首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PKC contributes to regulation of pulmonary vascular reactivity in response to hypoxia. The role of individual PKC isozymes is less clear. We used a knockout (null, -/-) mouse to test the hypothesis that PKC-epsilon is important in acute hypoxic pulmonary vasoconstriction (HPV). We asked whether deletion of PKC-epsilon would decrease acute HPV in adult C57BL6xSV129 mice. In isolated, salt solution-perfused lung, reactivity to acute hypoxic challenges (0% and 3% O(2)) was compared with responses to angiotensin II (ANG II) and KCl. PKC-epsilon -/- mice had decreased HPV, whereas responses to ANG II and KCl were preserved. Inhibition of nitric oxide synthase (NOS) with nitro-l-arginine augmented HPV in PKC-epsilon +/+ but not -/- mice. Inhibition of Ca(2+)-gated K(+) channels (K(Ca)) with charybdotoxin and apamin did not enhance HPV in -/- mice relative to wild-type (+/+) controls. In contrast, the voltage-gated K(+) channel (K(V)) antagonist 4-aminopyridine increased the response of -/- mice beyond that of +/+ mice. This suggested that increased K(V) channel expression could contribute to blunted HPV in PKC-epsilon -/- mice. Therefore, expression of the O(2)-sensitive K(V) channel subunit Kv3.1b (100-kDa glycosylated form and 70-kDa core protein) was compared in whole lung and pulmonary artery smooth muscle cell (PASMC) lysates from +/+ and -/- mice. A subtle increase in Kv3.1b was detected in -/- vs. +/+ whole lung lysates. A much greater rise in Kv3.1b expression was found in -/- vs. +/+ PASMC. Thus deletion of PKC-epsilon blunts murine HPV. The decreased response could not be attributed to a general loss in vasoreactivity or derangements in NOS or K(Ca) channel activity. Instead, the absence of PKC-epsilon allows increased expression of K(V) channels (like Kv3.1b) to occur in PASMC, which likely contributes to decreased HPV.  相似文献   

2.
Oxygen causes perinatal pulmonary dilatation. Although fetal pulmonary artery smooth muscle cells (PA SMC) normally respond to an acute increase in oxygen (O2) tension with a decrease in cytosolic calcium ([Ca2+]i), an acute increase in O2 tension has no net effect on [Ca(2+)](i) in PA SMC derived from lambs with chronic intrauterine pulmonary hypertension (PHTN). The present experimental series tests the hypothesis that an acute increase in O2 tension decreases capacitative calcium entry (CCE) in normal, but not hypertensive, fetal PA SMC. PA SMC were isolated from late-gestation fetal lambs after either ligation of the ductus arteriosus (PHTN) or sham (control) operation at 127 days gestation. PA SMC were isolated from the distal PA (>or=4th generation) and maintained under hypoxic conditions ( approximately 25 Torr) in primary culture. After fura 2 loading, apparent [Ca2+]i in PA SMC was determined as the ratio of 340- to 380-nm fluorescence intensity. Under both hypoxic and normoxic conditions, cyclopiazonic acid (CPA) increased [Ca2+]i more in PHTN than in control PA SMC. CCE was determined in PA SMC under hypoxic and normoxic conditions, after superfusion with zero extracellular Ca2+ and intracellular store depletion with CPA, followed by superfusion with Ca2+-containing solution, in the presence of the voltage-operated calcium channel blockade. CCE was increased in PHTN compared with control PA SMC under conditions of both acute and sustained normoxia. Transient receptor potential channel gene expression was greater in control compared with PHTN PA SMC. PHTN may compromise perinatal pulmonary vasodilation, in part, by modulating PA SMC CCE.  相似文献   

