首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The spatial heterogeneity of photosynthesis and calcification of single polyps of the coral Galaxea fascicularis was investigated. Photosynthesis was investigated with oxygen microsensors. The highest rates of gross photosynthesis (Pg) were found on the tissue covering the septa, the tentacles, and the tissues surrounding the mouth opening of the polyp. Lower rates were found on the tissues of the wall and the coenosarc. Calcification was investigated by radioactive tracers. The incorporation pattern of 45Ca and 14C in the corallites was imaged with use of a Micro-Imager. The -images obtained showed that the incorporation of the radioactive tracers coincided with the Pg distribution pattern with the highest incorporation rates found in the corallite septa. Thus, the high growth rate of the septa is supported by the high rates of Pg by the symbiont in the adjacent tissues. The total incorporation rates were higher in light than in dark, however, the distribution pattern of the radioisotope incorporation was not affected by illumination. This further emphasizes the close relation between calcification and photosynthesis.  相似文献   

2.
Heterotrophy is known to stimulate calcification of scleractinian corals, possibly through enhanced organic matrix synthesis and photosynthesis, and increased supply of metabolic DIC. In contrast to the positive long-term effects of heterotrophy, inhibition of calcification has been observed during feeding, which may be explained by a temporal oxygen limitation in coral tissue. To test this hypothesis, we measured the short-term effects of zooplankton feeding on light and dark calcification rates of the scleractinian coral Galaxea fascicularis (n = 4) at oxygen saturation levels ranging from 13 to 280%. Significant main and interactive effects of oxygen, heterotrophy and light on calcification rates were found (three-way factorial repeated measures ANOVA, p<0.05). Light and dark calcification rates of unfed corals were severely affected by hypoxia and hyperoxia, with optimal rates at 110% saturation. Light calcification rates of fed corals exhibited a similar trend, with highest rates at 150% saturation. In contrast, dark calcification rates of fed corals were close to zero under all oxygen saturations. We conclude that oxygen exerts a strong control over light and dark calcification rates of corals, and propose that in situ calcification rates are highly dynamic. Nevertheless, the inhibitory effect of heterotrophy on dark calcification appears to be oxygen-independent. We hypothesize that dark calcification is impaired during zooplankton feeding by a temporal decrease of the pH and aragonite saturation state of the calcifying medium, caused by increased respiration rates. This may invoke a transient reallocation of metabolic energy to soft tissue growth and organic matrix synthesis. These insights enhance our understanding of how oxygen and heterotrophy affect coral calcification, both in situ as well as in aquaculture.  相似文献   

3.
Calcification rates, normalized to skeletal mass, in the zooxanthellate Galaxea fascicularis and the azooxanthellate Dendrophyllia sp. were similar over the whole temperature range of 18–29 °C. Calcification was measured by Ca45 incorporation in corals that were naturally acclimated to the prevailing seawater temperature. In both species maximum calcification rate occurred at about 25 °C and calcification rates can be fitted to a Gaussian distribution with respect to temperature. The similarity in temperature dependence of the zooxanthellate and azooxanthellate coral suggests that temperature affects some fundamental process of calcification that is independent of light effects. It is shown that two different populations of Galaxea fascicularis have distinctly different ratios of tissue protein to skeletal mass per polyp. This indicates that tissue protein may not be suitable for normalizing calcification rates in individual coral polyps, both within and between species. Intra- and interspecific comparisons of calcification rates may be better made on the basis of skeletal mass when polyps are similar in size and shape.Communicated by Topic Editor C. Barnes  相似文献   

