首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oribe Y  Funada R  Shibagaki M  Kubo T 《Planta》2001,212(5-6):684-691
A study was made of cambial activity, the localization of storage starch around the cambium, and the localization and occurrence of microtubules in cambial cells from dormancy to reactivation in locally heated (22–26 °C) stems of the evergreen conifer Abies sachalinensis. Heating induced localized reactivation of the cambium in the heated portions of the stem. Erect ray cambial cells resumed cell division 1 d prior to the reactivation of fusiform cambial cells and procumbent ray cambial cells. The re-initiation of the division of fusiform cambial cells occurred first on the phloem side. During the heat treatment, the amount of storage starch decreased in procumbent ray cambial cells and in the phloem parenchyma adjacent to the cambium but increased in fusiform cambial cells. Preprophase bands of microtubules, spindle microtubules and phragmoplast microtubules were observed both in erect ray cambial cells and in procumbent ray cambial cells. By contrast, no evidence of the presence of such preprophase bands of microtubules was detected in fusiform cambial cells. The results suggest that the localized heating of stems of evergreen conifers might provide a useful experimental model system for studies of the dynamics of cambial reactivation in intact trees. Received: 25 May 2000 / Accepted: 12 July 2000  相似文献   

2.
The fine structure of dividing cambial cells of Ulmus americana and Tilia americana has been studied in material fixed in glutaraldehyde followed by osmium tetroxide. The cambia examined consisted of 7–9 rows of unexpanded fusiform cells, all of which had similar ultrastructural components. The fine structure and sequence of events of mitosis and cytokinesis in the dividing cambial cells apparently are similar to those of dividing cells in root tips and leaves. Of special interest was the observation that during cytokinesis, a broad cytoplasmic plate or phragmosome precedes the developing phragmoplast and cell plate through the dividing cambial cell. Smooth and coated vesicles derived from dictyosomes are associated with cell plate formation in these cells, smooth vesicles primarily with earlier stages of plate formation, and coated vesicles in later stages.  相似文献   

3.
Summary Fusiform cambial cells of the ash (Fraxinus excelsior L.), which are strongly elongated and vacuolated, contain a phragmosome which traverses the whole length of the cells during preprophase and karyokinesis and which remains present during cytokinesis until it is integrated in cell plate with adjacent cytoplasm.The phragmosome consists of a thin perforated cytoplasmic layer located in the plane of the future cell plate. Otherwise oriented transvacuolar cytoplasmic layers or strands are not present in these cells.The phragmosome contains cytoskeletal elements, namely microtubules and also microfilament bundles both of which are oriented mainly in longitudinal direction.The phragmosomal microtubules are a new category of microtubules associated with cell division; presumably they guide the centrifugally growing cell plate to the parental cell wall site previously marked by the preprophase band of microtubules.  相似文献   

4.
Rensing KH  Samuels AL  Savidge RA 《Protoplasma》2002,220(1-2):0039-0049
Summary.  Trees depend on the secondary vascular cambium to produce cells for new xylem and phloem. The fusiform cells of this lateral meristem are long and narrow, presenting special challenges for arranging the mitotic spindle and phragmoplast. Fusiform cambial cells of Pinus ponderosa and Pinus contorta were studied by cryofixation and cryosubstitution which preserved ultrastructure and phases of cytokinesis with a resolution not previously attained. Membranous structures including the plasma membrane, tonoplast, and those of other organelles were smooth and unbroken, indicating that they were preserved while the protoplasm was in a fully turgid state. Mitotic spindles separated daughter chromosomes diagonally across the radial width of the cells. The cell plate was initiated at an angle to the cell axis between the anaphase chromosomes by a microtubule array which organized vesicles at the phragmoplast midline. Within the phragmoplast, vesicles initially joined across thin tubular projections and then amalgamated into a tubulo-vesicular network. Axial expansion of the cell plate generated two opposing phragmoplasts connected by a thin, extended bridge of cell plate and cytoplasm that was oriented along the cell axis. In the cytoplasmic bridge trailing each phragmoplast, the callose-rich tubular network gradually consolidated into a fenestrated plate and then a complete cell wall. Where new membrane merged with old, the parent plasmalemma appeared to be loosened from the cell wall and the membranes joined via a short tubulo-vesicular network. These results have not been previously reported in cambial tissue, but the same phases of cytokinesis have been observed in cryofixed root tips and suspension-cultured cells of tobacco. Received February 11, 2002; accepted May 31, 2002; published online October 31, 2002 RID="*" ID="*" Correspondence and reprints: Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada. Abbreviations: CFS cryofixation and cryosubstitution; ER endoplasmic reticulum; HPF high-pressure freezing; PPB preprophase band.  相似文献   

