinle at residue 293 of the mature enzyme. This mutation creates a new hexanucleotide recognition site for the restriction endonuclease Ndel. Familial study of Ndel digestion of the genomic DNA and determination of plasma LCAT activity established that the patient and his sister whose plasma LCAT activity were extremely reduced were homozygous and his children whose plasma LCAT activity were about half of normal controls were heterozygous for this mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号