4.
Temporal and spatial variation in the growth parameters skeletal density, linear extension and calcification rate in massive Porites from two nearshore regions of the northern Great Barrier Reef (GBR) were examined over a 16‐year study period. Calcification rates in massive Porites have declined by approximately 21% in two regions on the GBR ~450 km apart. This is a function primarily of a decrease in linear extension (~16%) with a smaller decline in skeletal density (~6%) and contrasts with previous studies on the environmental controls on growth of massive Porites on the GBR. Changes in the growth parameters were linear over time. Averaged across colonies, skeletal density declined over time from 1.32 g cm?3 (SE = 0.017) in 1988 to 1.25 g cm?3 (0.013) in 2003, equivalent to 0.36% yr?1 (0.13). Annual extension declined from 1.52 cm yr?1 (0.035) to 1.28 cm yr?1 (0.026), equivalent to 1.02% yr?1 (0.39). Calcification rates (the product of skeletal density and annual extension) declined from 1.96 g cm?2 yr?1 (0.049) to 1.59 g cm?2 yr?1 (0.041), equivalent to 1.29% yr?1 (0.30). Mean annual seawater temperatures had no effect on skeletal density, but a modal effect on annual extension and calcification with maxima at ~26.7 °C. There were minor differences in the growth parameters between regions. A decline in coral calcification of this magnitude with increasing seawater temperatures is unprecedented in recent centuries based on analysis of growth records from long cores of massive Porites. We discuss the decline in calcification within the context of known environmental controls on coral growth. Although our findings are consistent with studies of the synergistic effect of elevated seawater temperatures and pCO2 on coral calcification, we conclude that further data on seawater chemistry of the GBR are required to better understand the links between environmental change and effects on coral growth.  相似文献   

5.
The decrease in the saturation state of seawater, Ω, following seawater acidification, is believed to be the main factor leading to a decrease in the calcification of marine organisms. To provide a physiological explanation for this phenomenon, the effect of seawater acidification was studied on the calcification and photosynthesis of the scleractinian tropical coral Stylophora pistillata. Coral nubbins were incubated for 8 days at three different pH (7.6, 8.0, and 8.2). To differentiate between the effects of the various components of the carbonate chemistry (pH, CO32−, HCO3, CO2, Ω), tanks were also maintained under similar pH, but with 2-mM HCO3added to the seawater. The addition of 2-mM bicarbonate significantly increased the photosynthesis in S. pistillata, suggesting carbon-limited conditions. Conversely, photosynthesis was insensitive to changes in pH and pCO2. Seawater acidification decreased coral calcification by ca. 0.1-mg CaCOg−1 d−1 for a decrease of 0.1 pH units. This correlation suggested that seawater acidification affected coral calcification by decreasing the availability of the CO32− substrate for calcification. However, the decrease in coral calcification could also be attributed either to a decrease in extra- or intracellular pH or to a change in the buffering capacity of the medium, impairing supply of CO32− from HCO3.  相似文献   

6.
Sources of inorganic carbon (Ci) for photosynthesis and calcification and the mechanisms involved in their uptake in scleractinian corals were investigated in microcolonies of Galaxea fascicularis. Direct measurements of Ca2+, pH and O2 on the surface and inside the polyp's coelenteron were made with microsensors. Gross photosynthesis (Pg) and net photosynthesis (Pn) were measured on the surface. Light respiration (LR) was calculated from Pg and Pn. The effect of light/dark and dark/light switches on Ca2+ and pH dynamics on the surface and inside the coelenteron were followed. To evaluate the different sources of Ci for photosynthesis and calcification, Ci-free seawater and 6-Ethoxyzolamide and Acetazolamide, inhibitors for carbonic anhydrase (CA) were used.In normal seawater, Pg was about seven times higher than Pn, the LR was ca. 80-90% of the Pg. Thus, most of the O2 produced in Pg are immediately consumed in respiration, indicating the presence of a highly active internal C-cycle. As the internal C-cycle is highly active, a large part of the Ci for calcification will have passed through the metabolism of the symbiont. The high LR provides ATP for energy requiring processes in light.Ci for photosynthesis and calcification can come from seawater in the form of free Ci, respiration of photosynthates (internal C-cycle) or respiration of the ingested plankton. These sources form a common carbon pool (C-pool) that is used for the different processes.In Ci-free seawater, Pg decreased by about 12.5%, indicating that most of the photosynthetically fixed Ci can temporarily be supplied from internal sources. The initial decalcification, observed directly upon the switch to Ci-free seawater, showed that the Ca-pools in the coral are exchangeable. Part of the Pg in Ci-free seawater may depend on this decalcification for its Ci supply.Three localities of CA were defined. One on the surface facing seawater and one on endodermal cells facing the coelenteron, while the third is intracellular. The inhibition of CA decreased Pg by about 30%, while it increased the concentration of Ca2+ as a result of a decrease in its precipitation. The reduction of photosynthesis and calcification by CA inhibition demonstrated that both processes need the enzyme for the supply of Ci. The pH on the surface and inside the coelenteron decreased upon 6-Ethoxyzolamide addition indicating a role of CA in pH control.  相似文献   