5.
The cold stability of microtubules during seasons of active and dormant cambium was analyzed in the conifers Abies firma, Abies sachalinensis and Larix leptolepis by immunofluorescence microscopy. Samples were fixed at room temperature and at a low temperature of 2–3°C to examine the effects of low temperature on the stability of microtubules. Microtubules were visible in cambium, xylem cells and phloem cells after fixation at room temperature during seasons of active and dormant cambium. By contrast, fixation at low temperature depolymerized microtubules in cambial cells, differentiating tracheids, differentiating xylem ray parenchyma and phloem ray parenchyma cells during the active season. However, similar fixation did not depolymerize microtubules during cambial dormancy in winter. Our results indicate that the stability of microtubules in cambial cells and cambial derivatives at low temperature differs between seasons of active and dormant cambium. Moreover, the change in the stability of microtubules that we observed at low temperature might be closely related to seasonal changes in the cold tolerance of conifers. In addition, low-temperature fixation depolymerized microtubules in cambial cells and differentiating cells that had thin primary cell walls, while such low-temperature fixation did not depolymerize microtubules in differentiating secondary xylem ray parenchyma cells and tracheids that had thick secondary cell walls. The stability of microtubules at low temperature appears to depend on the structure of the cell wall, namely, primary or secondary. Therefore, we propose that the secondary cell wall might be responsible for the cold stability of microtubules in differentiating secondary xylem cells of conifers.  相似文献   

6.
The ultrastructural aspects of the cell division in the grapevine(Vitis riparia × V.labrusca) calli were studied. A large central vacuole plays a noticeable part in this process. Before its division the nucleus with some encircling cytosol moves into the central vacuole where the small, round-shaped portion of cytosol (phragmosome) originates. In this central mass of cytosol connected with the peripheral one by thin cytosolic strands karyokinesis is carried out and the cell plate formation starts. Before karyokinesis the phragmosome, however, does not exhibit the form of the cytosolic layer completely traversing the cell. No preprophase band of microtubules has been observed in the cells either. The polarity of the mitotic spindle designating the orientation of the new cell wall is random then and it is not determined by the position of the preprophase band of microtubules or by the orientation of phragmosome. The unorganized growth of the grapevine callus reflects this fact.  相似文献   

7.
We conducted anatomical studies of girdled stems ofEucommia ulmoides at various developmental stages to elucidate the origin and development of callus and the vascular cambium. In the transverse view, ray initial cells in the cambial zone began to divide both periclinally and anticlinally 2 d after girdling. Fusiform initial cells started to enlarge at 3 d, then gradually proliferated via periclinal divisions. Thus, the callus was derived from the ray initial cells of the cambial zone as well as from fusiform initial cells. In the tangential view, callus cells derived from ray initial cells were short while those from fusiform initial cells were long, thereby producing a heterogeneous structure. However, the fusiform initial cells underwent transverse divisions 10 d after girdling, which resulted in shorter cells and a homogeneous callus structure. Afterward, some short cells divided transversely while others elongated, so that a heterogeneous form was regained. Finally, the vascular meristem that was girdled early in its development redifferentiated from short and long cells in the callus. The long cells developed into fusiform initials, with the short ones becoming ray initials.  相似文献   

