首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary European green lizards, Lacerta viridis, show a distinct annual cycle in their day and nighttime selected body temperature (T b) levels when monitored under natural photoperiod. The amplitude between daily photophase and scotophase temperatures varies throughout the year. Highest body temperatures with smallest day/night variation are selected from May through July. Throughout fall, the difference between day and nighttime selected T b levels increases. Lizards inevitably enter a state of winter dormancy which terminates daily rhythmicity patterns. Under natural photoperiodic conditions, cessation of dormancy occurs spontaneously by mid-March, regardless whether high temperatures are available or not. Lacerta viridis respond to an artificial long photoperiod (16 h light, 8 h dark) at all times of the year with modifications in both diel patterns and levels of selected T b to summer-like conditions. When, however, the natural photoperiod at different phases in the annual cycle is held constant for six to eight weeks, T b selection of Lacerta viridis also remains stable at the level corresponding to the prevailing photoperiod. These results implicate that the photoperiod is a more prominent Zeitgeber for seasonal cueing of temperature selection than has been surmised in the past. Further, we suggest that the large variations recorded in daily T b cycles do not imply that this lizard is an imprecise thermoregulator, but rather indicates an important integral process necessary for seasonal acclimatization.  相似文献   

2.
Summary Lacerta viridis maintained under natural photoperiodic conditions show daily and seasonal changes in metabolic rates and body temperature (T b) as well as seasonal differences in sensitivity to temperature change. At all times of the year lizards have a daily fluctuation in oxygen consumption, with higher metabolic rates during the light phase of the day when tested at a constant ambient temperature (T a) of 30°C. Rhythmicity of metabolic rate persists under constant darkness, but there is a decrease in the amplitude of the rhythm.Oxygen consumption measured at various Tas shows significant seasonal differences at T as above 20°C. Expressed as the Arrhenius activation energy, metabolic sensitivity of Lacerta viridis shows temperature dependence in autumn, which changes to metabolic temperature independence in spring at T as above 20°C. The results indicate a synergic relationship between changing photoperiod and body temperature selection, resulting in seasonal metabolic adjustment and seasonal adaptation.Abbreviations ANOVA analysis of variance - LD long day (16 h light) - SD short day (8 h light) - T a ambient temperature - T b body temperature  相似文献   

3.
The daily activity and energy metabolism of pouched mice (Saccostomus campestris) from two localities in southern Africa was examined following warm (25 °C) and cold (10 °C) acclimation under long (LD 14:10) and short (LD 10:14) photoperiol. There was no differential effect of photoperiod on the daily activity or metabolism of pouched mice from the two localities examined, which suggests that reported differences in photoresponsivity between these two populations were not the result of differences in daily organisation. Neverthe-less, there was a significant increase in metabolism at 10 °C, irrespective of photoperiod, even though seven cold-acclimated animals displayed bouts of spontaneous torpor and saved 16.4–36.2% of their daily energy expenditure. All but one of these bouts occurred under short photoperiod, which suggests that short photoperiod facilitated the expression of torpor and influenced the daily energy metabolism of these individuals. As expected for a noctureal species, the amount of time spent active increased following acclimation to short photoperiod at 25 °C. However, there was a reduction in mean activity levels under short photoperiod at 10 °C, possibly because the stimulation of activity by short photoperiod was masked by a reduction in activity during bouts of spontaneous torpor. Cold temperature clearly had an overriding effect on the daily activity and metabolism of this species by necessitating an increase in metabolic heat production and eliciting spontaneous torpor which overrode the effect of short photoperiod on activity at an ambient temperature of 10 °C.Abbreviations 3-ANOVA three-way analysis of variance - %ACT percentage of time spent active - ADMR average daily metabolic rate - M b body mass - MR metabolic rate - MRdark metabolic rate recorded during the dark phase - MRlight metabolic rate recorded during the light phase - NST non-shivering thermogenesis - RQ respiratory quotient - STPD standard temperature and pressure, dry - T a ambient temperature - T b body temperature - VO2 oxygen consumption  相似文献   

4.
Nord A  Nilsson JF  Nilsson JÅ 《Oecologia》2011,167(1):21-25
Birds commonly use rest-phase hypothermia, a controlled reduction of body temperature (T b), to conserve energy during times of high metabolic demands. We assessed the flexibility of this heterothermic strategy by increasing roost-site temperature and recording the subsequent T b changes in wintering blue tits (Cyanistes caeruleus L.), assuming that blue tits would respond to treatment by increasing T b. We found that birds increased T b when roost-site temperature was increased, but only at low ambient temperatures. Moreover, birds with larger fat reserves regulated T b at higher levels than birds carrying less fat. This result implies that a roosting blue tit maintains its T b at the highest affordable level, as determined by the interacting effect of ecophysiological costs associated with rest-phase hypothermia and energy reserves, in order to minimize potential fitness costs associated with a low T b.  相似文献   