7.
A numerical simulation model of coral polyp photosynthesis, respiration and calcification was developed. The model is constructed with three components (ambient seawater, coelenteron and calcifying fluid), and incorporates photosynthesis, respiration and calcification processes with transcellular ion transport by Ca-ATPase activity and passive transmembrane CO2 transport and diffusion. The model calculates dissolved inorganic carbon and total alkalinity in the ambient seawater, coelenteron and calcifying fluid, dissolved oxygen (DO) in the seawater and coelenteron and stored organic carbon (CH2O). To reconstruct the drastic variation between light and dark respiration, respiration rate dependency on DO in the coelenteron is incorporated. The calcification rate depends on the aragonite saturation state in the calcifying fluid (Ωa cal). Our simulation result was a good approximation of “light-enhanced calcification.” In our model, the mechanism is expressed as follows: (1) DO in the coelenteron is increased by photosynthesis, (2) respiration is stimulated by increased DO in the light (or respiration is limited by DO depletion in the dark), then (3) calcification increases due to Ca-ATPase, which is driven by the energy generated by respiration. The model simulation results were effective in reproducing the basic responses of the internal CO2 system and DO. The daily calcification rate, the gross photosynthetic rate and the respiration rate under a high-flow condition increased compared to those under the zero-flow condition, but the net photosynthetic rate decreased. The calculated calcification rate responses to variations in the ambient aragonite saturation state (Ωa amb) were nonlinear, and the responses agreed with experimental results of previous studies. Our model predicted that in response to ocean acidification (1) coral calcification will decrease, but will remain at a higher value until Ωa amb decreases to 1, by maintaining a higher Ωa cal due to the transcellular ion transport mechanism and (2) the net photosynthetic rate will increase.  相似文献   

8.
Physiological data and models of coral calcification indicate that corals utilize a combination of seawater bicarbonate and (mainly) respiratory CO2 for calcification, not seawater carbonate. However, a number of investigators are attributing observed negative effects of experimental seawater acidification by CO2 or hydrochloric acid additions to a reduction in seawater carbonate ion concentration and thus aragonite saturation state. Thus, there is a discrepancy between the physiological and geochemical views of coral biomineralization. Furthermore, not all calcifying organisms respond negatively to decreased pH or saturation state. Together, these discrepancies suggest that other physiological mechanisms, such as a direct effect of reduced pH on calcium or bicarbonate ion transport and/or variable ability to regulate internal pH, are responsible for the variability in reported experimental effects of acidification on calcification. To distinguish the effects of pH, carbonate concentration and bicarbonate concentration on coral calcification, incubations were performed with the coral Madracis auretenra (= Madracis mirabilis sensu Wells, 1973) in modified seawater chemistries. Carbonate parameters were manipulated to isolate the effects of each parameter more effectively than in previous studies, with a total of six different chemistries. Among treatment differences were highly significant. The corals responded strongly to variation in bicarbonate concentration, but not consistently to carbonate concentration, aragonite saturation state or pH. Corals calcified at normal or elevated rates under low pH (7.6–7.8) when the seawater bicarbonate concentrations were above 1800 μm . Conversely, corals incubated at normal pH had low calcification rates if the bicarbonate concentration was lowered. These results demonstrate that coral responses to ocean acidification are more diverse than currently thought, and question the reliability of using carbonate concentration or aragonite saturation state as the sole predictor of the effects of ocean acidification on coral calcification.  相似文献   