8.
Summary Young leaves ofNicotiana tabacum were fixed in glutaraldehyde-formaldehyde followed by osmium tetroxide. The fine structure of dividing cells was studied. Before prophase a band of microtubules was observed between the nucleus and the cell wall at a position judged as the future plane of division. The microtubules in the band are 4–6 units deep and relatively closely packed, giving sections of the band a characteristic appearance. Micro-tubules of the mitotic spindle, the phragmoplast, and the preprophase band are morphologically similar. Some of the microtubules of the mitotic spindle and the phragmoplast have an undulate appearance. It is suggested that the undulate microtubules may have been fixed at a time when microwaves were traveling along them. The cell plate is formed by a fusion of small smooth surfaced vesicles and small coated vesicles. Fusion of small vesicles results first in larger vesicles and then in a meshwork of new cell-wall material surrounded by new regions of plasma membrane. Most of the vesicles are derived from dictyosomes and may be produced before and during prophase as well as during later stages of division. The ER may also contribute some vesicles to the cell plate.  相似文献   

9.
木材(次生木质部)是树木形成层细胞分化的产物,形成层的活动方式不仅影响木材的产量,而且影响木材的结构和性质.利用透射电子显微镜观察了生长在北京地区的毛白杨(Populus tomentosa Carr.)枝条形成层带细胞一个完整活动周期的超微结构变化.在木质部母细胞完全恢复活动之前,形成层纺锤状原始细胞的分裂和韧皮部细胞的分化已经开始.枝条上芽的展开和幼叶的生长可能决定了形成层带细胞的这种活动方式.透射电镜观察更清楚地揭示了树木形成层细胞在活动初期的分化特点.活动期形成层细胞中的大液泡在进入休眠期后逐渐分成许多小液泡分散在细胞质中.随着液泡融合逐渐消失的深色蛋白类物质又重新充满了大部分液泡.油滴和淀粉颗粒的年变化情况同液泡中的蛋白类物质基本相似.无论在活动期还是休眠期,形成层纺锤形细胞的质膜上都发现有许多可能与物质运输有关的小泡状内折.由核膜、内质网和高尔基体及其分泌小泡组成的细胞内膜系统,在形成层活动周期的不同阶段,其形态和分布明显不同,尤其在形成层细胞的恢复活动及其衍生木质部细胞次生壁的沉积过程中发挥着重要作用.整个活动周期中,形成层纺锤形细胞的径向壁都比弦向壁厚,处在休眠期的形成层带细胞,其径向壁与弦向壁的差别则更明显.形成层恢复活动时,径向壁上特别是与弦向壁相连的角隅处出现部分自溶现象.细胞壁特别是径向壁的变薄是形成层细胞恢复活动的重要特征.  相似文献   

10.
All land plants (embryophytes) use a phragmoplast for cytokinesis. Phragmoplasts are distinctive cytoskeletal structures that are instrumental in the deposition of new walls in both vegetative and reproductive phases of the life cycle. In meristems, the phragmoplast is initiated among remaining non-kinetochore spindle fibers between sister nuclei and expands to join parental walls at the site previously marked by the preprophase band of microtubules (PPB). The microtubule cycle and cell cycle are closely coordinated: the hoop-like cortical microtubules of interphase are replaced by the PPB just prior to prophase, the PPB disappears as the spindle forms, and the phragmoplast mediates cell plate deposition after nuclear division. In the reproductive phase, however, cortical microtubules and PPBs are absent and cytokinesis may be uncoupled from the cell cycle resulting in multinucleate cells (syncytia). Minisyncytia of 4 nuclei occur in microsporocytes and several (typically 8) nuclei occur in the developing megagametophyte. Macrosyncytia with thousands of nuclei may occur in the nuclear type endosperm. Cellularization of syncytia involves formation of adventitious phragmoplasts at boundaries of nuclear-cytoplasmic domains (NCDs) defined by radial microtubule systems (RMSs) emanating from non-sister nuclei. Once initiated in the region of microtubule overlap at interfaces of opposing RMSs, the adventitious phragmoplasts appear structurally identical to interzonal phragmoplasts. Phragmoplasts are constructed of multiple opposing arrays similar to what have been termed microtubule converging centers. The individual phragmoplast units are distinctive fusiform bundles of anti-parallel microtubules bisected by a dark mid-zone where vesicles accumulate and fuse into a cell plate.  相似文献   

