首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Kinetic analysis and modeling studies of HIV-1 and HIV-2 proteinases were carried out using the oligopeptide substrate [formula: see text] and its analogs containing single amino acid substitutions in P3-P3' positions. The two proteinases acted similarly on the substrates except those having certain hydrophobic amino acids at P2, P1, P2', and P3' positions (Ala, Leu, Met, Phe). Various amino acids seemed to be acceptable at P3 and P3' positions, while the P2 and P2' positions seemed to be more restrictive. Polar uncharged residues resulted in relatively good binding at P3 and P2 positions, while at P2' and P3' positions they gave very high Km values, indicating substantial differences in the respective S and S' subsites of the enzyme. Lys prevented substrate hydrolysis at any of the P2-P2' positions. The large differences for subsite preference at P2 and P2' positions seem to be at least partially due to the different internal interactions of P2 residue with P1', and P2' residue with P1. As expected on the basis of amino acid frequency in the naturally occurring cleavage sites, hydrophobic residues at P1 position resulted in cleavable peptides, while polar and beta-branched amino acids prevented hydrolysis. On the other hand, changing the P1' Pro to other amino acids prevented substrate hydrolysis, even if the substituted amino acid had produced a good substrate in other oligopeptides representing naturally occurring cleavage sites. The results suggest that the subsite specificity of the HIV proteinases may strongly depend on the sequence context of the substrate.  相似文献   

2.
Retroviral proteases (PRs) have a unique specificity that allows cleavage of sites with or without a P1′ proline. A P1′ proline is required at the MA/CA cleavage site due to its role in a post-cleavage conformational change in the capsid protein. However, the HIV-1 PR prefers to have large hydrophobic amino acids flanking the scissile bond, suggesting that PR recognizes two different classes of substrate sequences. We analyzed the cleavage rate of over 150 combinations of six different HIV-1 cleavage sites to explore rate determinants of cleavage. We found that cleavage rates are strongly influenced by the two amino acids flanking the amino acids at the scissile bond (P2–P1/P1′–P2′), with two complementary sets of rules. When P1′ is proline, the P2 side chain interacts with a polar region in the S2 subsite of the PR, while the P2′ amino acid interacts with a hydrophobic region of the S2′ subsite. When P1′ is not proline, the orientations of the P2 and P2′ side chains with respect to the scissile bond are reversed; P2 residues interact with a hydrophobic face of the S2 subsite, while the P2′ amino acid usually engages hydrophilic amino acids in the S2′ subsite. These results reveal that the HIV-1 PR has evolved bi-functional S2 and S2′ subsites to accommodate the steric effects imposed by a P1′ proline on the orientation of P2 and P2′ substrate side chains. These results also suggest a new strategy for inhibitor design to engage the multiple specificities in these subsites.  相似文献   

3.
The CPB genes of the protozoan parasite Leishmania mexicana encode stage-regulated cathepsin L-like cysteine proteases that are important virulence factors and are in a tandem array of 19 genes. In this study, we have compared the substrate preferences of two CPB isoforms, CPB2.8 and CPB3, and a H84Y mutant of the latter enzyme, to analyse the roles played by the few amino acid differences between the isoenzymes in determining substrate specificity. CPB3 differs from CPB2.8 at just three residues (N60D, D61N and D64S) in the mature domain. The H84Y mutation mimics an additional change present in another isoenzyme, CPB18. The active recombinant CPB isoenzymes and mutant were produced using Escherichia coli and the S1-S3 and S1'-S3' subsite specificities determined using a series of fluorogenic peptide derivatives in which substitutions were made on positions P3 to P3' by natural amino acids. Carboxydipeptidase activities of CPB3 and H84Y were also observed using the peptide Abz-FRAK(Dnp)-OH and some of its analogues. The kinetic parameters of hydrolysis by CPB3, H84Y and CPB2.8 of the synthetic substrates indicates that the specificity of S3 to S3' subsites is influenced greatly by the modifications at amino acids 60, 61, 64 and 84. Particularly noteworthy was the large preference for Pro in the P2' position for the hydrolytic activity of CPB3, which may be relevant to a role in the activation mechanism of the L. mexicana CPBs.  相似文献   