3.
We administered antifibrotic agent beta-aminopropionitrile (BAPN) to rats exposed to 10% O2-90% N2 for 3 wk to prevent excess vascular collagen accumulation. Groups of Sprague-Dawley rats studied were air breathing, hypoxic, and hypoxic treated with BAPN, 150 mg/kg twice daily intraperitoneally. After the 3-wk period, we measured mean right ventricular pressure (RVP), the ratio of weight of right ventricle to left ventricle plus septum (RV/LV + S), and hydroxyproline content of the main pulmonary artery (PA) trunk. Hypoxia increased RVP from 14 to 29 mmHg; RVP was 21 mmHg in hypoxic BAPN-treated animals. Hypoxia increased the RV/LV + S ratio from 0.28 to 0.41; the ratio was 0.32 in hypoxic BAPN-treated animals. Hypoxia increased PA hydroxyproline from 20 to 239 micrograms/artery; hydroxyproline was 179 micrograms/artery in hypoxic BAPN-treated animals. Thus BAPN prevented pulmonary hypertension, right ventricular hypertrophy, and excess vascular collagen produced by hypoxia. We conclude that vascular collagen contributes to the maintenance of chronic hypoxic pulmonary hypertension.  相似文献   

4.
Caveolin-1 (Cav-1)-/- mice develop mild pulmonary hypertension as they age. In this study, we sought to determine the effect of chronic hypoxia, an established model of pulmonary hypertension, on young Cav-1-/- mice with no measurable signs of pulmonary hypertension. Exposure of Cav-1-/- mice to chronic hypoxia resulted in an initial rise in right ventricular (RV) systolic pressure (RVSP) similar to wild-type (WT) mice. By three weeks RVSP decreased in the Cav-1-/- mice, whereas it was maintained in WT mice. The drop in RVSP in Cav-1-/- mice was accompanied by decreased cardiac output, increased RV hypertrophy, RV interstitial fibrosis, decreased RV sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a mRNA and decreased RV function compared with WT mice. Importantly, minimal differences were noted in pulmonary vascular remodeling between WT and Cav-1-/- mice, and left ventricular function was normal in hypoxic Cav-1-/- mice. Mechanistically, increased endothelial nitric oxide synthase uncoupling and increased tyrosine nitration of protein kinase G were detected in the RV of Cav-1-/- mice. These hemodynamic, histological, and molecular changes were prevented in Cav-1-/- mice expressing an endothelial-specific Cav-1 transgene or by nitric oxide synthase inhibition. These data suggest that, in Cav-1-/- mice, increased oxidative/nitrosative stress due to endothelial nitric oxide synthase uncoupling modifies the response of the RV to pressure overload, accelerating the deterioration of RV function.  相似文献   

5.
We tested the hypotheses that hypoxic exposure is associated with exacerbated pulmonary hypertension and right ventricular (RV) enlargement, reduced atrial natriuretic peptide (ANP) clearance receptor (NPR-C) expression, and enhanced B-type natriuretic peptide (BNP) expression in the absence of ANP. Male wild-type [ANP(+/+)], heterozygous [ANP(+/-)], and homozygous [ANP(-/-)] mice were studied after a 5-wk hypoxic exposure (10% O(2)). Hypoxia increased RV ANP mRNA and plasma ANP levels only in ANP(+/+) and ANP(+/-) mice. Hypoxia-induced increases in RV pressure were significantly greater in ANP(-/-) than in ANP(+/+) or ANP(+/-) mice (104 +/- 17 vs. 45 +/- 10 and 63 +/- 7%, respectively) as were increases in RV mass (38 +/- 4 vs. 26 +/- 5 and 29 +/- 4%, respectively). NPR-C mRNA levels were greatly reduced in the kidney, lung, and brain by hypoxia in all three genotypes. RV BNP mRNA and lung and kidney cGMP levels were increased in hypoxic mice. These findings indicate that disrupted ANP expression worsens hypoxic pulmonary hypertension and RV enlargement but does not alter hypoxia-induced decreases in NPR-C and suggest that compensatory increases in BNP expression occur in the absence of ANP.  相似文献   

6.

