首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phospholipid-dependent, Ca++-sensitive protein kinase (protein kinase C) is activated by phorbol esters and diacylglycerols. A series of diacylglycerols was synthesized with different substituents at positions 1 and 2 in order to expand known structure-activity relationships for these compounds with respect to binding and activating purified protein kinase C. Compounds were synthesized with saturated and unsaturated long chain fatty acyl groups at position 1 and acetyl, butyryl, or hexanoyl groups at position 2. Binding to protein kinase C correlated well with in-vitro activation of the enzyme. These diacylglycerols activated protein kinase C in an intact cellular system causing the phosphorylation of pp60c-src. This indicates that the length of the fatty acyl group at C2 is critical and that the existence of unsaturation in the fatty acyl group at C1 is not essential.  相似文献   

2.
A simple method is described for the determination of molecular species of enantiomeric sn-1,2- and sn-2,3-diacylglycerols derived from natural triacylglycerols by Grignard degradation. The method is based on a preparative separation of the enantiomeric diacylglycerols as 3,5-dinitrophenylurethane (DNPU) derivatives by high performance liquid chromatography (HPLC) on a chiral column (25 cm x 4.6 mm ID) containing R-(+)-1-(1-naphthyl)ethylamine as a stationary phase. This is followed by polar capillary gas-liquid chromatography (GLC) of the trimethylsilyl (TMS) ether derivatives of the enantiomeric diacylglycerols derived from the DNPU derivatives using trichlorosilane, which does not cause acyl migration and racemization during the reaction. The cleavage is better than 94% complete. The method was standardized with synthetic sn-1,2- and sn-2,3-dipalmitoyl- and rac-1,2-dioleoylglycerols and was applied to the identification and quantitation of individual molecular species of enantiomeric diacylglycerols generated by Grignard degradation of the triacylglycerols from corn oil, cocoa butter, and lard.  相似文献   

3.
Sulfoquinovosyl diacylglycerols were isolated from leaves ofchilling-sensitive and chilling-resistant plants. They werethen fractionated by argentation thin-layer chromatography onsilica gel according to the degree of unsaturation of theirfatty acids, and the molecular species compositions of the lipidswere determined from the fatty acid compositions of the separatedfractions. The results suggest that the saturated molecularspecies of sulfoquinovosyl diacylglycerol are not directly correlatedwith the chilling sensitivity of plants. (Received June 25, 1984; Accepted August 2, 1984)  相似文献   

4.
The fatty acid composition of yeast lipid was manipulated by using auxotrophic strain of S.cerevisiae, KD115, which requires unsaturated fatty acid (UFA) for its growth. It was possible to specifically enrich the yeast with different fatty acyl residues. As compared to wild type strain (S288C), the uptake of amino acids viz., L-alanine, glycine, L-glutamic acid, L-valine in KD115 was drastically reduced, however, the uptake of L-leucine and L-lysine was not affected by the change in lipid unsaturation. Kinetic studies revealed that KT and Jmax values for L-alanine were altered whereas for L-lysine they remained unaffected by UFA modification. Furthermore, unsaturation index for wild type cells was found to be fairly constant while it was variable in KD115 supplemented with different UFAs. It is observed that the variation in amino acid permeases activity which was affected by fluctuations in fatty acyl composition corresponds more to degree of unsaturation rather than growth stage of KD115.  相似文献   

5.
The lipid composition of the extremely halophilic bacterium Salinibacter ruber (Bacteroidetes) was investigated by thin layer chromatography, gas chromatography, high performance liquid chromatography and electrospray ionization-mass spectrometry. Polar lipids represent about 80% of the total lipid extract. The main polar lipids are a sulfonic acid analogue of ceramide (or capnine analogue), phosphatidylcholine, phosphatidylserine, dimethylphosphatidylethanolamine, phosphatidylglycerol, cardiolipin or bisphosphatidylglycerol, and a glycolipid. The major acyl chains in the phospholipids are C16:1 Delta9cis and C18:1 Delta11cis, while the sulfonolipid contains an amide-bound iso C15:0 fatty acid. On changing the salinity of the culture medium, no significant differences were found in the lipid profile or the unsaturation of the lipid fatty acyl chains. The structure of the cardiolipin, which represents 20% of polar lipids, has been elucidated by gas chromatography and electrospray ionization mass spectrometry analysis.  相似文献   