11.
Samples of a mature specimen of Kalopanax pictus, a ring-poroushardwood, were studied to compare the respective lengths offusiform cambial cells and vessel elements in the stem. Thelengths of dormant and reactivated fusiform cambial cells weremeasured with a confocal laser scanning microscope in tissuethat had been macerated by digestion with pectinase and in thicktangential sections. The lengths of early wood and late woodvessel elements were measured in tissues that had been maceratedby Franklin's method. The vessel elements and fusiform cambialcells varied considerably in length within individual samples.The mean length of early wood vessel elements corresponded tothat of fusiform cells in the dormant cambium but not in thereactivated cambium. Significant differences were observed betweenthe mean lengths of dormant and reactivated fusiform cambialcells, between those of reactivated fusiform cambial cells andearly wood vessel elements, between those of reactivated fusiformcambial cells and late wood vessel elements, and between thoseof early wood and late wood vessel elements. The frequency distributionsof lengths of cambial cells were bimodal and differed from thoseof vessel elements, which more closely resembled a normal distribution.The proportion of shorter lengths was higher in the reactivatedcambium than in the dormant cambium, the early wood and thelate wood vessel elements. Our results do not suppot the hypothesisthat the lengths of early wood vessel elements in ring-poroushardwoods change during differentiation. The similar rangesof recorded lengths suggest that short and long vessel elementsmight be derived directly from short and long cambial cells,respectively. Copyright 1999 Annals of Botany Company Kalopanax pictus, cambium, vessel element, confocal laser scanning microscopy, maceration, cell length.  相似文献   

12.
Andrew Bajer 《Chromosoma》1968,24(4):383-417
Formation and development of phragmoplast and cell plate were studied in endosperm of Haemanthus katherinae Bak. The same cells were studied with the light and electron microscope. Several cells were studied with time-lapse microcinematography before fixation. This permitted comparison of structures during their development on both the light and electron microscope level. Movements of fibrillar components of the phragmoplast and spindle were analyzed and their transport properties were correlated with formation of the cell plate. Change of arrangement of microtubules, transport of vesicles which form the cell plate, and formation of vesicles and microtubules has also been discussed.  相似文献   

13.
Microtubules in dividing root cells of the gymnosperms Pinus radiata (conifer) and Zamia furfuracea (cycad) were examined using immunofluorescence techniques. Root tip squashes were prepared to visualize the 3-dimensional organization of microtubules in intact cells while sections of methacrylate embedded roots revealed microtubules in situ. Both species were characterized by well developed preprophase bands (PPB) of microtubules and highly focused spindle poles at prophase and anaphase. The metaphase spindle and telophase phragmoplast appeared typical of flowering plants.  相似文献   

14.
A fine structure study of the phragmoplast and developing cell plate has been made on glutaraldehyde-osmium tetroxide-fixed, dividing, cultured cells of the liquid endosperm of Haemanthus katherinae Baker. The phragmoplast arises between the telophase nuclei, usually in association with a remnant strand of spindle elements, and consists of an accumulation of microtubules oriented at right angles to the plane of the future cell plate. The microtubules, which are 200–240 A in diameter, occur in small clusters spaced at approximately 0.2–0.3 µ intervals along the plate. Short interconnections interpreted as "cross-bridges" have been observed between individual microtubules. Within each cluster there is an electron-opaque zone about 0.3 µ in width which can be attributed in part to an overlap of microtubules from both sides of the plate and in part to a local accumulation of an amorphous electron-opaque material. During development these dense zones become aligned in a plane which itself defines the plane of the plate. Vesicles, commonly observed in long files, are derived from a cytoplasmic matrix rich in elements of the endoplasmic reticulum and sparse in dictyosomes. They aggregate between the clusters of microtubules and eventually coalesce to form the cell plate.  相似文献   