9.
A wide range of bicarbonate concentrations was used to monitor the kinetics of bicarbonate (HCO3?) use in both photosynthesis and calcification in two reef‐building corals, Porites porites and Acropora sp. Experiments carried out close to the P. porites collection site in Barbados showed that additions of NaHCO3 to synthetic seawater proportionally increased the calcification rate of this coral until the concentration exceeded three times that of seawater (6 mM). Photosynthetic rates were also stimulated by HCO3? addition, but these became saturated at a lower concentration (4 mM). Similar experiments on aquarium‐acclimated colonies of Indo‐Pacific Acropora sp. showed that calcification and photosynthesis in this coral were enhanced to an even greater extent than P. porites, with calcification continuing to increase above 8 mM HCO3?, and photosynthesis saturating at 6 mM. Calcification rates of Acropora sp. were also monitored in the dark, and, although these were lower than in the light for a given HCO3? concentration, they still increased dramatically with HCO3? addition, showing that calcification in this coral is light stimulated but not light dependent.  相似文献   

10.
Zinc (Zn) is an essential element for corals. We investigated the effects of ocean acidification on zinc incorporation, photosynthesis, and gross calcification in the scleractinian coral Stylophora pistillata. Colonies were maintained at normal pHT (8.1) and at two low-pH conditions (7.8 and 7.5) for 5 weeks. Corals were exposed to 65Zn dissolved in seawater to assess uptake rates. After 5 weeks, corals raised at pHT (8.1) exhibited higher 65Zn activity in the coral tissue and skeleton, compared with corals raised at a lower pH. Photosynthesis, photosynthetic efficiency, and gross calcification, measured by 45Ca incorporation, were however unchanged even at the lowest pH.  相似文献   

11.
 The uptake of 45Ca and/or 14C by the skeleton of coral colonies has been commonly used to investigate the processes of calcification. This study reports the differential uptake of these tracers within different regions of the skeleton and tissues of individual corallites and polyps of the hermatypic coral Galaxea fascicularis. Incubation in 45Ca in the light resulted in 80 percent of the 45Ca taken up being deposited in the skeleton. Autoradiography of transverse and longitudinal slices of freeze-substituted polyps and corallites showed that in the light 45Ca was incorporated into the exsert septa, the outside of the thecal walls of the corallite and the inner edges of the septa. Incorporation did not occur in the costae. The radioactivity in the skeleton was considerably greater than in the tissues. In the dark, or in the presence of the photosynthetic inhibitor Diuron, 45Ca was taken up by the exsert septa and was patchily distributed in the corallite walls which suggests that it was not a result of isotopic exchange. The differential incorporation of 45Ca onto the exsert septa was confirmed by scintillation counting. Negligible radioactivity remained in the extrathecal coelenteron after a brief 5 min rinse in non-radioactive seawater. Only 0.1% of 14C taken up in the light was incorporated into the skeleton and this was confirmed by autoradiography. In the presence of Diuron or in the dark, very little 14C was incorporated into tissues or skeleton and in autoradiographs was either not evident in the skeleton or the distribution was similar to that seen in autoradiographs of 45Ca uptake. These results show that the deposition of 45Ca, and therefore calcium carbonate, occurs at specific loci on the skeleton of a corallite. In the dark, deposition occurs specifically at the growing points of the corallite. Differential deposition of calcium carbonate within individual corallites has not been previously reported. Accepted: 27 May 1997  相似文献   