6.
Little is known about the physiological role of alkylglycerol monooxygenase (AGMO), the only enzyme capable of cleaving the 1-O-alkyl ether bond of ether lipids. Expression and enzymatic activity of this enzyme can be detected in a variety of tissues including adipose tissue. This labile lipolytic membrane-bound protein uses tetrahydrobiopterin as a cofactor, and mice with reduced tetrahydrobiopterin levels have alterations in body fat distribution and blood lipid concentrations. In addition, manipulation of AGMO in macrophages led to significant changes in the cellular lipidome, and alkylglycerolipids, the preferred substrates of AGMO, were shown to accumulate in mature adipocytes. Here, we investigated the roles of AGMO in lipid metabolism by studying 3T3-L1 adipogenesis. AGMO activity was induced over 11 days using an adipocyte differentiation protocol. We show that RNA interference-mediated knockdown of AGMO did not interfere with adipocyte differentiation or affect lipid droplet formation. Furthermore, lipidomics revealed that plasmalogen phospholipids were preferentially accumulated upon Agmo knockdown, and a significant shift toward longer and more polyunsaturated acyl side chains of diacylglycerols and triacylglycerols could be detected by mass spectrometry. Our results indicate that alkylglycerol catabolism has an influence not only on ether-linked species but also on the degree of unsaturation in the massive amounts of triacylglycerols formed during in vitro 3T3-L1 adipocyte differentiation.  相似文献   

7.
The isolation and characterization of acidic lipids from both Trichomonas vaginalis and Tritrichomonas foetus have been carried out using radiolabeling, a combination of high performance liquid and thin layer chromatographic techniques, and mass spectrometry. Unique among the eukaryotes, these organisms produce phosphatidylglycerols and O-acyl phosphatidylglycerol-like compounds. In this study, the molecular weight distributions of the phosphatidylglycerols and acyl phosphatidylglycerols were determined by negative-ion liquid secondary ionization mass spectrometry (LSIMS) and the fatty acyl groups within each molecular species were assessed by collision-induced decomposition tandem mass spectrometry (CID MS/MS). Both species were found to contain primarily oleic acid in the sn-2 position. The lipids of T. vaginalis had approximately equal amounts of C16 and C18 in the sn-1 position, with varying degrees of unsaturation, especially in the C18 species. The T. foetus lipids had C18 almost exclusively, but also varied in the unsaturation. Other acidic lipids included inositol phosphosphingolipids and inositol diphosphosphingolipids.  相似文献   

8.
Synthesis of steryl palmitates, varied in the nature of the steryl moiety, provided model compounds for investigation of the mass spectrometric behavior of steryl long-chain fatty acyl esters. The structure of the steryl moiety was varied according to: (i) position and degree of unsaturation in the steroid nucleus and C-17 side-chain, (ii) position and degree of methylation, (iii) presence or absence of a 9 beta, 19-cyclopropane ring. Compounds were chosen so as to be representative of biochemically important steryl esters. Electron impact (EI) behavior of steryl palmitate esters closely resembles that of their short-chain (e.g. acetate) counterparts. M+.ions were generally weak or absent and the major high mass ions arose from characteristic fragmentations of the steroid nucleus following loss of the acyl moiety ([M-RCO2H]+.). Fragment ions characteristic of the acyl moiety were lacking. Negative ion chemical ionization (NICI) using ammonia as reagent gas, on the other hand, afforded spectra containing characteristic fragment ions [RCO2]-, [RCO2-18]-, and [RCO2-19]- from which the nature of the fatty acyl moiety can be readily deduced. Hence, NICI and EI provide complementary means of ionization for the mass spectrometric determination of structures of steryl esters.  相似文献   