15.
Abstract: The changes in cellular structures that occur in cambial cell derivatives during xylogenesis were examined in Populus trichocarpa Torr et Gray. During dormancy, the cells of the vascular cambium are characterised by dense cytoplasm, many small vacuoles and lipid bodies. During cambial activation, cambial cells are highly vacuolated, the cytoplasm is rich in organelles and the nucleus contains distinctly enlarged nucleoli. The plasma membrane forms vesicle-filled invaginations which mediate uptake of vesicular material into the vacuole. The mitotic patterns in dividing fusiform cells are fragmentary due to their strong vacuolisation. During cell enlargement, cambial cell derivatives remain strongly vacuolated and cytoplasmic structures are similar to active fusiform cells. From the beginning of secondary cell wall formation many changes in cytoplasmic structures occur in newly-formed fibres and vessels. In fibres, the cytoplasm is characterised by components of secondary cell wall synthesis, as indicated by increased amounts of endoplasmic reticulum, vesicle-producing dictyosomes and microtubules. In contrast, vessels show a more or less distinct occurrence of these components and remain more strongly vacuolated than fibres. Similar to cambial cells, a distinct flow of vesicular material into the vacuole through invaginations of the plasma membrane is apparent in fibres, as well as in vessels. After completion of the secondary cell walls, the loss of tonoplast integrity causes the collapse of the vacuole and initiates cell death in vessels and fibres. In vessels the tonoplast exhibits unusually strong staining prior to the collapse of the vacuole, indicating subsequent cell death. Overall, our results indicate an important role for the vacuole in the xylogen differentiation of cambial derivatives.  相似文献   

16.
Marcus AI  Dixit R  Cyr RJ 《Protoplasma》2005,226(3-4):169-174
Summary. In most higher-plant cells, cortical microtubules form a tightly focused preprophase band (PPB) that disappears with the onset of prometaphase, but whose location defines the future location of the cell plate at the end of cytokinesis. It is unclear whether the PPB microtubules themselves designate the precise area where the cell plate will insert, or rather if these microtubules are responding to a hierarchical signal(s). Here we show that narrowing of the microtubules within the PPB zone is not necessary for proper division plane determination. In cultured tobacco BY-2 cells in which PPB microtubules are depolymerized, the phragmoplast can still accurately locate and insert at the proper site. The data do not support a role for PPB microtubule narrowing in focusing the signal that is used later by the phragmoplast to position the cell plate; rather, proper phragmoplast positioning is more likely a consequence of a non-microtubule positional element. Although the PPB microtubules do not directly mark the division site, we show that they are required for accurate spindle positioning, an activity that presets the future growth trajectory of the phragmoplast and is necessary for insuring high-fidelity cell plate positioning. Correspondence and reprints: Department of Biology, Pennsylvania State University, University Park, PA 16802, U.S.A. Present address: Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, U.S.A.  相似文献   

