首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyanobacteria and some chemoautotrophic bacteria are able to grow in environments with limiting CO2 concentrations by employing a CO2-concentrating mechanism (CCM) that allows them to accumulate inorganic carbon in their cytoplasm to concentrations several orders of magnitude higher than that on the outside. The final step of this process takes place in polyhedral protein microcompartments known as carboxysomes, which contain the majority of the CO2-fixing enzyme, RubisCO. The efficiency of CO2 fixation by the sequestered RubisCO is enhanced by co-localization with a specialized carbonic anhydrase that catalyzes dehydration of the cytoplasmic bicarbonate and ensures saturation of RubisCO with its substrate, CO2. There are two genetically distinct carboxysome types that differ in their protein composition and in the carbonic anhydrase(s) they employ. Here we review the existing information concerning the genomics, structure and enzymology of these uniquely adapted carbonic anhydrases, which are of fundamental importance in the global carbon cycle.  相似文献   

2.
In the green alga Chlorella vulgaris UAM 101, a CO2-concentrating mechanism is induced when the cells are growing under low CO2 conditions. We have investigated the effect of glucose on the induction of this mechanism. Cells adapted to low CO2 in the presence of glucose showed a reduced ability to transport and fix external inorganic carbon. This reduction was correlated with a decrease in internal carbonic anhydrase activity. 3- O -methyl-glucose, a nonmetabolizable analog of glucose, caused a more dramatic repression of these phenomena. Immunoblot analyses of total cell protein of Chlorella vulgaris UAM 101 against large subunit of ribulose-1.5-bisphosphate carboxylase/oxygenase and ribulose 1.5-bisphosphate-carboxylase/oxygenase activase polyclonal antibodies showed that the expression of these two polypeptides was affected by neither CO2 level, nor glucose or 3- O -methyl-glucose. Ultrastructure studies showed that the low CO2-induced development of the pyrenoid was also affected by glucose. Immunocytochemical data demonstrated that ribulose-1.5-bisphosphate carboxylase/oxygenase was exclusively located in the pyrenoid matrix. This localization and the density of labeling of the pyrenoid region were affected by neither CO2 level nor the presence of glucose.  相似文献   

3.
In the green marine alga Dunaliella tertiolecta, a CO2-concentrating mechanism is induced when the cells are grown under low-CO2 conditions (0.03% CO2). To identify proteins induced under low-CO2 conditions the cells were labelled with 35SO4 2–, and seven polypeptides with molecular weights of 45, 47, 49, 55, 60, 68 and 100 kDa were detected. The induction of these polypeptides was observed when cells grown in high CO2 (5% CO2 in air) were switched to low CO2, but only while the cultures were growing in light. Immunoblot analysis of total cell protein against pea chloroplastic carbonic anhydrase polyclonal antibodies showed immunoreactive 30-kDa bands in both high- and low-CO2-grown cells and an aditional 49-kDa band exclusively in low-CO2-grown cells. The 30-kDa protein was shown to be located in the chloroplast. Western blot analysis of the plasmamembrane fraction against corn plasma-membrane AT-Pase polyclonal antibodies showed 60-kDa bands in both high- and low-CO2 cell types as well as an immunoreactive 100-kDa band occurring only in low-CO2-grown cells. These results suggest that there are two distinct forms of both carbonic anhydrase and plasma-membrane ATPase, and that one form of each of them can be regulated by the CO2 concentration.Abbreviations CA carbonic anhydrase - DIC dissolved inorganic carbon (CO2+ HCO3 ) - CCM CO2-concentrating mechanism - low CO2 air containing 0.03% CO2 - high CO2 air supplemented with 5% CO2 (v/v) We thank Prof. John Coleman for providing antibodies raised against pea chloroplast CA, Dr. James V. Moroney for providing antibodies raised against the 37-kDa periplasmic carbonic anhydrase of CO2 Chlamydomonas reinhardtii, and Prof. Leonard T. Robert for a gift of corn plasma-membrane 100-kDa ATPase antibodies. We thank Dr. Jeanine Olsen (University of Groningen, the Netherlands) for style comments. This work was supported by the Institute Tecnológico de Canarias (Spain).  相似文献   