9.
Acanthamoeba are opportunistic protozoan pathogens that may lead to sight-threatening keratitis and fatal granulomatous encephalitis. The successful prognosis requires early diagnosis and differentiation of pathogenic Acanthamoeba followed by aggressive treatment regimen. The plasma membrane of Acanthamoeba consists of 25% phospholipids (PL). The presence of C20 and, recently reported, 28- and 30-carbon fatty acyl residues is characteristic of amoeba PL. A detailed knowledge about this unusual PL composition could help to differentiate Acanthamoeba from other parasites, e.g. bacteria and develop more efficient treatment strategies. Therefore, the detailed PL composition of Acanthamoeba castellanii was investigated by 31P nuclear magnetic resonance spectroscopy, thin-layer chromatography, gas chromatography, high performance liquid chromatography and liquid chromatography-mass spectrometry. Normal and reversed phase liquid chromatography coupled with mass spectrometric detection was used for detailed characterization of the fatty acyl composition of each detected PL. The most abundant fatty acyl residues in each PL class were octadecanoyl (18∶0), octadecenoyl (18∶1 Δ9) and hexadecanoyl (16∶0). However, some selected PLs contained also very long fatty acyl chains: the presence of 28- and 30-carbon fatty acyl residues was confirmed in phosphatidylethanolamine (PE), phosphatidylserine, phosphatidic acid and cardiolipin. The majority of these fatty acyl residues were also identified in PE that resulted in the following composition: 28∶1/20∶2, 30∶2/18∶1, 28∶0/20∶2, 30∶2/20∶4 and 30∶3/20∶3. The PL of amoebae are significantly different in comparison to other cells: we describe here for the first time unusual, very long chain fatty acids with Δ5-unsaturation (30∶35,21,24) and 30∶221,24 localized exclusively in specific phospholipid classes of A. castellanii protozoa that could serve as specific biomarkers for the presence of these microorganisms.  相似文献   

10.
The lipid composition of the extremely halophilic bacterium Salinibacter ruber (Bacteroidetes) was investigated by thin layer chromatography, gas chromatography, high performance liquid chromatography and electrospray ionization-mass spectrometry. Polar lipids represent about 80% of the total lipid extract. The main polar lipids are a sulfonic acid analogue of ceramide (or capnine analogue), phosphatidylcholine, phosphatidylserine, dimethylphosphatidylethanolamine, phosphatidylglycerol, cardiolipin or bisphosphatidylglycerol, and a glycolipid. The major acyl chains in the phospholipids are C16:1 Δ9cis and C18:1 Δ11cis, while the sulfonolipid contains an amide-bound iso C15:0 fatty acid. On changing the salinity of the culture medium, no significant differences were found in the lipid profile or the unsaturation of the lipid fatty acyl chains. The structure of the cardiolipin, which represents 20% of polar lipids, has been elucidated by gas chromatography and electrospray ionization mass spectrometry analysis.  相似文献   

11.
Summary The effect of ethanol on exponential phase cultures of S. cerevisiae has been examined using l-alanine uptake and proton efflux as indices of ethanol tolerance. Preincubation with 2 M ethanol inhibited l-alanine uptake, proton efflux and fermentation rates. However, the effect of ethanol varied in yeast cells enriched with different fatty acyl residues. It was observed that cells enriched with polyunsaturated fatty acids acquired greater tolerance to ethanol as compared to monounsaturated fatty acids. By varying the degree of unsaturation of supplemented fatty acid, a sequential insertion of double bonds in yeast membrane lipid was achieved. Results demonstrated that S. cerevisiae became more resistant to ethanol with an increase in the degree of unsaturation and that membrane fluidity could be an important determinant of ethanol tolerance.  相似文献   