4.
The S(1)' and S(2)' subsite specificities of human tissue kallikrein 1 (KLK1) and human plasma kallikrein (HPK) were examined with the peptide series Abz-GFSPFRXSRIQ-EDDnp and Abz-GFSPFRSXRIQ-EDDnp [X=natural amino acids or S(PO(3)H(2))]. KLK1 efficiently hydrolyzed most of the peptides except those containing negatively charged amino acids at P(1)' and P(2)' positions. Abz-GFSPFRSSRIQ-EDDnp, as in human kininogen, is the best substrate for KLK1 and exclusively cleaved the R-S bond. All other peptides were cleaved also at the F-R bond. The synthetic human kininogen segment Abz-MISLMKRPPGFSPFRS(390)S(391)RI-NH(2) was hydrolyzed by KLK1 first at R-S and then at M-K bonds, releasing Lys-bradykinin. In the S(390) and S(391) phosphorylated analogs, this order of hydrolysis was inverted due to the higher resistance of the R-S bond. Abz-MISLMKRPPG-FSPFRSS(PO(3)H(2))(391)RI-NH(2) was hydrolyzed by KLK1 at M-K and mainly at the F-R bond, releasing des-(Arg(9))-Lys-Bk which is a B1 receptor agonist. HPK cleaved all the peptides at R and showed restricted specificity for S in the S(1)' subsite, with lower specificity for the S(2)' subsite. Abz-MISLMKRPPGFSPFRSSRI-NH(2) was efficiently hydrolyzed by HPK under bradykinin release, while the analogs containing S(PO(3)H(2)) were poorly hydrolyzed. In conclusion, S(1)' and S(2)' subsite specificities of KLK1 and HPK showed peculiarities that were observed with substrates containing the amino acid sequence of human kininogen.  相似文献   

5.
M1 family metallo-aminopeptidases fulfill a wide range of critical and in some cases medically relevant roles in humans and human pathogens. The specificity of M1-aminopeptidases is dominated by the interaction of the well defined S1 subsite with the side chain of the first (P1) residue of the substrate and can vary widely. Extensive natural variation occurs at one of the residues that contributes to formation of the cylindrical S1 subsite. We investigated whether this natural variation contributes to diversity in S1 subsite specificity. Effects of 11 substitutions of the S1 subsite residue valine 459 in the Plasmodium falciparum aminopeptidase PfA-M1 and of three substitutions of the homologous residue methionine 260 in Escherichia coli aminopeptidase N were characterized. Many of these substitutions altered steady-state kinetic parameters for dipeptide hydrolysis and remodeled S1 subsite specificity. The most dramatic change in specificity resulted from substitution with proline, which collapsed S1 subsite specificity such that only substrates with P1-Arg, -Lys, or -Met were appreciably hydrolyzed. The structure of PfA-M1 V459P revealed that the proline substitution induced a local conformational change in the polypeptide backbone that resulted in a narrowed S1 subsite. The restricted specificity and active site backbone conformation of PfA-M1 V459P mirrored those of endoplasmic reticulum aminopeptidase 2, a human enzyme with proline in the variable S1 subsite position. Our results provide compelling evidence that changes in the variable residue in the S1 subsite of M1-aminopeptidases have facilitated the evolution of new specificities and ultimately novel functions for this important class of enzymes.  相似文献   

6.
Trypsins have high sequence similarity, although the responses of insect trypsins to chemical and natural inhibitors suggest they differ in specificities. Purified digestive trypsins from insects of four different orders were assayed with internally quenched fluorescent oligopeptides with two different amino acids at P1 (Arg/Lys) and 15 amino acid replacements in positions P1', P2', P2, and P3. The binding energy (deltaG(s), calculated from Km values) and the activation energy (deltaG(T)(double dagger), determined from kcat/Km values) were calculated. Dictyoptera, Coleoptera and Diptera trypsins hydrolyze peptides with Arg at P1 at least 3 times more efficiently than peptides with Lys at P1, whereas Lepidoptera trypsins have no preference between Arg and Lys at that position. The hydrophobicities of each subsite were calculated from the efficiency of hydrolysis of the different amino acid replacements at that subsite. The results suggested that insect trypsin subsites become progressively more hydrophobic along evolution. Apparently, this is an adaptation to resist plant protein inhibitors, which usually have polar residues at their reactive sites. Results also suggested that, at least in lepidopteran trypsins, S3, S2, S1', and S2' significantly bind the substrate ground state, whereas in the transition state only S1' and S2' do that, supporting aspects of the presently accepted mechanism of trypsin catalysis. Homology modeling showed differences among those trypsins that may account for the varied kinetic properties.  相似文献   