Background  

The importance of nitric oxide (NO) in hypoxic pulmonary hypertension has been demonstrated using nitric oxide synthase (NOS) knockout mice. In that model NO from endothelial NOS (eNOS) plays a central role in modulating pulmonary vascular tone and attenuating hypoxic pulmonary hypertension. However, the normal regulation of NOS expression in mice following hypoxia is uncertain. Because genetically engineered mice are often utilized in studies of NO, we conducted the present study to determine how hypoxia alters NOS expression in wild-type mice.  相似文献   

7.
To test the hypothesis that chronic intrauterine pulmonary hypertension (PHTN) compromises pulmonary artery (PA) smooth muscle cell (SMC) O2 sensing, fluorescence microscopy was used to study the effect of an acute increase in Po2 on the cytosolic Ca2+ concentration ([Ca2+]i) of chronically hypoxic subconfluent monolayers of PA SMC in primary culture. PA SMCs were derived from fetal lambs with PHTN due to intrauterine ligation of the ductus arteriosus. Acute normoxia decreased [Ca2+]i in control but not PHTN PA SMC. In control PA SMC, [Ca2+]i increased after Ca2+-sensitive (KCa) and voltage-sensitive (Kv) K+ channel blockade and decreased after diltiazem treatment. In PHTN PA SMC, KCa blockade had no effect, whereas Kv blockade and diltiazem increased [Ca2+]i. Inhibition of sarcoplasmic reticulum Ca2+ ATPase activity caused a greater increase in [Ca2+]i in controls compared with PHTN PA SMC. Conversely, ryanodine caused a greater increase of [Ca2+]i in PHTN compared with control PA SMC. KCa channel mRNA is decreased and Kv channel mRNA is unchanged in PHTN PA SMC compared with controls. We conclude that PHTN compromises PA SMC O2 sensing, alters intracellular Ca2+ homeostasis, and changes the predominant ion channel that determines basal [Ca2+]i from KCa to Kv.  相似文献   

8.
Nitric oxide (NO) is implicated in a wide variety of biological roles. NO is generated from three nitric oxide synthase (NOS) isoforms: neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) all of which are found in the lung. While there are no isoform-specific inhibitors of NOS, the recent development and characterization of mice deficient in each of the NOS isoforms has allowed for more comprehensive study of the importance of NO in the lung circulation. Studies in the mouse have identified the role of NO from eNOS in modulating pulmonary vascular tone and in attenuating the development of chronic hypoxic pulmonary hypertension.  相似文献   

9.
Pulmonary vasoconstriction is influenced by inactivation of nitric oxide (NO) with extracellular superoxide (O2-*). Because the short-lived O2-* anion cannot diffuse across plasma membranes, its release from vascular cells requires specialized mechanisms that have not been well delineated in the pulmonary circulation. We have shown that the bicarbonate (HCO3-)-chloride anion exchange protein (AE2) expressed in the lung also exchanges O2-* for HCO3-. Thus we determined whether O2-* release involved in pulmonary vascular tone depends on extracellular HCO3-. We assessed endothelium-dependent vascular reactivity and O2-* release in the presence or absence of HCO3- in pulmonary artery (PA) rings isolated from normal rats and those exposed to hypoxia for 3 days. Lack of extracellular HCO3- in normal PA rings significantly attenuated endothelial O2-* release, opposed hypoxic vasoconstriction, and enhanced acetylcholine-mediated vasodilation. Release of O2-* was also inhibited by an AE2 inhibitor (SITS) and abolished in normoxia by an NO synthase inhibitor (NG-nitro-L-arginine methyl ester). In contrast, hypoxia increased PA AE2 protein expression and O2-* release; the latter was not affected by NG-nitro-l-arginine methyl ester or other inhibitors of enzymatic O2-* generation. Enhanced O2-* release by uncoupling NO synthase with geldanamycin was attenuated by hypoxia or by HCO3- elimination. These results indicate that O2-* produced by endothelial NOS in normoxia and unidentified sources in hypoxia regulate pulmonary vascular tone via AE2.  相似文献   