12.
Previous studies have demonstrated that coral and algal calcification is tightly regulated by the calcium carbonate saturation state of seawater. This parameter is likely to decrease in response to the increase of dissolved CO2 resulting from the global increase of the partial pressure of atmospheric CO2. We have investigated the response of a coral reef community dominated by scleractinian corals, but also including other calcifying organisms such as calcareous algae, crustaceans, gastropods and echinoderms, and kept in an open‐top mesocosm. Seawater pCO2 was modified by manipulating the pCO2 of air used to bubble the mesocosm. The aragonite saturation state (Ωarag) of the seawater in the mesocosm varied between 1.3 and 5.4. Community calcification decreased as a function of increasing pCO2 and decreasing Ωarag. This result is in agreement with previous data collected on scleractinian corals, coralline algae and in a reef mesocosm, even though some of these studies did not manipulate CO2 directly. Our data suggest that the rate of calcification during the last glacial maximum might have been 114% of the preindustrial rate. Moreover, using the average emission scenario (IS92a) of the Intergovernmental Panel on Climate Change, we predict that the calcification rate of scleractinian‐dominated communities may decrease by 21% between the pre‐industrial period (year 1880) and the time at which pCO2 will double (year 2065).  相似文献   

13.
14.
McNicholl  C.  Koch  M. S.  Swarzenski  P. W.  Oberhaensli  F. R.  Taylor  A.  Batista  M. Gómez  Metian  M. 《Coral reefs (Online)》2020,39(6):1635-1647

Net calcification rates for coral reef and other calcifiers have been shown to decline as ocean acidification (OA) occurs. However, the role of calcium carbonate dissolution in lowering net calcification rates is unclear. The objective of this study was to distinguish OA effects on calcification and dissolution rates in dominant calcifying macroalgae of the Florida Reef Tract, including two rhodophytes (Neogoniolithon strictum, Jania adhaerens) and two chlorophytes (Halimeda scabra, Udotea luna). Two experiments were conducted: (1) to assess the difference in gross (45Ca uptake) versus net (total alkalinity anomaly) calcification rates in the light/dark and (2) to determine dark dissolution (45CaCO3), using pH levels predicted for the year 2100 and ambient pH. At low pH in the light, all species maintained gross calcification rates and most sustained net calcification rates relative to controls. Net calcification rates in the dark were ~84% lower than in the light. In contrast to the light, all species had lower net calcification rates in the dark at low pH with chlorophytes exhibiting net dissolution. These data are supported by the relationship (R2 = 0.82) between increasing total alkalinity and loss of 45Ca from pre-labelled 45CaCO3 thalli at low pH in the dark. Dark dissolution of 45CaCO3-labelled thalli was ~18% higher in chlorophytes than rhodophytes at ambient pH, and ~ twofold higher at low pH. Only Udotea, which exhibited dissolution in the light, also had lower daily calcification rates integrated over 24 h. Thus, if tropical macroalgae can maintain high calcification rates in the light, lower net calcification rates in the dark from dissolution may not compromise daily calcification rates. However, if organismal dissolution in the dark is additive to sedimentary carbonate losses, reef dissolution may be amplified under OA and contribute to erosion of the Florida Reef Tract and other reefs that exhibit net dissolution.