7.
Insect chymotrypsins are distinctively sensitive to plant protein inhibitors, suggesting that they differ in subsite architecture and hence in substrate specificities. Purified digestive chymotrypsins from insects of three different orders were assayed with internally quenched fluorescent oligopeptides with three different amino acids at P1 (Tyr, Phe, and Leu) and 13 amino acid replacements in positions P1', P2, and P3. The binding energy (DeltaG(s), calculated from K(m) values) and the activation energy (DeltaG(T)++, determined from k(cat)/K(m) values) were calculated. The hydrophobicities of each subsite were calculated from the efficiency of hydrolysis of the different amino acid replacements at that subsite. The results showed that except for S1, the other subsites (S2, S3, and S1') vary among chymotrypsins. This result contrasts with insect trypsin data that revealed a trend along evolution, putatively associated with resistance to plant inhibitors. In spite of those differences, the data suggested that in lepidopteran chymotrypsins S2 and S1' bind the substrate ground state, whereas only S1' binds the transition state, supporting aspects of the present accepted mechanism of catalysis.  相似文献   

8.
Studies on the role of the S4 substrate binding site of HIV proteinases   总被引:5,自引:0,他引:5  
Kinetic analysis of the hydrolysis of the peptide H-Val-Ser-Gln-Asn-Tyr*Pro-Ile-Val-Gln-NH2 and its analogs obtained by varying the length and introducing substitutions at the P4 site was carried out with both HIV-1 and HIV-2 proteinases. Deletion of the terminal Val and Gln had only moderate effect on the substrate hydrolysis, while the deletion of the P4. Ser as well as P'3 Val greatly reduced the substrate hydrolysis. This is predicted to be due to the loss of interactions between main chains of the enzyme and the substrate. Substitution of the P4 Ser by amino acids having high frequency of occurrence in beta turns resulted in good substrates, while large amino acids were unfavorable in this position. The two proteinases acted similarly, except for substrates having Thr, Val and Leu substitutions, which were better accommodated in the HIV-2 substrate binding pocket.  相似文献   

9.
Substrate specificity of beta-collagenase from Clostridium histolyticum   总被引:2,自引:0,他引:2  
The substrate specificity of beta-collagenase from Clostridium histolyticum has been investigated by measuring the rate of hydrolysis of more than 50 tri-, tetra-, penta-, and hexapeptides covering the P3 to P3' subsites of the substrate. The choice of peptides was patterned after sequences found in the alpha 1 and alpha 2 chains of type I collagen. Each peptide contained either a 2-furanacryloyl (FA) or cinnamoyl (CN) group in subsite P2 or the 4-nitrophenylalanine (Nph) residue in subsite P1. Hydrolysis of the P1-P1' bond produces an absorbance change in these chromophoric peptides that has been used to quantitate the rates of their hydrolysis under first order conditions ([S] much less than KM) from kcat/KM values have been obtained. The identity of the amino acids in all six subsites (P3-P3') markedly influences the hydrolysis rates. In general, the best substrates have Gly in subsites P3 and P1', Pro or Ala in subsite P2', and Hyp, Arg, or Ala in subsite P3'. This corresponds well with the frequency of occurrence of these residues in the Gly-X-Y triplets of collagen. In contrast, the most rapidly hydrolyzed substrates do not have residues from collagen-like sequences in subsites P2 and P1. For example, CN-Nph-Gly-Pro-Ala is the best known substrate for beta-collagenase with a kcat/KM value of 4.4 X 10(7) M-1 min-1, in spite of the fact that there is neither Pro nor Ala in P2 or Hyp nor Ala in P1. These results indicate that the previously established rules for the substrate specificity of the enzyme require modification.  相似文献   