10.
Pulmonary hypertension is characterized by structural and morphological changes to the lung vasculature. To determine the potential role of nitric oxide in the vascular remodeling induced by hypoxia, we exposed wild-type [WT(+/+)] and endothelial nitric oxide synthase (eNOS)-deficient [(-/-)] mice to normoxia or hypoxia (10% O(2)) for 2, 4, and 6 days or for 3 wk. Smooth muscle alpha-actin and von Willebrand factor immunohistochemistry revealed significantly less muscularization of small vessels in hypoxic eNOS(-/-) mouse lungs than in WT(+/+) mouse lungs at early time points, a finding that correlated with decreases in proliferating vascular cells (5-bromo-2'-deoxyuridine positive) at 4 and 6 days of hypoxia in the eNOS(-/-) mice. After 3 wk of hypoxia, both mouse types exhibited similar percentages of muscularized small vessels; however, only the WT(+/+) mice exhibited an increase in the percentage of fully muscularized vessels and increased vessel wall thickness. eNOS protein expression was increased in hypoxic WT(+/+) mouse lung homogenates at all time points examined, with significantly increased percentages of small vessels expressing eNOS protein after 3 wk. These results indicate that eNOS deficiency causes decreased muscularization of small pulmonary vessels in hypoxia, likely attributable to the decrease in vascular cell proliferation observed in these mice.  相似文献   

11.
Right ventricular (RV) adaptation is an important prognostic factor in acute and chronic pulmonary hypertension. Pulmonary vascular basal tone and hypoxic reactivity are known to vary widely between species. We investigated how RV adaptation to acute pulmonary hypertension is preserved in species with low, intermediate, and high pulmonary vascular resistance and reactivity. Acute pulmonary hypertension was induced by hypoxia, distal embolism, and proximal constriction in anesthetized dogs (n = 10), goats (n = 8), and pigs (n = 8). Pulmonary vessels were assessed by flow-pressure curves and by impedance to quantify distal resistance, proximal elastance, and wave reflections. RV function was assessed by pressure-volume curves to quantify afterload, contractility, and ventricular-arterial coupling efficiency. First, hypoxia was associated with a progressive increase of resistance, elastance, and wave reflection from dogs to goats and from goats to pigs. RV contractility increased proportionally to RV afterload, and optimal coupling was preserved in all species. Second, embolism increased resistance and wave reflection but not elastance. The increase in RV contractility matched the increase in RV afterload and optimal coupling was preserved. Finally, proximal pulmonary artery constriction increased resistance, increased and accelerated wave reflection, and markedly increased elastance. RV contractility increased markedly and coupling showed a nonsignificant trend to decrease. We conclude that optimal or near-optimal ventricular-arterial coupling is maintained in acute pulmonary hypertension, whether in absence or presence of chronic species-induced pulmonary hypertension.  相似文献   

12.
Nitric oxide (NO), synthesized by NO synthases (NOS), plays a pivotal role in regulation of pulmonary vascular tone. To examine the role of endothelial NOS (NOS3) in hypoxic pulmonary vasoconstriction (HPV), we measured left lung pulmonary vascular resistance (LPVR), intrapulmonary shunting, and arterial PO2 (PaO2) before and during left mainstem bronchus occlusion (LMBO) in mice with and without a deletion of the gene encoding NOS3. The increase of LPVR induced by LMBO was greater in NOS3-deficient mice than in wild-type mice (151 +/- 39% vs. 109 +/- 36%, mean +/- SD; P < 0.05). NOS3-deficient mice had a lower intrapulmonary shunt fraction than wild-type mice (17.1 +/- 3.6% vs. 21.7 +/- 2.4%, P < 0.05) during LMBO. Both real-time PaO2 monitoring with an intra-arterial probe and arterial blood-gas analysis during LMBO showed higher PaO2 in NOS3-deficient mice than in wild-type mice (P < 0.05). Inhibition of all three NOS isoforms with Nomega-nitro-L-arginine methyl ester (L-NAME) augmented the increase of LPVR induced by LMBO in wild-type mice (183 +/- 67% in L-NAME treated vs. 109 +/- 36% in saline treated, P < 0.01) but not in NOS3-deficient mice. Similarly, systemic oxygenation during one-lung ventilation was augmented by L-NAME in wild-type mice but not in NOS3-deficient mice. These findings indicate that NO derived from NOS3 modulates HPV in vivo and that inhibition of NOS3 improves systemic oxygenation during acute unilateral lung hypoxia.  相似文献   