4.
Processes involved in photosynthetic CO2 acquisition were characterised for the isolated lichen photobiont Trebouxia erici (Chlorophyta, Trebouxiophyceae) and compared with Coccomyxa (Chlorophyta), a lichen photobiont without a photosynthetic CO2-concentrating mechanism. Comparisons of ultrastructure and immuno-gold labelling of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) showed that the chloroplast was larger in T. erici and that the majority of Rubisco was located in its centrally located pyrenoid. Coccomyxa had no pyrenoid and Rubisco was evenly distributed in its chloroplast. Both species preferred CO2 rather than HCO3? as an external substrate for photosynthesis, but T. erici was able to use CO2 concentrations below 10–12 μM more efficiently than Coccomyxa. In T. erici, the lipid-insoluble carbonic anhydrase (CA; EC 4.2.1.1) inhibitor acetazolamide (AZA) inhibited photosynthesis at CO2 concentrations below 1 μM, while the lipid-soluble CA inhibitor ethoxyzolamide (EZA) inhibited CO2-dependent O2 evolution over the whole CO2 range. EZA inhibited photosynthesis also in Coccomyxa, but to a much lesser extent below 10–12 μM CO2. The internal CA activity of Trebouxia, per unit chlorophyll (Chl), was ca 10% of that of Coccomyxa. Internal CA activity was also detected in homogenates from T. erici and two Trebouxia-lichens (Lasallia hispanica and Cladina rangiferina). In all three, the predominating CA had α-type characteristics and was significantly inhibited by low concentrations of AZA, having an I50 below 10–20 nM. In Coccomyxa a β-type CA predominates, which is much less sensitive to AZA. Thus, the two photobionts differed in three major characteristics with respect to CO2 acquisition, the subcellular location of Rubisco, the relative requirement of CA and the biochemical characteristics of their predominating internal CA. These differences may be linked to the ability of Trebouxia to accumulate dissolved inorganic carbon internally, enhancing their CO2 use efficiency at and below air-equilibrium concentrations (10–12 μM CO2) in comparison with Coccomyxa.  相似文献   

5.
Mass-spectrometric measurements of 18O exchange from 13C18O2 were used to follow changes in the intracellular carbonic anhydrase (CA) activity of cells of Chlamydomonas reinhardtii Dang, wild type and the ca-1 mutant during adaptation to air. With intact cells as well as with crude homogenates total intracellular CA activity in wild-type cells increased six to tenfold within 4 h after transferring cells from 5% CO2 (high inorganic carbon, Ci) to ambient air (air adapted). After that time the activity slowly declined to a level similar to that observed with cells which had been continuously grown in air (low-Ci grown). In the ca-1 mutant, total CA was induced to a similar extent during 4 h of adaptation; however, absolute activities were two to three times lower in ca-1 than in the wild type regardless of the CO2 supply. When crude extracts from wild-type cells were separated into soluble and insoluble fractions, each fraction contained about half of the internal CA activity. Within 4 h of adaptation, both forms of CA activity were simultaneously enhanced by nine to tenfold, reaching levels similar to those found in low-Cigrown cells. In contrast, in the ca-1 mutant the soluble CA activity was only enhanced by about eightfold while the level of insoluble CA was very low even in low-Ci cells. After isolation of intact chloroplasts from wild-type cells and further subfractionation, around 70–80% of total chloroplastic CA activity was found to be in the insoluble fraction while 17–20% remained in the soluble fraction. Both chloroplastic CA activities were inducible within the first 4 h of adaptation to air, with each of them being eight to ten times higher than in high-Ci algae. After that time their activities were similar to the corresponding CA values in low-Ci-grown cells. In contrast, plastids from high-Ci cells of the ca-1 mutant showed 40% less insoluble-CA activity compared to the wild type and this insoluble-CA activity was not increased at all by transferring algae to air. In addition, no soluble-CA activity was detected in chloroplasts from high-Ci and air-adapted ca-1 cells. These results indicate the presence of three intracellular CA activities in high-Ci air-adapted and low-Ci cells of the wild type and that two of them are associated with the chloroplasts. All three activities are completely induced within the first 4 h of adaptation to air in wild-type cells. In contrast, it was not possible to induce any of the chloroplastic CA activities in the ca-1 mutant. The possibility that the soluble chloroplastic CA represents a pyrenoid-located CA is discussed.This work is dedicated to Professor A. Wild on the occasion of his 65th birthday  相似文献   

6.
A very small species of Botryocladia (Rhodophyta-Rhodymeniales), notable for the spinose projections on the surface cells of the vesicles, is here described as B. spinulifera sp. nov. from the Bahamas and the American Virgin Islands.  相似文献   