  相似文献   

15.
Experimental studies have shown that coral calcification rates are dependent on light, nutrients, food availability, temperature, and seawater aragonite saturation (Ω arag), but the relative importance of each parameter in natural settings remains uncertain. In this study, we applied Calcein fluorescent dyes as time indicators within the skeleton of coral colonies (n = 3) of Porites astreoides and Diploria strigosa at three study sites distributed across the northern Bermuda coral reef platform. We evaluated the correlation between seasonal average growth rates based on coral density and extension rates with average temperature, light, and seawater Ω arag in an effort to decipher the relative importance of each parameter. The results show significant seasonal differences among coral calcification rates ranging from summer maximums of 243 ± 58 and 274 ± 57 mmol CaCO3 m?2 d?1 to winter minimums of 135 ± 39 and 101 ± 34 mmol CaCO3 m?2 d?1 for P. astreoides and D. strigosa, respectively. We also placed small coral colonies (n = 10) in transparent chambers and measured the instantaneous rate of calcification under light and dark treatments at the same study sites. The results showed that the skeletal growth of D. strigosa and P. astreoides, whether hourly or seasonal, was highly sensitive to Ω arag. We believe this high sensitivity, however, is misleading, due to covariance between light and Ω arag, with the former being the strongest driver of calcification variability. For the seasonal data, we assessed the impact that the observed seasonal differences in temperature (4.0 °C), light (5.1 mol photons m?2 d?1), and Ω arag (0.16 units) would have on coral growth rates based on established relationships derived from laboratory studies and found that they could account for approximately 44, 52, and 5 %, respectively, of the observed seasonal change of 81 ± 14 mmol CaCO3 m?2 d?1. Using short-term light and dark incubations, we show how the covariance of light and Ω arag can lead to the false conclusion that calcification is more sensitive to Ω arag than it really is.  相似文献   

16.

Coral polyps have a fluid-filled internal compartment, the gastrovascular cavity (GVC). Respiration and photosynthesis cause large daily excursions in GVC oxygen concentration (O2) and pH, but few studies have examined how this correlates with calcification rates. We hypothesized that GVC chemistry can mediate and ameliorate the effects of decreasing seawater pH (pHSW) on coral calcification. Microelectrodes were used to monitor O2 and pH within the GVC of Montastraea cavernosa and Duncanopsammia axifuga (pH only) in both the light and the dark, and three pHSW levels (8.2, 7.9, and 7.6). At pHSW 8.2, GVC O2 ranged from ca. 0 to over 400% saturation in the dark and light, respectively, with transitions from low to high (and vice versa) within minutes of turning the light on or off. For all three pHSW treatments and both species, pHGVC was always significantly above and below pHSW in the light and dark, respectively. For M. cavernosa in the light, pHGVC reached levels of pH 8.4–8.7 with no difference among pHSW treatments tested; in the dark, pHGVC dropped below pHSW and even below pH 7.0 in some trials at pHSW 7.6. For D. axifuga in both the light and the dark, pHGVC decreased linearly as pHSW decreased. Calcification rates were measured in the light concurrent with measurements of GVC O2 and pHGVC. For both species, calcification rates were similar at pHSW 8.2 and 7.9 but were significantly lower at pHSW 7.6. Thus, for both species, calcification was protected from seawater acidification by intrinsic coral physiology at pHSW 7.9 but not 7.6. Calcification was not correlated with pHGVC for M. cavernosa but was for D. axifuga. These results highlight the diverse responses of corals to changes in pHSW, their varying abilities to control pHGVC, and consequently their susceptibility to ocean acidification.

  相似文献   

17.
The presence of zooxanthellae in tissues of the cold-temperate water coral Plesiastrea urvillei (Milne Edwards and Haime) has been confirmed histologically. Numbers of zooxanthellae per unit surface area and increases in submerged wet weight as a measure of calcification have been followed for 150 days under four different conditions: light-fed, light-starved, dark-fed, and dark-starved. No significant difference was found in density of zooxanthellae or calcification rates between light-fed and light-starved, and between dark-fed and dark-starved. After Day 48 the calcification rate in the dark dropped, however, by a factor of ≈4 to a constant lower rate and was correlated with a decrease in density of zooxanthellae. Zooxanthellae thus enhance calcification about 4 times during photosynthesis. Measurements of oxygen consumption and production indicated that even at the low light intensities experienced on a cloudy winter day by the coral in its natural environment more energy was fixed during photosynthesis than was required by the host. The retention of zooxanthellae and continued calcification in the dark for upwards of 48 days is considered to be an adaptation to the lower light levels experienced by P. urvillei compared with tropical corals.  相似文献   