13.
This study was carried out to determine the role of increased vascular matrix metalloproteinase-2 (MMP-2) expression in the changes in systemic arterial contraction after prolonged hypoxia. Rats and mice were exposed to hypoxia (10% and 8% O(2), respectively) or normoxia (21% O(2)) for 16 h, 48 h, or 7 days. Aortae and mesenteric arteries were either mounted in organ bath myographs or frozen in liquid nitrogen. MMP-2 inhibition with cyclic CTTHWGFTLC (CTT) reduced contraction to phenylephrine (PE) in aortae and mesenteric arteries from rats exposed to hypoxia for 7 days but not in vessels from normoxic rats. Similarly, CTT reduced contraction to Big endothelin-1 (Big ET-1) in aortae from rats exposed to hypoxia for 7 days. Responses to PE were reduced in hypoxic MMP-2(-/-) mice compared with MMP-2(+/+) mice. Increased contraction to Big ET-1 after hypoxia was observed in MMP-2(+/+) mice but not in MMP-2(-/-) mice. Rat aortic MMP-2 and membrane type 1 (MT1)-MMP protein levels and MMP activity were increased after 7 days of hypoxia. Rat aortic MMP-2 and MT1-MMP mRNA levels were increased in the deep medial vascular smooth muscle. We conclude that hypoxic induction of MMP-2 expression potentiates contraction in systemic conduit and resistance arteries. This may preserve the capacity to regulate the systemic circulation in the transition between the alterations in vascular tone and structural remodeling that occurs during prolonged hypoxic epochs.  相似文献   

14.
MUC1 (MUC1 in human and Muc1 in nonhumans) is a membrane-tethered mucin that interacts with Pseudomonas aeruginosa (PA) through flagellin. In this study, we compared PA pulmonary clearance and proinflammatory responses by Muc1(-/-) mice with Muc1(+/+) littermates following intranasal instillation of PA or flagellin. Compared with Muc1(+/+) mice, Muc1(-/-) mice showed increased PA clearance, greater airway recruitment of neutrophils, higher levels of TNF-alpha and KC in bronchoalveolar lavage fluid, higher levels of TNF-alpha in media of flagellin-stimulated alveolar macrophages, and higher levels of KC in media of tracheal epithelial cells. Knockdown of MUC1 enhanced flagellin-induced IL-8 production by primary human bronchial epithelial cells. Expression of MUC1 in HEK293T cells attenuated TLR5-dependent IL-8 release in response to flagellin, which was completely ablated when its cytoplasmic tail was deleted. We conclude that MUC1/Muc1 suppresses pulmonary innate immunity and speculate its anti-inflammatory activity may play an important modulatory role during microbial infection.  相似文献   