7.
This minireview focuses on the mechanism of inorganic carbon uptake in cyanobacteria and in particular the two CO2-uptake systems and two bicarbonate transporters recently identified in Synechocycstis PCC 6803, and their presence in other cyanobacterial strains. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Atherosclerosis is a dynamic multifaceted disease which affects the aorta and its major branches, characterized by the presence of lesions called atheromatous plaques. The plaque is a focal thickening of the intima caused by proliferation of smooth muscle cells, and the deposition of cholesterol, other lipids, hydroxyapatite and fibrous connective tissue. It is proposed that the determinant step of the process which leads to the disease atherosclerosis is the calcium precipitation which traps cholesterol in the plaque precursor matrix which contains lipoproteins, calcium carbonate, hydroxyapapatite, triglycerides, albumin, calmodulin and other proteins. The bear, a species which does not contract the disease is used as an example in support of the hypothesis. The bear's ability to regulate calcium levels and the regulation of acid base balance via regulation of carbon dioxide levels permits the control of the determinant step of plaque formation, that is calcification of the plaque.  相似文献   

9.
Cyanobacteria, algae, aquatic angiosperms and higher plants have all developed their own unique versions of photosynthetic CO2 concentrating mechanisms (CCMs) to aid Rubisco in efficient CO2 capture. An important aspect of all CCMs is the critical roles that the specialised location and function that various carbonic anhydrase enzymes play in the overall process, participating the interconversion of CO2 and HCO3 species both inside and outside the cell. This review examines what we currently understand about the nature of the carbonic anhydrase enzymes, their localisation and roles in the various CCMs that have been studied in detail. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
The effect of pCO2 on carbon acquisition and intracellular assimilation was investigated in the three bloom-forming diatom species, Eucampia zodiacus (Ehrenberg), Skeletonema costatum (Greville) Cleve, Thalassionema nitzschioides (Grunow) Mereschkowsky and the non-bloom-forming Thalassiosira pseudonana (Hust.) Hasle and Heimdal. In vivo activities of carbonic anhydrase (CA), photosynthetic O2 evolution, CO2 and HCO3 uptake rates were measured by membrane-inlet mass spectrometry (MIMS) in cells acclimated to pCO2 levels of 370 and 800 μatm. To investigate whether the cells operate a C4-like pathway, activities of ribulose-1,5-bisphosphate carboxylase (RubisCO) and phosphoenolpyruvate carboxylase (PEPC) were measured at the mentioned pCO2 levels and a lower pCO2 level of 50 μatm. In the bloom-forming species, extracellular CA activities strongly increased with decreasing CO2 supply while constantly low activities were obtained for T. pseudonana. Half-saturation concentrations (K1/2) for photosynthetic O2 evolution decreased with decreasing CO2 supply in the two bloom-forming species S. costatum and T. nitzschioides, but not in T. pseudonana and E. zodiacus. With the exception of S. costatum, maximum rates (Vmax) of photosynthesis remained constant in all investigated diatom species. Independent of the pCO2 level, PEPC activities were significantly lower than those for RubisCO, averaging generally less than 3%. All examined diatom species operate highly efficient CCMs under ambient and high pCO2, but differ strongly in the degree of regulation of individual components of the CCM such as Ci uptake kinetics and extracellular CA activities. The present data do not suggest C4 metabolism in the investigated species.  相似文献   

11.
Highly productive papyrus (Cyperus papyrus L.) wetlands dominate many permanently flooded areas of tropical East Africa; however, the cycling of carbon and water within these ecosystems is poorly understood. The objective of this study was to utilise Eddy Covariance (EC) techniques to measure the fluxes of carbon dioxide and water vapour between papyrus vegetation and the atmosphere in a wetland located near Jinja, Uganda on the Northern shore of Lake Victoria. Peak, midday rates of photosynthetic CO2 net assimilation were approximately 40 μmol CO2 m−2 s−1, while night time losses through respiration ranged between 10 and 20 μmol COm−2 s−1. Numerical integration of the flux data suggests that papyrus wetlands have the potential to sequester approximately 0.48 kg C m−2 y−1. The average daily water vapour flux from the papyrus vegetation through canopy evapotranspiration was approximately 4.75 kg H2O m−2 d−1, which is approximately 25% higher than water loss through evaporation from open water.  相似文献   