5.
We compared body temperature (Tb) and metabolic rates, measured as oxygen consumption (VO2), daily rhythms of two sibling species of the genus Mastomys. We also studied their responses to long day (16L: 8D, LD) and short day (8L: 16D, SD) photoperiod manipulations at a constant ambient temperature of 26 1 °C. We noted significant differences in Tb and VO2 daily rhythm patterns, under SD and LD-acclimation between the sibling species. These differences explain adaptation to the climatic conditions that prevail in the different ecosystems where these species live. To the best of our knowledge, this is the first time that physiological differences between the two siblings are measured by using chronobiological methods.  相似文献   

6.
Daily circadian rhythms of body temperature (Tb) and oxygen consumption (VO2) were measured in two murid species, which occupy extremely different habitats in Israel. The golden spiny mouse (Acomys mssalus) is a diurnal murid distributed in arid and hot parts of the great Syrio-African Rift Valley, while the broad-toothed field mouse (Apodeinns mystacinus) is a nocturnal species that inhabits the Mediterranean woodlands. In both species, the daily rhythms of Tb and VO2 are entrained by the photoperiod. Under laboratory experimental conditions (ambient temperature Ta = 33oC and photoperiod regime of 12L: 12D), Acomys russatus exhibits a tendency towards a nocturnal activity pattern, compared to the diurnal activity displayed by this species under natural conditions. Under the same photoperiod regime and at Ta = 28oC, Apodemus mystacinus displays nocturnal activity, as observed under natural conditions. The maximal values of Tb were recorded in Acomys russatus at midnight (23:50 h), while the maximal values of VO2 were recorded at the beginning of the dark period (18:20 h). In Apodemus mystacinus, the maximal values of Tb and VO2 were recorded at 23:40 and 20:00 h, respectively. The ecophysiological significance of these results is discussed further.  相似文献   

7.
Body temperature (T b) of seven European hamsters maintained at constant ambient temperature (T a = 8 °C) and constant photoperiod (LD 8:16) was recorded throughout the hibernating season using intraperitoneal temperature-sensitive HF transmitters. The animals spent about 30% of the hibernation season in hypothermia and 70% in inter-bout normothermy. Three types of hypothermia, namely deep hibernation bouts (DHBs), short hibernation bouts (SHBs), and short and shallow hibernation bouts (SSHBs), were distinguished by differences in bout duration and minimal body temperature (T m). A gradual development of SSHBs from the diel minimum of T b during normothermy could be seen in individual hamsters, suggesting a stepwise decrease of the homeostatic setpoint of T b regulation during the early hibernation season. Entry into hibernation followed a 24-h rhythm occurring at preferred times of the day in all three types of hypothermia. DHBs and SHBs were initiated approximately 4 h before SSHBs, indicating a general difference in the physiological initiation of SSHBs on the one hand and DHBs and SHBs on the other. Arousals from SHBs and SSHBs also followed a 24-h rhythm, whereas spontaneous arousals from DHBs were widely scattered across day and night. Statistical analyses of bout length and the interval between arousals revealed evidence for a free-running circadian rhythm underlying the timing of arousals. The results clearly demonstrate that entries into hypothermia are linked to the light/dark-cycle. However, the role of the circadian system in the timing of arousals from DHBs remains unclear. Accepted: 11 December 1996  相似文献   