10.
We explored the unique substrate specificity of the primary S(1) subsite of human urinary kallikrein (hK1), which accepts both Phe and Arg, using internally quenched fluorescent peptides Abz-F-X-S-R-Q-EDDnp and Abz-G-F-S-P-F-X-S-S-R-P-Q-EDDnp [Abz is o-aminobenzoic acid; EDDnp is N-(2,4-dinitrophenyl)ethylenediamine], which were based on the human kininogen sequence at the C-terminal region of bradykinin. Position X, which in natural sequence stands for Arg, received the following synthetic basic non-natural amino acids: 4-(aminomethyl)phenylalanine (Amf), 4-guanidine phenylalanine (Gnf), 4-(aminomethyl)-N-isopropylphenylalanine (Iaf), N(im)-(dimethyl)histidine [H(2Me)], 3-pyridylalanine (Pya), 4-piperidinylalanine (Ppa), 4-(aminomethyl)cyclohexylalanine (Ama), and 4-(aminocyclohexyl)alanine (Aca). Only Abz-F-Amf-S-R-Q-EDDnp and Abz-F-H(2Me)]-S-R-Q-EDDnp were efficiently hydrolyzed, and all others were resistant to hydrolysis. However, Abz-F-Ama-S-R-Q-EDDnp inhibited hK1 with a K(i) of 50 nM with high specificity compared to human plasma kallikrein, thrombin, plasmin, and trypsin. The Abz-G-F-S-P-F-X-S-S-R-P-Q-EDDnp series were more susceptible to hK1, although the peptides with Gnf, Pya, and Ama were resistant to it. Unexpectedly, the peptides in which X is His, Lys, H(2Me), Amf, Iaf, Ppa, and Aca were cleaved at amino or at carboxyl sites of these amino acids, indicating that the S(1)' subsite has significant preference for basic residues. Human plasma kallikrein did not hydrolyze any peptide of this series except the natural sequence where X is Arg. In conclusion, the S(1) subsite of hK1 accepts amino acids with combined basic and aromatic side chain, although for the S(1)-P(1) interaction the preference is for aliphatic and basic side chains.  相似文献   

11.
Fasciola parasites (liver flukes) express numerous cathepsin L proteases that are believed to be involved in important functions related to host invasion and parasite survival. These proteases are evolutionarily divided into clades that are proposed to reflect their substrate specificity, most noticeably through the S(2) subsite. Single amino acid substitutions to residues lining this site, including amino acid residue 69 (aa69; mature cathepsin L5 numbering) can have profound influences on subsite architecture and influence enzyme specificity. Variations at aa69 among known Fasciola cathepsin L proteases include leucine, tyrosine, tryptophan, phenylalanine and glycine. Other amino acids (cysteine, serine) might have been expected at this site due to codon usage as cathepsin L isoenzymes evolved, but C69 and S69 have not been observed. The introduction of L69C and L69S substitutions into FhCatL5 resulted in low overall activity indicating their expression provides no functional advantage, thus explaining the absence of such variants in Fasciola. An FhCatL5 L69F variant showed an increase in the ability to cleave substrates with P(2) proline, indicating F69 variants expressed by the fluke would likely have this ability. An FhCatL2 Y69L variant showed a decreased acceptance of P(2) proline, further highlighting the importance of Y69 for FhCatL2 P(2) proline acceptance. Finally, the P(1)-P(4) specificity of Fasciola cathepsin L5 was determined and, unexpectedly, aspartic acid was shown to be well accepted at P(2,) which is unique amongst Fasciola cathepsins examined to date.  相似文献   