12.
In the green alga Chlorella vulgaris UAM 101, a CO2-concentrating mechanism (CCM) is induced when cells are transferred from high (5%) to low (0.03%) CO2 concentrations. The induction of the CCM is correlated with de-novo synthesis of several polypeptides that remain to be identified. The internal carbonic anhydrase (CA; EC 4.2.1.1) activity increased 6- to 7-fold within 6 h of acclimation to air. When crude homogenates were further separated into soluble and insoluble fractions, nearly all of the CA activity was associated with the membrane fraction. Immunoblot analysis of cell homogenates probed with antibodies raised against the 37-kDa subunit of periplasmic CA of Chlamydomonas reinhardtii showed a cross-reaction with a single 38-kDa polypeptide in both high- and low-CO2-grown cells. The up-regulation of the expression of the 38-kDa polypeptide was closely correlated with the increase in internal CA activity. Furthermore, its subcellular location was also correlated with the distribution of the activity. Immunoblot analysis of pyrenoid fractions showed that the 38-kDa polypeptide was concentrated in the pyrenoids from low-CO2-grown cells but was not present in pyrenoids from high-CO2-grown cells. In addition, immunogold labeling experiments showed that the protein was mainly associated with membranes crossing the pyrenoid, while it was absent from the pyrenoid matrix. These studies have identified a putative intracellular CA polypeptide associated with the pyrenoid in Chlorella vulgaris, suggesting that this structure may play an important role in the operation of the CCM and the acclimation to low CO2 conditions. Received: 16 July 1997 / Accepted: 26 April 1998  相似文献   

13.
C(4) photosynthesis has evolved more than 60 times as a carbon-concentrating mechanism to augment the ancestral C(3) photosynthetic pathway. The rate and the efficiency of photosynthesis are greater in the C(4) than C(3) type under atmospheric CO(2) depletion, high light and temperature, suggesting these factors as important selective agents. This hypothesis is consistent with comparative analyses of grasses, which indicate repeated evolutionary transitions from shaded forest to open habitats. However, such environmental transitions also impact strongly on plant-water relations. We hypothesize that excessive demand for water transport associated with low CO(2), high light and temperature would have selected for C(4) photosynthesis not only to increase the efficiency and rate of photosynthesis, but also as a water-conserving mechanism. Our proposal is supported by evidence from the literature and physiological models. The C(4) pathway allows high rates of photosynthesis at low stomatal conductance, even given low atmospheric CO(2). The resultant decrease in transpiration protects the hydraulic system, allowing stomata to remain open and photosynthesis to be sustained for longer under drying atmospheric and soil conditions. The evolution of C(4) photosynthesis therefore simultaneously improved plant carbon and water relations, conferring strong benefits as atmospheric CO(2) declined and ecological demand for water rose.  相似文献   

14.
Ogle K 《Oecologia》2003,136(4):532-542
The distance between veins has the potential to affect photosynthesis in C4 grasses because photon capture and photosynthetic carbon reduction are primarily restricted to vascular bundle sheath cells (BSC). For example, BSC density should increase as interveinal distance (IVD) decreases, and thus IVD may influence photon capture and photosynthesis in C4 grasses. The objective of this study is to evaluate the potential importance of IVD to the function of C4 grasses, and a literature survey is conducted to test the hypothesis that quantum yield of photosynthesis () increases with decreasing IVD. First, a meta-analysis of and IVD values obtained for 12 C4 grass species supports this hypothesis as and IVD are significantly negatively correlated (r=–0.61). Second, a regression of carbon isotope discrimination () versus IVD was conducted and the regression equation was used in a simple biochemical model that relates to and leakage of CO2 from the BSC. The modeling analysis also supports the hypothesis that decreases with increasing IVD in C4 grasses. C4 grasses are virtually absent from shaded habitats, and the biochemical model is employed to examine the implications of IVD for shade-tolerance in C4 grasses. The model predicts that only those species with uncommonly small IVD values are able to tolerate prolonged shade.  相似文献   