12.
The partitioning of phosphatidylcholine (PC) molecular species between mixed micelles and vesicles was studied in each of seven human gallbladder biles. Biles were fractionated by Sephacryl S-300 SF gel filtration chromatography, and PC species in the micellar and vesicular fractions were quantitated by high performance liquid chromatography. Micelles were enriched in species containing unsaturated acyl groups (e.g., 16:1-18:2, 18:1-18:2, and 18:1-18:3); vesicles were enriched in more highly saturated species (e.g., 16:0-16:1, 16:0-18:1, and 18:0-18:1). Separate multivariate analyses for each bile demonstrated that the distribution of PC species between vesicles and micelles was related to the degree of sn-1 and sn-2 unsaturation, and sn-1, but not sn-2, chain length. In addition, the tendency to partition into the micellar phase was particularly marked when unsaturation was present at both the sn-1 and sn-2 positions. When this interaction was included in the multivariate analyses, the regression models accounted for virtually all of the variation in PC partitioning (for each of the seven patients r2 = 0.92-0.98, P less than 0.03). These results suggest that the partitioning of PC species between micelles and vesicles is strictly determined by sn-1 chain length and the degree of unsaturation at both the sn-1 and sn-2 positions. In light of recent reports that fatty acyl composition influences the cholesterol content of vesicles and micelles in model biles, these results raise the possibility that diet-induced alterations in the phospholipid species and the relative proportions of biliary lipid particles may influence the cholesterol-carrying capacity of bile.  相似文献   

13.
The subunit structure of citrate lyase from Escherichia coli was shown to be similar to that of all other lyases investigated so far. The three different subunits with molecular masses of 55.5 kDa, (large subunit) 35 kDa (medium-sized subunit) and 12.5 kDa (small subunit, acyl carrier protein) occurred in a ratio of 1:1:1. Using high-pressure liquid chromatography, it was possible to demonstrate that the reported large acyl carrier protein, with a molecular mass of 85 kDa was a contaminating protein associated with citrate lyase multienzyme complex; it could be removed by anion-exchange chromatography with Q-Sepharose. The typical two configurations of citrate lyase, the 'star' form and the 'ring' form with a diameter of 14.3 nm and 15.4 nm, respectively, could be detected by electron microscopy.  相似文献   

14.
Paenibacillus sp. strain B2, isolated from the mycorrhizosphere of sorghum colonized by Glomus mosseae, produces an antagonistic factor. This factor has a broad spectrum of activity against gram-positive and gram-negative bacteria and also against fungi. The antagonistic factor was isolated from the bacterial culture medium and purified by cation-exchange, reverse-phase, and size exclusion chromatography. The purified factor could be separated into three active compounds following characterization by amino acid analysis and by combined reverse-phase chromatography and mass spectrometry (liquid chromatography-mass spectrometry and mass spectrometry-mass spectrometry). The first compound had the same retention time as polymyxin B1, whereas the two other compounds were more hydrophobic. The molecular masses of the latter compounds are 1,184.7 and 1,202.7 Da, respectively, and their structure is similar to that of polymyxin B1, with a cyclic heptapeptide moiety attached to a tripeptide side chain and a fatty acyl residue. They both contain threonine, phenylalanine, leucine, and 2,4-diaminobutyric acid residues. The peptide with a molecular mass of 1,184.7 contains a 2,3-didehydrobutyrine residue with a molecular mass of 101 Da replacing a threonine at the A2 position of the polymyxin side chain. This modification could explain the broader range of antagonistic activity of this peptide compared to that of polymyxin B.  相似文献   