12.
Sequence specificities of human fibroblast and neutrophil collagenases.   总被引:3,自引:0,他引:3  
The sequence specificities of human fibroblast and neutrophil collagenases have been investigated by measuring the rate of hydrolysis of 60 synthetic oligopeptides covering the P4 through P'5 subsites of the substrate. The choice of peptides was patterned after both known cleavage sites in noncollagenous proteins and potential cleavage sites (those containing Gly-Ile-Ala, Gly-Leu-Ala, or Gly-Ile-Leu sequences) found in types I, II, III, and IV collagens. The initial rate of hydrolysis of the P1-P'1 bond of each peptide has been measured under first-order conditions ([SO] much less than KM), and kcat/KM values have been calculated from the initial rates. The amino acids in subsites P4 through P'4 all influence the hydrolysis rates for both collagenases. However, the effects of substitutions at each site are distinctive and are consistent with the view that human fibroblast and neutrophil collagenases are homologous but nonidentical enzymes. For peptides with unblocked NH2 and COOH termini, occupancy of subsites P3 through P'3 is necessary for rapid hydrolysis. Compared with the alpha 1(I) cleavage sequence, none of the substitutions investigated at subsites P3, P2, and P'4 produces markedly improved substrates. In contrast, many substitutions at subsites P1, P'1, and P'2 improve specificity. The preferences of both collagenases for alanine in subsite P1 and tryptophan or phenylalanine in subsite P'2, is noteworthy. Human neutrophil collagenase accommodates aromatic residues in subsite P'1 much better than human fibroblast collagenase. The subsite preferences observed for human fibroblast collagenase in these studies agree well with the residues found at cleavage sites in noncollagenous substrates. However, the sequence specificities of these collagenases cannot explain the failure of these enzymes to hydrolyze many potentially cleavable but apparently protected sites in intact collagens. This represents additional support for the notion that the local structure of collagen is important in determining the location of collagenase cleavage sites.  相似文献   

13.
Beck ZQ  Lin YC  Elder JH 《Journal of virology》2001,75(19):9458-9469
We have used a random hexamer phage library to delineate similarities and differences between the substrate specificities of human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) proteases (PRs). Peptide sequences were identified that were specifically cleaved by each protease, as well as sequences cleaved equally well by both enzymes. Based on amino acid distinctions within the P3-P3' region of substrates that appeared to correlate with these cleavage specificities, we prepared a series of synthetic peptides within the framework of a peptide sequence cleaved with essentially the same efficiency by both HIV-1 and FIV PRs, Ac-KSGVF/VVNGLVK-NH(2) (arrow denotes cleavage site). We used the resultant peptide set to assess the influence of specific amino acid substitutions on the cleavage characteristics of the two proteases. The findings show that when Asn is substituted for Val at the P2 position, HIV-1 PR cleaves the substrate at a much greater rate than does FIV PR. Likewise, Glu or Gln substituted for Val at the P2' position also yields peptides specifically susceptible to HIV-1 PR. In contrast, when Ser is substituted for Val at P1', FIV PR cleaves the substrate at a much higher rate than does HIV-1 PR. In addition, Asn or Gln at the P1 position, in combination with an appropriate P3 amino acid, Arg, also strongly favors cleavage by FIV PR over HIV PR. Structural analysis identified several protease residues likely to dictate the observed specificity differences. Interestingly, HIV PR Asp30 (Ile-35 in FIV PR), which influences specificity at the S2 and S2' subsites, and HIV-1 PR Pro-81 and Val-82 (Ile-98 and Gln-99 in FIV PR), which influence specificity at the S1 and S1' subsites, are residues which are often involved in development of drug resistance in HIV-1 protease. The peptide substrate KSGVF/VVNGK, cleaved by both PRs, was used as a template for the design of a reduced amide inhibitor, Ac-GSGVF Psi(CH(2)NH)VVNGL-NH(2.) This compound inhibited both FIV and HIV-1 PRs with approximately equal efficiency. These findings establish a molecular basis for distinctions in substrate specificity between human and feline lentivirus PRs and offer a framework for development of efficient broad-based inhibitors.  相似文献   