15.
The C4 pathway: an efficient CO2 pump   总被引:2,自引:0,他引:2  
The C4 pathway is a complex combination of both biochemical and morphological specialisation, which provides an elevation of the CO2 concentration at the site of Rubisco. We review the key parameters necessary to make the C4 pathway function efficiently, focussing on the diffusion of CO2 out of the bundle sheath compartment. Measurements of cell wall thickness show that the thickness of bundle sheath cell walls in C4 species is similar to cell wall thickness of C3 mesophyll cells. Furthermore, NAD-ME type C4 species, which do not have suberin in their bundle sheath cell walls, do not appear to compensate for this with thicker bundle sheath cell walls. Uncertainties in the CO2 diffusion properties of membranes, such as the plasmalemma, choroplast and mitochondrial membranes make it difficult to estimate bundle sheath diffusion resistance from anatomical measurements, but the cytosol itself may account for more than half of the final calculated resistance value for CO2 leakage. We conclude that the location of the site of decarboxylation, its distance from the mesophyll interface and the physical arrangement of chloroplasts and mitochondria in the bundle sheath cell are as important to the efficiency of the process as the properties of the bundle sheath cell wall. Using a mathemathical model of C4 photosynthesis, we also examine the relationship between bundle sheath resistance to CO2 diffusion and the biochemical capacity of the C4 photosynthetic pathway and conclude that bundle sheath resistance to CO2 diffusion must vary with biochemical capacity if the efficiency of the C4 pump is to be maintained. Finally, we construct a mathematical model of single cell C4 photosynthesis in a C3 mesophyll cell and examine the theoretical efficiency of such a C4 photosynthetic CO2 pump. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Physiological and morphological characteristics related to the CO2-concentrating mechanism (CCM) were examined in several species of the free-living, unicellular volvocalean genus Chloromonas (Chlorophyta), which differs morphologically from the genus Chlamydomonas only by lacking pyrenoids. The absence of pyrenoids in the chloroplasts of Chloromonas (Cr.) rosae UTEX 1337, Cr. serbinowii UTEX 492, Cr.␣clatharata UTEX 1970, Cr. rosae SAG 26.90, and Cr. palmelloides SAG 32.86 was confirmed by light and electron microscopy. In addition, immunogold electron microscopy demonstrated that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) molecules were distributed almost evenly throughout the chloroplasts in all five Chloromonas strains. However, Chloromonas exhibited two types of physiological characteristics related to the CCM depending on the species or strains examined. Chloromonas rosae UTEX 1337 and Cr. serbinowii had high photosynthetic affinities for CO2 in cells grown in culture medium bubbled with air (low-CO2 cells), compared with those grown in medium bubbled with 5% CO2 (high-CO2 cells), indicating the presence of the low-CO2-inducible CCM. In addition, these two Chloromonas strains exhibited low-CO2-inducible carbonic anhydrase (CA; EC 4.2.1.1) activity and seemed to have small intracellular inorganic carbon pools. Therefore, it appears that Cr. rosae UTEX 1337 and Cr. serbinowii possess the CCM as in pyrenoid-containing microalgae such as Chlamydomonas reinhardtii. By contrast, Cr. clatharata, Cr. rosae SAG 26.90 and Cr. palmelloides showed low photosynthetic affinities for CO2 when grown under both CO2 conditions. Moreover, these three strains exhibited an apparent absence of intracellular inorganic carbon pools and lacked low-CO2-inducible CA activity. Thus, Cr. clatharata, Cr. rosae SAG 26.90 and Cr. palmelloides, like other pyrenoid-less algae (lichen photobionts) reported previously, seem to lack the CCM. The present study is the first demonstration of the CCM in pyrenoid-less algae, indicating that pyrenoids or accumulation of Rubisco in the chloroplasts are not always essential for the CCM in algae. Focusing on this type of CCM in pyrenoid-less algae, the physiological and evolutionary significance of pyrenoid absence is discussed. Received: 1 May 1997 / Accepted: 11 September 1997  相似文献   

17.
The tryptophan residue Trp5, highly conserved in the α class of carbonic anhydrases including human carbonic anhydrase II (HCA II), is positioned at the entrance of the active site cavity and forms a π-stacking interaction with the imidazole ring of the proton shuttle His64 in its outward orientation. We have observed that replacement of Trp5 in HCA II caused significant structural changes, as determined by X-ray diffraction, in the conformation of 11 residues at the N-terminus and in the orientation of the proton shuttle residue His64. Most significantly, two variants W5H and W5E HCA II had His64 predominantly outward in orientation, while W5F and wild type showed the superposition of both outward and inward orientations in crystal structures. Although Trp5 influences the orientation of the proton shuttle His64, this orientation had no significant effect on the rate constant for proton transfer near 1 μs−1, determined by exchange of 18O between CO2 and water measured by mass spectrometry. The apparent values of the pKa of the zinc-bound water and the proton shuttle residue suggest that different active-site conformations influence the two stages of catalysis, the proton transfer stage and the interconversion of CO2 and bicarbonate.  相似文献   