15.
A new method is described for the separation of individual molecular species of the aminophospholipids, phosphatidylethanolamine and phosphatidylserine. Trinitrobenzene-sulfonic acid was used to derivatize both aminophospholipids and the derivatives were purified by thin-layer chromatography. A reversed-phase high performance liquid chromatography technique was developed to separate and quantify individual molecular species based upon ultraviolet detection of the attached chromophore. The retention times of the molecular species on the C18 reversed-phase column were longer with increasing carbon chain length and decreasing degree of unsaturation of fatty acyl chain. The overall procedure allowed a quantitative recovery of the aminophospholipid species. The lower limit of detection was about 10 pmol and a linear response was observed in the range of 0.1-10 nmol of phospholipid. Using this method, we were able to separate and quantify trinitrophenyl-phosphatidylethanolamine molecular species of both subclasses (diacyl and alkenyl) from human red blood cells and rat brains. Separation of species was confirmed by gas-liquid chromatographic analysis of the fatty acid content of each peak and by thermospray liquid chromatography-mass spectrometry. This new method provides a convenient and sensitive technique for studies of aminophospholipid molecular species composition. Furthermore, it appears to be a useful tool for the analysis of asymmetric distribution of these species in biological membranes.  相似文献   

16.
A method for simultaneous analysis of lipids extracted from photosystem I complex was developed with high performance liquid chromatography/electrospray ionization mass spectrometry. The photosystem I complex was firstly solubilized and separated using deoxycholate polyacrylamide gel electrophoresis method after ultrasonic treatment of the sample (leaves of pea, Pisum sativum L.). The Photosystem I complexes were electrophoretically eluted from the deoxycholate polyacrylamide gel electrophoresis bands containing them, and the electron transport activity of the eluent measured as confirmation. Lipids, which were isolated from the complex having photosystem I activity, were separated and characterized with high performance liquid chromatography/electrospray ionization mass spectrometry. Five lipids, monogalactosyldiacylglycerol, digalactosyldiacylglycerol, phosphatidylglycerol, sulphoquinovosyldiacylglycerol and phosphaditylcholine were found combining with photosystem I complex. Different species of these lipids were found in the ESI mass spectra and the compositions of the acyl groups in them were determined.  相似文献   

17.
This study describes the first preparation and spectroscopic characterization of naturally occurring phospholipids separated according to degree of unsaturation. Phosphatidylserines (PS) have been prepared from bovine brain and shown to be pure by extensive thin layer chromatographic analysis as well as by infrared spectroscopy and fatty acid analysis. The PS has been separated according to degree of unsaturation and prepared using AgNO3-impregnated silica gel H thin-layer chromatography. Fatty acid analysis of the two principal PS subfractions indicates that they are enriched in the molecular species 1-octadecanoyl-2-docosahexaenoyl-sn-glycero-3-phosphorylserine and 1-octadecanoyl-2-octadecenoyl-sn-glycero-3-phosphorylserine. The identity of the two PS subfractions was further verified by rechromatographing on several thin layer systems and by infrared spectroscopy. With the use of a 100 MHz Fourier transform nuclear magnetic resonance (NMR) spectrometer, the spectra of bovine whole brain, white matter, gray matter, monoenoic, and hexaenoic PS were obtained. Distinct proton resonances were assigned to double bond protons, protons adjacent to a double bond, and protons between two double bonds, using fatty acid methyl ester standards. The various PS preparations gave different intensities of the various proton resonances which correlated with differences in fatty acid composition. The method provides a convenient, non-destructive spectroscopic method for distinguishing monoenoic and polyunsaturated species of intact phospholipids. Electron spin resonance studies of nitroxide-labelled cholestane in sonicated PS vesicles showed greater probe motion as the unsaturation of the acyl chains was increased. The hexaenoic PS vesicles were more fluid than monoenoic PS vesicles at all temperatures in the range 10-55 degrees C. These results suggest that neuronal membranes are more fluid than myelin membranes as neuronal membranes contain more hexaenoic phospholipids.  相似文献   