14.
Sixty-nine rat cathepsin L-susceptible peptide bonds were analyzed employing various peptide substrates. The proteolytic specificities of rat cathepsin L and papain were compared and the results are discussed in relation to differences in amino acid residues around their binding sites. The specificity of cathepsin L, which is characterized by a remarkable preference for hydrophobic amino acids at the P2 site of the scissile peptide bonds, was analogous to that of papain as a whole. This analogous specificity suggests that the binding sites of the two proteases are analogous, as expected from their homologous amino acid sequences. However, there is a slight difference in the preference for S3 site between them. That is, cathepsin L showed a greater preference for bulky and hydrophobic amino acids at the S3 site than did papain. Based on the computer-graphically deduced structure of the binding sites of cathepsin L, the preferences for hydrophobic amino acids at the S2 site and for bulky and hydrophobic amino acids at the S3 site of the protease are supposed to be related to the compensating amino acid substitutions at the S2 site (V133A and V157L) and the reduction in size at the S3 site (Y61Q and Y67L), respectively. The discussion of the effect of the amino acid substitutions on the proteolytic activities of cathepsin L and papain in this paper provides a basis for more advanced studies of the relationship between structure and function of proteases belonging to the papain superfamily by means of protein engineering.  相似文献   

15.
Understanding the active site preferences of an enzyme is critical to the design of effective inhibitors and to gaining insights into its mechanisms of action on substrates. While the subsite specificity of thrombin is understood, it is not clear whether the enzyme prefers individual amino acids at each subsite in isolation or prefers to cleave combinations of amino acids as a motif. To investigate whether preferred peptide motifs for cleavage could be identified for thrombin, we exposed a phage-displayed peptide library to thrombin. The resulting preferentially cleaved substrates were analyzed using the technique of association rule discovery. The results revealed that thrombin selected for amino acid motifs in cleavage sites. The contribution of these hypothetical motifs to substrate cleavage efficiency was further investigated using the B1 IgG-binding domain of streptococcal protein G as a model substrate. Introduction of a P(2)-P(1)' LRS thrombin cleavage sequence within a major loop of the protein led to cleavage of the protein by thrombin, with the cleavage efficiency increasing with the length of the loop. Introduction of further P(3)-P(1) and P(1)-P(1)'-P(3)' amino acid motifs into the loop region yielded greater cleavage efficiencies, suggesting that the susceptibility of a protein substrate to cleavage by thrombin is influenced by these motifs, perhaps because of cooperative effects between subsites closest to the scissile peptide bond.  相似文献   

16.
Truncation of a peptide substrate in the N-terminus and replacement of its scissile amide bond with a non-cleavable reduced bond results in a potent inhibitor of HIV-1 protease. A series of such inhibitors has been synthesized, and S2-S3' subsites of the protease binding cleft mapped. The S2 pocket requires bulky Boc or PIV groups, large aromatic Phe residues are preferred in P1 and P1' and Glu in P2'. The S3' pocket prefers Phe over small Ala or Val. Introduction of a Glu residue into the P2' position yields a tight-binding inhibitor of HIV-1 protease, Boc-Phe-[CH2-NH]-Phe-Glu-Phe-OMe, with a subnanomolar inhibition constant. The relevant peptide derived from the same amino acid sequence binds to the protease with a Ki of 110 nM, thus still demonstrating a good fit of the amino acid residues into the protease binding pockets and also the importance of the flexibility of P1-P1' linkage for proper binding. A new type of peptide bond mimetic, N-hydroxylamine -CH2-N(OH)-, has been synthesized. Binding of hydroxylamino inhibitor of HIV-1 protease is further improved with respect to reduced-bond inhibitor.  相似文献   

17.
Hepatitis A virus (HAV) 3C proteinase is responsible for processing the viral precursor polyprotein into mature proteins. The substrate specificity of recombinant hepatitis A 3C proteinase was investigated using a series of synthetic peptides representing putative polyprotein junction sequences. Two peptides, corresponding to the viral polyprotein 2B/2C and 2C/3A junctions, were determined to be cleaved most efficiently by the viral 3C proteinase. The kcat/Km values determined for the hydrolysis of a further series of 2B/2C peptides, in which C-terminal and N-terminal amino acids were systematically removed, revealed that P4 through P2' amino acids were necessary for efficient substrate cleavage. The substitution of Ala for amino acids in P1 and P4 positions decreased the rate of peptide hydrolysis by 100- and 10-fold, respectively, indicating that the side chains of Gln in P1 and Leu in P4 are important determinants of substrate specificity. Rates of hydrolysis measured for other P1- and P4-substituted peptides indicate that S1 is very specific for the Gln side chain whereas S4 requires only that the amino acid in P4 be hydrophobic. A continuous fluorescence quench assay was developed, allowing the determination of kcat/Km dependence on pH. The pH rate profile suggests that catalyzed peptide hydrolysis is dependent on deprotonation of a reactive group having a pKa of 6.2 (+/- 0.2). The results of tests with several proteinase inhibitors indicate that this cysteine proteinase, like other picornaviral 3C proteinases, is not a member of the papain family.  相似文献   