18.
Anthropogenic elevation of atmospheric pCO2 is predicted to cause the pH of surface seawater to decline by 0.3–0.4 units by 2100 AD, causing a 50% reduction in seawater [CO3 2−] and undersaturation with respect to aragonite in high-latitude surface waters. We investigated the impact of CO2-induced ocean acidification on the temperate scleractinian coral Oculina arbuscula by rearing colonies for 60 days in experimental seawaters bubbled with air-CO2 gas mixtures of 409, 606, 903, and 2,856 ppm pCO2, yielding average aragonite saturation states (ΩA) of 2.6, 2.3, 1.6, and 0.8. Measurement of calcification (via buoyant weighing) and linear extension (relative to a 137Ba/138Ba spike) revealed that skeletal accretion was only minimally impaired by reductions in ΩA from 2.6 to 1.6, although major reductions were observed at 0.8 (undersaturation). Notably, the corals continued accreting new skeletal material even in undersaturated conditions, although at reduced rates. Correlation between rates of linear extension and calcification suggests that reduced calcification under ΩA = 0.8 resulted from reduced aragonite accretion, rather than from localized dissolution. Accretion of pure aragonite under each ΩA discounts the possibility that these corals will begin producing calcite, a less soluble form of CaCO3, as the oceans acidify. The corals’ nonlinear response to reduced ΩA and their ability to accrete new skeletal material in undersaturated conditions suggest that they strongly control the biomineralization process. However, our data suggest that a threshold seawater [CO3 2−] exists, below which calcification within this species (and possibly others) becomes impaired. Indeed, the strong negative response of O. arbuscula to ΩA = 0.8 indicates that their response to future pCO2-induced ocean acidification could be both abrupt and severe once the critical ΩA is reached.  相似文献   

19.
Both global and local environmental changes threaten coral reef ecosystems. To evaluate the effects of high seawater temperature and phosphate enrichment on reef‐building crustose coralline algae, fragments of Porolithon onkodes were cultured for 1 month under laboratory conditions. The calcification rate of the coralline algae was not affected at 30°C, but it decreased to the negatives at 32°C in comparison to the control treatment of 27°C, indicating that the temperature threshold for maintaining positive production of calcium carbonate lies between 30 and 32°C. Phosphate enrichment of 1–2 μmol L ?1 did not affect the calcification rate. The net oxygen production rate was enhanced by phosphate enrichment, suggesting that the photosynthetic rate was limited by the availability of phosphate. It was concluded that moderate phosphate enrichment does not directly deteriorate algal calcification but instead ameliorates the negative effects of high seawater temperature on algal photosynthesis.  相似文献   

20.
Coral metabolism reflects the physiological condition of a coral colony. We studied coral metabolism using a continuous-flow, complete mixing (CFCM) experimental system. Small-size Goniastrea aspera coral colonies were incubated in the CFCM system with and without hydrogen peroxide (H2O2) added to the supplied seawater (0 µM H2O2 for 12 days; 0, 0.3, 3.0, and 30 µM H2O2 for 3 days, for each treatment) Without addition of H2O2, coral metabolism, including photosynthesis (gross primary productivity) and calcification, was relatively stable and there were no significant metabolic changes, suggesting that, without H2O2 added to the CFCM system, the corals did not suffer significant stress from the experimental system over a 12-day incubation period. When H2O2 was added, large decreases in photosynthesis and calcification were observed. The non-parametric Mann–Whitney U-test showed that there were statistically significant differences in photosynthesis after addition of 3.0 µM and 30 µM H2O2, compared with the control. We also found statistically significant differences in net calcification after addition of 30 µM H2O2. Thus, the incubation experiments suggest that higher H2O2 concentrations in seawater clearly influence coral metabolism. However, the results also suggest that the current seawater H2O2 level in Okinawa is not likely to pose significant acute effects on the metabolic activities of corals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号