18.
Optimal acclimation of the C3 photosynthetic system under enhanced CO2   总被引:1,自引:0,他引:1  
A range of studies of C3 plants have shown that there is a change in both the carbon flux and the pattern of nitrogen allocation when plants are grown under enhanced CO2. This paper examines evidence that allocation of nitrogen both to and within the photosynthetic system is optimised with respect to the carbon flux. A model is developed which predicts the optimal relative allocation of nitrogen to key enzymes of the photosynthetic system as a function of CO2 concentration. It is shown that evidence from flux control analysis is broadly consistent with this model, although at high nitrogen and under certain conditions at low nitrogen experimental data are not consistent with the model. Acclimation to enhanced CO2 is also assessed in terms of resource allocation between photosynthate sources and sinks. A means of assessing the optimisation of this source-sink allocation is proposed, and several studies are examined within this framework. It is concluded that C3 plants probably possess the genetic feedback mechanisms required to efficiently smooth out any imbalance within the photosynthetic system caused by a rise in atmospheric CO2.Abbreviations A net rate of CO2 assimilation - c i intercellular CO2 concentration - CR A flux control coefficient for Rubisco with respect to flux A - FBPase fructose 1,6-bisphosphatase - kapp apparent catalytic rate constant - PCO photorespiratory carbon oxidation - PCR photosynthetic carbon reduction - PPFD photosynthetically active photon flux density - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - Ru5P ribulose 5-phosphate - SBPase sedoheptulose 1,7-bisphosphatase  相似文献   

19.
Radioisotope techniques were used to compare photosynthetic CO2 fixation, activities of carboxylating enzymes, and the composition of photosynthates in 42 species of aquatic plants (emergent, floating, and submersed hydrophytes) collected from rivers Sysert' and Iset' in Sverdlovsk oblast (Russia). The submersed leaves, in comparison with the emergent and floating leaves, featured lower rates of potential photosynthesis (by 2.2 mg CO2/(dm2 h) on average), low content of the fraction I protein, and low activity of Rubisco and phosphoenolpyruvate carboxylase (PEPC). The averaged activities of Rubisco and PEPC were diminished in submersed leaves by 10 and 1 mg/(dm2 h), respectively. Different hydrophyte groups showed similar composition of assimilates accumulated after 5-min photosynthesis and did not differ in this respect from terrestrial plants. However, the incorporation of 14C into sucrose and starch in submersed leaves (30 and 9% of total labeling, respectively) was lower than in emergent and floating leaves (45 and 15%, respectively). At the same time, the incorporation of 14C into C4 acids (malate and aspartate) was 1.5 times higher in submersed leaves than in other leaf types. Analysis of leaf differentiation, the Rubisco/PEPC activity ratio, the PEPC activity, and the composition of primary photosynthates in the pulse–chase experiments revealed no evidence of the C4 effect in the submersed hydrophytes examined. The adaptation of hydatophytes to specific conditions of an aquatic environment was structurally manifested in the reduction (by a factor of 3–5) in the number of chloroplasts per 1 cm2 leaf area. This small number of chloroplasts was responsible for low photosynthetic rates in submersed leaves, although metabolic activities of individual chloroplasts were similar for all three hydrophyte groups.  相似文献   

20.
Summary Six independently isolated mutants of Chlamydomonas reinhardtii that require elevated CO2 for photoautotrophic growth were tested by complementation analysis. These mutants are likely to be defective in some aspect of the algal concentrating mechanism for inorganic carbon as they exhibit CO2 fixation and inorganic carbon accumulation properties different from the wild-type. Four of the six mutants defined a single complementation group and appear to be defective in an intracellular carbonic anhydrase. The other two mutations represent two additional complementation groups.Abbreviations HS high salt medium which has 13 mM phosphate at pH 6.8 - HSA high salt plus 36 mM acetate medium - YA high salt medium with 4 g yeast extract per L and 36mM acetate - Arg arginine - cia- CO2 accumulation mutants that cannot grow on low CO2 - Ci inorganic carbon (CO2+HCO - 3 ) - CA carbonic anhydrase - mt mating type Supported in part by the McKnight Foundation and by NSF grant PCM 8005917 and published as journal article 11924 from the Michigan State Agriculatural Experiment Station  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号