8.
J. Schmid 《Oecologia》2000,123(2):175-183
Patterns and energetic consequences of spontaneous daily torpor were measured in the gray mouse lemur (Microcebus murinus) under natural conditions of ambient temperature and photoperiod in a dry deciduous forest in western Madagascar. Over a period of two consecutive dry seasons, oxygen consumption (VO2) and body temperature (T b) were measured on ten individuals kept in outdoor enclosures. In all animals, spontaneous daily torpor occurred on a daily basis with torpor bouts lasting from 3.6 to 17.6 h, with a mean torpor bout duration of 9.3 h. On average, body temperatures in torpor were 17.3±4.9°C with a recorded minimum value of 7.8°C. Torpor was not restricted to the mouse lemurs’ diurnal resting phase: entries occurred throughout the night and arousals mainly around midday, coinciding with the daily ambient temperature maximum. Arousal from torpor was a two-phase process with a first passive, exogenous heating where the T b of animals increased from the torpor T b minimum to a mean value of 27.1°C before the second, endogenous heat production commenced to further raise T b to normothermic values. Metabolic rate during torpor (28.6±13.2 ml O2 h–1) was significantly reduced by about 76% compared to resting metabolic rate (132.6±50.5 ml O2 h–1). On average, for all M. murinus individuals measured, hypometabolism during daily torpor reduced daily energy expenditure by about 38%. In conclusion, all these energy-conserving mechanisms of the nocturnal mouse lemurs, with passive exogenous heating during arousal from torpor, low minimum torpor T bs, and extended torpor bouts into the activity phase, comprise an important and highly adapted mechanism to minimize energetic costs in response to unfavorable environmental conditions and may play a crucial role for individual fitness. Received: 8 July 1999 / Accepted: 3 December 1999  相似文献   

9.
The use of hypothermia as a means to save energy is well documented in birds. This energy‐saving strategy is widely considered to occur exclusively at night in diurnally active species. However, recent studies suggest that facultative hypothermia may also occur during the day. Here, we document the use of daytime hypothermia in foraging Black‐capped Chickadees Poecile atricapillus wintering in eastern Canada. We measured the body temperature (Tb) of 126 individuals (plus 48 repeated measures) during a single winter and related values to ambient temperature (Ta) at the time of capture. We also tested whether daytime hypothermia was correlated with the size of body reserves (residuals of mass on structural size and fat score) and levels of metabolic performance (basal metabolic rate and maximum thermogenic capacity). We found that Tb of individual birds was lower when captured at low Ta, reaching values as low as 35.5 °C in actively foraging individuals. Tb was unrelated to metabolic performance or measures of body reserves. Therefore, daytime hypothermia does not result from individuals being unable to maintain Tb during cold spells or to a lack of body reserves. Our data also demonstrated a high level of individual variation in the depth of hypothermia, the causes of which remain to be explored.  相似文献   

10.
J. C. Lee 《Oecologia》1980,44(2):171-176
Summary In a habitat judged to be energetically costly for thermoregulation, mean body temperatures (MBT's) ofAnolis sagrei are significantly higher than those ofA. distichus. As indexed by the slope of the regression of body temperatures (T b ) on substrate temperature (T s ),A. sagrei is more dependent upon environmental temperatures thanA. distichus.In a habitat judged to be less costly for thermoregulation and where interspecific competition for perch sites may be less, MBT's ofA. sagrei are significantly higher, proportionally more lizards occupy sunny perches, and the slope of the regression of T b on T s is significantly less, than for conspecifics in the costly habitat.As indexed by length-specific fat body weights, well-nourished lizards in the costly habitat have T b 's which are independent of environmental temperature; T b 's of poorly-nourished lizards are highly dependent upon environmental temperature. This relationship does not hold for lizards in the low-cost habitat.These results corroborate the hypothesis that energetic costs are important in controlling the extent to which lizards thermoregulate. In high-cost habitats lizards thermoregulate less precisely than in low-cost habitats. Lizards that exploit the habitat as if it were highly productive thermoregulate more precisely than lizards that exploit the environment as if it were of low productivity.  相似文献   

11.
Three major forms of dormancy in mammals have been classified: hibernation in endotherms is characterised by reduced metabolic rate (MR) and body temperature (T b) near ambient temperature (T a) over prolonged times in the winter. Estivation is a similar form of dormancy in a dry and hot environment during summertime. Daily torpor is defined as reduced MR and T b lower than 32 °C, limited to a duration of less than 24 h. The edible dormouse (Glis glis) is capable for all three distinct forms of dormancy. During periods of food restriction and/or low T a, daily torpor is displayed throughout the year, alternating with hibernation and estivation in winter and summer respectively. We recorded T b, O2-consumption and CO2-production in unrestrained dormice at different T a's for periods of up to several months. Cooling rate and rate of metabolic depression during entrance into the torpid state was identical in all three forms of dormancy. The same was true for thermal conductance, maximum heat production, duration of arousal and cost of an arousal. The only difference between hibernation and daily torpor was found in the bout duration. A daily torpor bout lasted 3–21 h, a hibernation bout 39–768 h. As a consequence of prolonged duration, MR, T b and also the T b − T a gradient decreased to lower values during hibernation bouts when compared to daily torpor bouts. Our findings suggest that all three forms of dormancy are based on the same physiological mechanism of thermal and metabolic regulation. Accepted: 27 June 2000  相似文献   