18.
《Fungal biology》2014,118(9-10):792-799
Pseudogymnoascus destructans is a psychrophilic fungus that infects cutaneous tissues in cave dwelling bats, and it is the causal agent for white nose syndrome (WNS) in North American (NA) bat populations. Geomyces pannorum is a related psychrotolerant keratinolytic species that is rarely a pathogen of mammals. In this study, we grew P. destructans and G. pannorum in static liquid cultures at favourable and suboptimal temperatures to: 1) determine if triacylglyceride profiles are species-specific, and 2) determine if there are differences in fatty acyl (FA) saturation levels with respect to temperature. Total lipids isolated from both fungal spp. were separated by thin-layer chromatography and determined to be primarily sterols (∼15 %), free fatty acids (FFAs) (∼45 %), and triacylglycerides (TAGs) (∼50 %), with minor amounts of mono-/diacylglycerides and sterol esters. TAG compositions were profiled by matrix-assisted laser desorption–ionization time-of-flight mass spectrometry (MALDI–TOF). Total fatty acid methyl esters (FAMEs) and acyl lipid unsaturation levels were determined by gas chromatography–mass spectrometry (GC–MS). Pseudogymnoascus destructans produced higher proportions of unsaturated 18C fatty acids and TAGs than G. pannorum. Pseudogymnoascus destructans and G. pannorum produced up to a two-fold increase in 18:3 fatty acids at 5 °C than at higher temperatures. TAG proportion for P. destructans at upper and lower temperature growth limits was greater than 50 % of total dried mycelia mass. These results indicate fungal spp. alter acyl lipid unsaturation as a strategy to adapt to cold temperatures. Differences between their glycerolipid profiles also provide evidence for a different metabolic strategy to support psychrophilic growth, which may influence P. destructans' pathogenicity to bats.  相似文献   

19.
Synthesized PCs containing docosahexaenoic acid (DHA), arachidonic acid (AA), linoleic acid (LA), and palmitic acid (PA) at known positions in the glycerol moiety were oxidized in liposomes, bulk, and organic solvent. In bulk and organic solvent, the oxidative stability of PC decreased with increasing degrees of unsaturation. However, the degree of unsaturation had little effect on the stability of PC in liposomes. The oxidative stability of PC in liposomes would be affected by the chemical reactivity based on the degree of unsaturation and by the conformation of fatty acyl component in PC bilayers. When the oxidative stability of 1-PA-2-LA-PC or 1-PA-2-AA-PC was compared with that of a 1:1 (mol ratio) mixture of 1,2-diPA-PC+1,2-diLA-PC, or 1,2-diPA-PC+1,2-diAA-PC, respectively, the former PC was more oxidatively stable than that of the latter PC mixture in all oxidation systems, although the degree of unsaturation of 1-PA-2-PUFA-PC was the same as that of the corresponding mixture of diPA-PC+diPUFA-PC. The higher oxidative stability of 1-PA-2-PUFA-PC than that of a corresponding mixture of diPA-PC+diPUFA-PC in liposomes was suggested to be due to the different conformation of PC bilayers and the different rate of hydrogen abstraction by free radicals from intermolecular and intramolecular acyl groups.  相似文献   

20.
Synthesized PCs containing docosahexaenoic acid (DHA), arachidonic acid (AA), linoleic acid (LA), and palmitic acid (PA) at known positions in the glycerol moiety were oxidized in liposomes, bulk, and organic solvent. In bulk and organic solvent, the oxidative stability of PC decreased with increasing degrees of unsaturation. However, the degree of unsaturation had little effect on the stability of PC in liposomes. The oxidative stability of PC in liposomes would be affected by the chemical reactivity based on the degree of unsaturation and by the conformation of fatty acyl component in PC bilayers. When the oxidative stability of 1-PA-2-LA-PC or 1-PA-2-AA-PC was compared with that of a 1:1 (mol ratio) mixture of 1,2-diPA-PC + 1,2-diLA-PC, or 1,2-diPA-PC + 1,2-diAA-PC, respectively, the former PC was more oxidatively stable than that of the latter PC mixture in all oxidation systems, although the degree of unsaturation of 1-PA-2-PUFA-PC was the same as that of the corresponding mixture of diPA-PC + diPUFA-PC. The higher oxidative stability of 1-PA-2-PUFA-PC than that of a corresponding mixture of diPA-PC + diPUFA-PC in liposomes was suggested to be due to the different conformation of PC bilayers and the different rate of hydrogen abstraction by free radicals from intermolecular and intramolecular acyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号