18.
The substrate specificities of three class I (beta, gamma, and eta) and three class II (sigma, epsilon, and zeta) collagenases from Clostridium histolyticum have been investigated by quantitating the kcat/KM values for the hydrolysis of 53 synthetic peptides with collagen-like sequences covering the P3 through P3 subsites of the substrate. For both classes of collagenases, there is a strong preference for Gly in subsites P1' and P3. All six enzymes also prefer substrates that contain Pro and Ala in subsites P2 and P2' and Hyp, Ala, or Arg in subsite P3'. This agrees well with the occupancies of these sites by these residues in type I collagen. However, peptides with Glu in subsites P2 or P2' are not good substrates, even though Glu occurs frequently in these positions in collagen. Conversely, all six enzymes prefer aromatic amino acids in subsite P1, even though such residues do not occur in this position in type I collagen. In general, the class II enzymes have a broader specificity than the class I enzymes. However, they are much less active toward sequences containing Hyp in subsites P1 and P3'. Thus, the two classes of collagenases have similar but complementary sequence specificities. This accounts for the ability of the two classes of enzymes to synergistically digest collagen.  相似文献   

19.
In order to identify inhibitors of various drug-resistant forms of the human immunodeficiency virus protease (HIV PR), we have designed and synthesized pseudopeptide libraries with a general structure Z-mimetic-Aa1-Aa2-NH2. Five different chemistries for peptide bond replacement have been employed and the resulting five individual sublibraries tested with the HIV PR and its drug-resistant mutants. Each mutant contains amino acid substitutions that have previously been shown to be associated with resistance to protease inhibitors, including Ritonavir, Indinavir, and Saquinavir. We have mapped the subsite preferences of resistant HIV PR species with the aim of selecting a pluripotent pharmaceutical lead. All of the enzyme species in this study manifest clear preference for an L-Glu residue in the P2' position. Slight, but significant, differences in P3' subsite specificity among individual resistant PR species have been documented. We have identified three compounds, combining the most favorable features of the inhibitor array, that exhibit low-nanomolar or picomolar Ki values for all three mutant PR species tested.  相似文献   

20.
Thrombin is an allosteric protease controlled through exosites flanking the catalytic groove. Binding of a peptide derived from hirudin (Hir(52-65)) and/or of heparin to these opposing exosites alters catalysis. We have investigated the contribution of subsites S(2)' and S(3)' to this allosteric transition by comparing the hydrolysis of two sets of fluorescence-quenched substrates having all natural amino acids at positions P(2)' and P(3)'. Regardless of the amino acids, Hir(52-65) decreased, and heparin increased the k(cat)/K(m) value of hydrolysis by thrombin. Several lines of evidence have suggested that Glu(192) participates in this modulation. We have examined the role of Glu(192) by comparing the catalytic activity of thrombin and its E192Q mutant. Mutation substantially diminishes the selectivity of thrombin. The substrate with the "best" P(2)' residue was cleaved with a k(cat)/K(m) value only 49 times higher than the one having the "least favorable" P(2)' residue (versus 636-fold with thrombin). Mutant E192Q also lost the strong preference of thrombin for positively charged P(3)' residues and its strong aversion for negatively charged P(3)' residues. Furthermore, both Hir(52-65) and heparin increased the k(cat)/K(m) value of substrate hydrolysis. We conclude that Glu(192) is critical for the P(2)' and P(3)' specificities of thrombin and for the allostery mediated through exosite 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号