12.
Daily variation in the body temperature of the green iguana (Iguana iguana) was studied by telemetry in laboratory photo-thermal enclosures under a 12Light12Dark (LD) photoperiod. The lizards showed robust daily rhythms of thermoregulation maintaining their body temperatures (Tb) at higher levels during the day than during the night. Some animals maintained rhythmicity when kept in constant darkness. On lightdark cycles parietalectomy produced only a transient increase of median Tb in the first or second night following the operation. Pinealectomized lizards on the other hand maintained their body temperatures at significantly lower levels during the day and at significantly higher levels during the night than did sham-operated or intact lizards. This effect was apparently permanent, since one month after pinealectomy lizards still displayed the altered pattern. Plasma melatonin levels in intact animals were high during the night and low during the day and were unaffected by parietalectomy. Pinealectomized lizards showed low levels of plasma melatonin during both the day and the night. A daily intraperitoneal injection of melatonin in pinealectomized animals given a few minutes after the light to dark transition decreased the body temperatures selected by the lizards during the night and increased the body temperatures selected during the following day. Control injections of saline solution had no effect. The significance of these results is discussed in relation to the role of the pineal complex and melatonin in the mediation of thermoregulatory behavior.Abbreviations LD LightDark - T b body temperature - PAR-X parietalectomy - PIN-X pinealectomy  相似文献   

13.
Microcebus murinus, a small nocturnal Malagasy primate, exhibits adaptive energy-saving strategies such as daily hypothermia and gregarious patterns during diurnal rest. To determine whether ambient temperature (Ta), food restriction and nest sharing can modify the daily body temperature (Tb) rhythm, Tb was recorded by telemetry during winter in six males exposed to different ambient temperatures (Ta=25, 20, 15°C) and/or to a total food restriction for 3 days depending on social condition (isolated versus pair-grouped). At 25°C, the daily rhythm of Tb was characterized by high Tb values during the night and lower values during the day. Exposure to cold significantly decreased minimal Tb values and lengthened the daily hypothermia. Under food restriction, minimal Tb values were also markedly lowered. The combination of food restriction and cold induced further increases in duration and depth of torpor bouts, minimal Tb reaching a level just above Ta. Although it influenced daily hypothermia less than environmental factors, nest sharing modified effects of cold and food restriction previously observed by lengthening duration of torpor but without increasing its depth. In response to external conditions, mouse lemurs may thus adjust their energy expenditures through daily modifications of both the duration and the depth of torpor.  相似文献   

14.
M. A. Chappell 《Oecologia》1981,49(3):397-403
Summary Body temperatures (T b) and daily activity patterns of free-living arctic ground squirrells (Spermophilus undulatus) were determined via telemetry at a field site in northern Alaska. Simultaneous measurements were made of ambient temperature (T a), wind speed (V), and incident solar radiation. The operative environmental temperature (T e) for ground squirrels was obtained from fur-covered, thin metal taxidermic models of the animals. Standard operative temperature (T es), a comparative index of heat flow, was calculated from T e, V, and laboratory measurements of thermal conductivity.During the period of the study (August), S. undulatus were active for about 14 h per day (06.00 to 20.00 h). T b was high throughout the daily cycle, averaging 38–39°C. Circadian variations in T b were slight; average T b values dropped <1°C at night. Daytime T b fluctuations were not closely correlated to activity or to changes in environmental conditions. Air temperatures during the study were low, usually between 10 and 15°C during the day. However, T es in exposed areas was normally higher, even though skies were generally overcast. During periods of sunshine, T es may be as high as 34°C. The absence of nocturnal activity may result from increased costs of thermoregulation at night, which sharply reduces foraging efficiency. The high and stable body temperatures of S. undulatus probably result from thermoneutral daytime T es, low activity levels, and the use of well-insulated nests.  相似文献   