15.
Chronic hypoxia causes pulmonary hypertension with vascular remodeling, increase in vascular tone, and altered reactivity to agonists. These changes involve alterations in multiple Ca(2+) pathways in pulmonary arterial smooth muscle cells (PASMCs). We have previously shown that vanilloid (TRPV)- and melastatin-related transient receptor potential (TRPM) channels are expressed in pulmonary arteries (PAs). Here we found that TRPV4 was the only member of the TRPV and TRPM subfamilies upregulated in PAs of chronic hypoxic rats. The increase in TRPV4 expression occurred within 1 day of hypoxia exposure, indicative of an early hypoxic response. TRPV4 in PASMCs were found to be mechanosensitive. Osmo-mechanical stress imposed by hypotonic solution activated Ca(2+) transients; they were inhibited by TRPV4 specific short interfering RNA, the TRPV blocker ruthenium red, and the cytochrome P450 epoxygenase inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide. Consistent with TRPV4 upregulation, the Ca(2+) response induced by the TRPV4 agonist 4α-phorbol 12,13-didecanoate and hypotonicity was potentiated in hypoxic PASMCs. Moreover, a significant myogenic tone, sensitive to ruthenium red, was observed in pressurized endothelium denuded small PAs of hypoxic but not normoxic rats. The elevated basal intracellular Ca(2+) concentration in hypoxic PASMCs was also reduced by ruthenium red. In extension of these results, the development of pulmonary hypertension, right heart hypertrophy, and vascular remodeling was significantly delayed and suppressed in hypoxic trpv4(-/-) mice. These results suggest the novel concept that TRPV4 serves as a signal pathway crucial for the development of hypoxia-induced pulmonary hypertension. Its upregulation may provide a pathogenic feed-forward mechanism that promotes pulmonary hypertension via facilitated Ca(2+) influx, subsequently enhanced myogenic tone and vascular remodeling.  相似文献   

16.
Congenital cardiac defects associated with increased pulmonary blood flow (Q(p)) produce pulmonary hypertension. We have previously reported attenuated endothelium-dependent relaxations in pulmonary arteries (PA) isolated from lambs with increased Q(p) and pulmonary hypertension. To better characterize the vascular alterations in the nitric oxide-superoxide system, 12 fetal lambs underwent in utero placement of an aortopulmonary vascular graft (shunt). Twin lambs served as controls. PA were isolated from these lambs at 4-6 wk of age. Electron paramagnetic resonance spectroscopy on fourth-generation PA showed significantly increased superoxide anion generation in shunt PA that were decreased to control levels following inhibition of nitric oxide synthase (NOS) with 2-ethyl-2-thiopseudourea. Preconstricted fifth-generation PA rings were relaxed with a NOS agonist (A-23187), a nitric oxide donor [S-nitrosyl amino penicillamine (SNAP)], polyethylene glycol-conjugated superoxide dismutase (PEG-SOD), or H(2)O(2). A-23187-, PEG-SOD-, and H(2)O(2)-mediated relaxations were impaired in shunt PA compared with controls. Pretreatment with PEG-SOD significantly enhanced the relaxation response to A-23187 and SNAP in shunt but not control PA. Inhibition of NOS with nitro-L-arginine or scavenging superoxide anions with tiron enhanced relaxation to SNAP and inhibited relaxation to PEG-SOD in shunt PA. Pretreatment with catalase inhibited relaxation of shunt PA to A-23187, SOD, and H(2)O(2). We conclude that NOS catalyzes the production of superoxide anions in shunt PA. PEG-SOD relaxes shunt PA by converting these anions to H(2)O(2), a pulmonary vasodilator. The redox environment, influenced by the balance between production and scavenging of ROS, may have important consequences on pulmonary vascular reactivity in the setting of increased Q(p).  相似文献   

17.

Background

Hypoxia and pressure-overload induce heme oxygenase-1 (HO-1) in cardiomyocytes and vascular smooth muscle cells (VSMCs). HO-1−/− mice exposed to chronic hypoxia develop pulmonary arterial hypertension (PAH) with exaggerated right ventricular (RV) injury consisting of dilation, fibrosis, and mural thrombi. Our objective was to indentify the HO-1 product(s) mediating RV protection from hypoxic injury in HO-1−/− mice.