15.
Most mammals are known to have clear circadian rhythms of body temperature (Tb) and metabolic rate. Large parts of the rhythms correspond to the oscillation of nonshivering thermogenesis (NST), dependent on visceral organ mass, and, affected by mass of brown adipose tissue (BAT). I tested whether: (1) a different levels of BMR result in respective changes of Tb values and the magnitude of daily RMR oscillations both within and below thermoneutrality; (2) the amplitude of daily variation of RMR depends on ambient temperature (Ta). I studied: (1) daily variation of body temperature at Ta of 23 °C, and (2) the rate of resting metabolism (RMR) within and below thermoneutrality at the time of minimum and increasing Tb (minimum and maximum NST capacity), in two lines of laboratory mice subjected to divergent, artificial selection toward high (HBMR) and low (LBMR) basal rate of metabolism (BMR). All mice had a clear circadian rhythm of Tb with minimum of 36.4±0.2 °C at 7:00 and maximum of 37.8±0.2 °C at 21:00. Their RMR measured below thermoneutrality exhibited significant daily variation, with the maximum between 16:00 and 19:00, when Tb was rising. Within thermoneutral zone (TNZ) I found between-line, but not between-time, differences in RMR. All between-line differences in RMR could be explained by the magnitude of BMR. I did not find any between-line differences of RMR value in temperatures below thermoneutrality. The amplitude of daily variation of RMR measured below TNZ depended neither on the Ta value nor on level of BMR (or visceral organs).  相似文献   

16.
Thermoregulatory abilities, which may play a role in physiological adaptations, were compared between two field mouse species (Apodemus mystacinus and A. hermonensis) from Mount Hermon. While A. hermonensis is common at altitudes above 2100 m, A. mystacinus is common at 1650 m. The following variables were compared in mice acclimated to an ambient temperature of 24°C with a photoperiod of 12L:12D, body temperature during exposure to 4°C for 6 h, O2 consumption and body temperature at various ambient temperature, non-shivering thermogenesis measured as a response to a noradrenaline injection, and the daily rhythm of body temperature. Both species could regulate their body temperature at ambient temperatures between 6 and 34°C. The thermoneutral zone for A. mystacinus lies between 28 and 32°C, while for A. hermonensis a thermoneutral point is noted at 28°C. Both species increased O2 consumption and body temperature as a response to noradrenalin. However, maximal VO 2 consumption as an response to noradrenaline and non-shivering thermogenesis capacity were higher in A. mystacinus, even though A. hermonensis is half the size of A. mystacinus. The body temperature rhythm in A. hermonensis has a clear daily pattern, while A. mystacinus can be considered arhythmic. The results suggest that A. hermonensis is adapted to its environment by an increase in resting metabolic rate but also depends on behavioural thermoregulation. A. mystacinus depends more on an increased non-shivering thermogenesis capacity.Abbreviations C thermal conductance - NA noradrenaline - NST non-shivering thermogenesis - OTC overall thermal conductance - RMR resting metabolic rate - STPD standard temperature and pressure dry - T a ambient temperature - T b body temperature - I b Min minimal T b , measured before NA iniection - T b NA maximal - T b as a response to NA injection - T lc lower critical point - TNP thermoneutral point - TNZ thermoneutral zone - VO2 O2 consumption - VO2 Min minimal VO2 measured before NA injection - VO2NA maximal VO2, as a response to NA injection  相似文献   

17.
We studied daily rhythmicity of body temperature (T b) before and during hibernation in Anatolian ground squirrels (Spermophilus xanthoprymnus) under natural and laboratory conditions using surgically implanted temperature loggers. Under both conditions, robust daily T b rhythmicity with parameters comparable to those of other ground squirrel species was observed before but not during hibernation. Euthermic animals had robust daily T b rhythms with a mean of 37.0°C and a range of excursion of approximately 4°C. No T b rhythm was detected during torpor bouts, either because T b rhythmicity was absent or because the daily range of excursion was smaller than 0.2°C. The general patterns of hibernation that we observed in Anatolian ground squirrels were similar to those previously observed by other investigators in other species of ground squirrels.  相似文献   