Methodology/Principal Findings

HO-1−/− mice were exposed to seven weeks of hypoxia and treated with inhaled CO or biliverdin injections. CO reduced right ventricular systolic pressure (RVSP) and prevented hypoxic pulmonary arteriolar remodeling in both HO-1−/− and control mice. Biliverdin had no significant effect on arteriolar remodeling or RVSP in either genotype. Despite this, biliverdin prevented RV failure in the hypoxic HO-1−/− mice (0/14 manifested RV wall fibrosis or thrombus), while CO-treated HO-1−/− mice developed RV insults similar to untreated controls. In vitro, CO inhibited hypoxic VSMC proliferation and migration but did not prevent cardiomyocyte death from anoxia-reoxygenation (A-R). In contrast, bilirubin limited A-R-induced cardiomyocyte death but did not inhibit VSMC proliferation and migration.

Conclusions/Significance

CO and bilirubin have distinct protective actions in the heart and pulmonary vasculature during chronic hypoxia. Moreover, reducing pulmonary vascular resistance may not prevent RV injury in hypoxia-induced PAH; supporting RV adaptation to hypoxia and preventing RV failure must be a therapeutic goal.  相似文献   

18.
We used genetically engineered D(2) receptor-deficient [D(2)-(-/-)] and wild-type [D(2)-(+/+)] mice to test the hypothesis that dopamine D(2) receptors modulate the ventilatory response to acute hypoxia [hypoxic ventilatory response (HVR)] and hypercapnia [hypercapnic ventilatory response (HCVR)] and time-dependent changes in ventilation during chronic hypoxia. HVR was independent of gender in D(2)-(+/+) mice and significantly greater in D(2)-(-/-) than in D(2)-(+/+) female mice. HCVR was significantly greater in female D(2)-(+/+) mice than in male D(2)-(+/+) and was greater in D(2)-(-/-) male mice than in D(2)-(+/+) male mice. Exposure to hypoxia for 2-8 days was studied in male mice only. D(2)-(+/+) mice showed time-dependent increases in "baseline" ventilation (inspired PO(2) = 214 Torr) and hypoxic stimulated ventilation (inspired PO(2) = 70 Torr) after 8 days of acclimatization to hypoxia, but D(2)-(-/-) mice did not. Hence, dopamine D(2) receptors modulate the acute HVR and HCVR in mice in a gender-specific manner and contribute to time-dependent changes in ventilation and the acute HVR during acclimatization to hypoxia.  相似文献   

19.
Nitric oxide (NO) is mainly generated by endothelial NO synthase (eNOS) or neuronal NOS (nNOS). Recent studies indicate that angiotensin II generates NO release, which modulates renal vascular resistance and sympathetic neurotransmission. Experiments in wild-type [eNOS(+/+) and nNOS(+/+)], eNOS-deficient [eNOS(-/-)], and nNOS-deficient [nNOS(-/-)] mice were performed to determine which NOS isoform is involved. Isolated mice kidneys were perfused with Krebs-Henseleit solution. Endogenous norepinephrine release was measured by HPLC. Angiotensin II dose dependently increased renal vascular resistance in all mice species. EC(50) and maximal pressor responses to angiotensin II were greater in eNOS(-/-) than in nNOS(-/-) and smaller in wild-type mice. The nonselective NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME; 0.3 mM) enhanced angiotensin II-induced pressor responses in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. In nNOS(+/+) mice, 7-nitroindazole monosodium salt (7-NINA; 0.3 mM), a selective nNOS inhibitor, enhanced angiotensin II-induced pressor responses slightly. Angiotensin II-enhanced renal nerve stimulation induced norepinephrine release in all species. L-NAME (0.3 mM) reduced angiotensin II-mediated facilitation of norepinephrine release in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. 7-NINA failed to modulate norepinephrine release in nNOS(+/+) mice. (4-Chlorophrnylthio)guanosine-3', 5'-cyclic monophosphate (0.1 nM) increased norepinephrine release. mRNA expression of eNOS, nNOS, and inducible NOS did not differ between mice strains. In conclusion, angiotensin II-mediated effects on renal vascular resistance and sympathetic neurotransmission are modulated by NO in mice. These effects are mediated by eNOS and nNOS, but NO derived from eNOS dominates. Only NO derived from eNOS seems to modulate angiotensin II-mediated renal norepinephrine release.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号