18.
Summary Intra-abdominal temperature-sensitive radio transmitters were used to collect more than 350 sets of body temperature (T b ) data from 23 captive adult hedgehogs over a 3-year period. Each data set comprised measurements made every 1/2 h for 24-h periods. Between 20 and 60 such data sets were recorded every calendar month, and a total of 17400 measurements of T b were collected. The hedgehogs were exposed to natural environmental conditions at 57°N in NE Scotland. Hedgehogs showed seasonal changes in mean daily euthermic T b ,with a July maximum of 35.9±0.2°C, a September minimum of 34.7±0.9°C, and a marked circadian T b cycle that correlates closely with photoperiod. Maximal T b occurred within 2 h of midnight and this pattern of nocturnal maximum and diurnal minimum T b was most marked between April and September. The circadian T b cycle was least correlated with photoperiod during winter. Hibernal T b during winter correlated with ambient temperature (T a ),it was maximal in September (17.7±1.0°C) and minimal in December (5.2±0.9°C). Apart from the tracking of T a and T b during hibernal bouts, with a time-lag of 4–6 h, circadian rhythmicity of hibernal T b was not evident. However, the T b of hibernating hedgehogs rose significantly when T a fell below — 5°C, although the animals did not neccessarily arouse. Although hibernal bouts occurred between September and April, 89.5% of such bouts were recorded between November and February. The mean time of entry into hibernation was 01:45±5.1 h GMT while the mean time of the start of spontaneous arousal from hibernation was 11:53±4.8 h GMT. Therefore, during hibernation hedgehogs were either fully aroused at night, when euthermic hedgehogs have maximalT b ,or in deep hibernation around midday, when euthermic hedgehogs have minimal T b .Since wild hedgehogs will feed during spontaneous arousal from hibernation, these timings are probably adaptive, and suggest that entry into, and arousal from, hibernation may be extensions of circadian cyclicity. Spontaneous bouts of transient shallow torpor (TST) were recorded throughout the year, with nearly 80% of observations occurring during August and September, at the start of the hibernal period. TST bouts lasted for 4.9±2.9 h, with T b falling to 25.8±3.1 °C. Only 20% of TST bouts immediately preceded hibernation and their duration did not correlate with T a or body mass. TST bouts started at 06:51±4.7 h GMT, significantly later than entry into hibernation, and ended at 13:04±5.4 h GMT. The function of TST bouts is unclear, but they may be preparation for the hibernation season or a further energy conservation strategy. When arousing from hibernation hedgehogs warmed at a rate of 1.9±0.4°C·h-1, and when entering hibernation cooled at 7.9±1.9°C·h-1. Warming rates were slightly higher during mid-winter when T b and body mass were minimal, but cooling rates were 44% higher at the end of the hibernal period compared to the start. Cooling and warming rates were strikingly similar to those measured in hedgehogs at 31°N. These results demonstrate that thermoregulation in the hedgehog is closely regulated and changes on a seasonal basis, in meeting with requirements of surviving food shortages and low temperature during winter.Abbreviations T a ambient temperature - T b body temperature - CSD circular standard deviation - SWS slow wave sleep - TST transient shallow torpor  相似文献   

19.
P. E. Hertz 《Oecologia》1992,90(1):127-136
Summary The field thermal biology of sympatric Anolis cooki and A. cristatellus were evaluated in January and in August in desert scrub forest at Playa de Tamarindo near Guanica, Puerto Rico. Data on randomly positioned copper models of lizards, each equipped with a built-in thermocouple, established null hypotheses about basking frequency and operative temperatures (T e) against which the behavior and body temperatures (T b) of live lizards were evaluated. Both species exhibited non-random hourly basking rates (more marked in cristatellus than in cooki), and cristatellus was virtually inactive during the warm mid-day hours. The relationship between lizards' T b and randomly sampled T e differed between the species: cristatellus's mean T b was 2° to 3° C lower than randomly sampled mean T e in both months, whereas cooki's mean T b was slightly higher than mean T e in January and slightly lower in August. Although cooki's mean T b was higher than that of cristatellus in both months, the T b's of the two species overlapped substantially over an annual cycle. Given the similarities in their field active T b and the low thermal heterogeneity among microsites at Playa de Tamarindo, these species appear not to partition the thermal environment there in a coarse-grained way. Instead, the relatively small differences in their field active T b probably result from small differences in their use of similar microhabitats within their mutually exclusive territories. Thermal resource partitioning by territorial animals is unlikely unless thermal heterogeneity is coarse-grained in relation to territory size.  相似文献   

20.
Subterranean common mole voles, Ellobius talpinus, were implanted with long-term recording electronic thermometers to obtain hourly body temperature (Tb) data during either the wintertime or summertime. The two individuals tested during the summertime had significant circadian and ultradian rhythms in their Tb. Four of the five mole voles tested during the wintertime lacked rhythmicity in their Tb. The fifth individual lacked circadian rhythms but had ultradian rhythms in its Tb. A loss of circadian rhythms in Tb during deep torpor or hibernation has been reported for a few species of mammals. Inasmuch as the mole voles' wintertime Tb remained at euthermic levels, our results show that a loss of circadian body temperature rhythms in mole voles does not require the low Tb of deep torpor or hibernation. A tentative conclusion, based on these few animals, is that in common mole voles the Tb rhythms may disappear during the wintertime even though their Tb remains high. (Author correspondence: )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号