17.
Nucleolar involvement in the regulation of the activity-rest-quiescence cycle of the vascular cambium was assessed by determining the seasonal variation in number, diameter, and volume of nucleoli in fusiform cells of Abies balsamea (L.) Mill. The cells were isolated from 1- and 19-yr-old cambia and stained with either silver nitrate or Feulgen + naphthol yellow-S. The ability of fusiform cells to incorporate [5-3H]-uridine into nuclei and nucleoli was also determined. In the 1-yr-old cambium, the activity of the nucleoli, as evidenced by their diameter, total volume per cell, and intensity of staining with silver nitrate, exhibited two maxima during the year—a large one during cambial reactivation in April-May and a small one during the rest-quiescence transition in October. Incorporation of radiolabeled uridine at 20 C was low at the end of the active period and increased during the rest–quiescence transition, suggesting that the quiescent, but not the resting, cambium can rapidly resume nucleolar activity when the temperature is permissive. The number of nucleoli per cell varied between two and eight, and was higher during the dormant than the active period. The increase in number took place during the autumnal activity–rest–quiescence transition, when cambial cells were arrested in the G1 phase of the cell cycle. Similar seasonal changes in nucleolar morphology were observed in the 19-yr-old cambium. Nucleolar diameter and total nucleolar volume were larger in the 19-yr-old cambium than in the 1-yr-old cambium, whereas nucleolar number was lower. Th results suggest that repression of rRNA genes underlies the development of rest when the cambium will not produce new cells.  相似文献   

18.
Summary Centrin and calmodulin are members of the EF-hand calcium-binding superfamily of proteins. In this study we compared localisation and immunoblotting of centrin with calmodulin in several monocot (onion and wheat) and dicot (mung bean andArabidopsis) plants. We confirmed that an anti-calmodulin antibody recognised a 17 kDa protein in all species tested and localises to the cytoplasm, mitotic matrix and with microtubules of the preprophase band and phragmoplast. In contrast, immunoblotting using anti-centrin antibodies shows that plant centrins vary from 17 to 20 kDa. Immunofluorescence microscopy with anti-centrin antibodies revealed only weak centrin immunoreactivity in the cytoplasm, nucleus, nuclear envelope, phragmoplast and mitotic matrix in meristematic cells. There was a slightly more intense perinuclear labelling in large differentiating onion cells and between separating anaphase chromosomes. While centrin is known to localise to the mitotic spindle poles in animal and algal cells, there was no appreciable immunoreactivity at the spindle poles in higher plants. In contrast, there was an intense immunofluorescence signal with anti-centrin antibodies in the developing cell plate. Further characterisation of the cell plate labelling by immunogold electron microscopy shows centrin immunoreactivity was closely associated with vesicles in the cell plate. Our observations suggest that centrin may play a role in cell plate formation.Abbreviations BSA bovine serum albumin - MTs microtubules - MTOCs microtubule organising centres - PBS phosphate buffered saline - PBST phosphate buffered saline with Tween-20  相似文献   

19.
The distribution of F-actin cables in dividing endosperm cells of a higher plant, Haemanthus, was visualized with the immunogold-silver-enhanced method and compared with the arrangement of immunogold-stained microtubules in the same cells. The three-dimensional distribution of F-actin cables and microtubules during mitosis and cell plate formation was analyzed using ultrathin optical sectioning of whole mounts in polarized light video microscopy. F-actin cables form a loose irregular network in the interphase cytoplasm. Much of this network remains outside of the spindle during mitosis. A few F-actin cables were detected within the spindle. Their pronounced rearrangement during mitosis appears to be related to the presence and growth of microtubule arrays. During prometaphase, actin cables located on the spindle surface and those present within the spindle tend to arrange parallel to the long axis of the spindle. Cables outside the spindle do not reorient, except those at the polar region, where they appear to be compressed by the elongating spindle. Beginning with mid-anaphase, shorter actin cables oriented in various directions accumulate at the equator. Some of them are incorporated into the phragmoplast and cell plate and are gradually fragmented as the cell plate is formed and ages. Actin cables adjacent to microtubule arrays often show a regular punctate staining pattern. Such a pattern is seldom observed in the peripheral cytoplasm, which contains few microtubules. The rearrangement of F-actin cables mimicks the behavior of spindle inclusions, such as starch grains, mitochondria, etc., implying that F-actin is redistributed passively by microtubule growth or microtubule-related transport. Thus F-actin or actomyosin-based motility does not appear to be directly involved in mitosis and cytokinesis in higher plants.  相似文献   

20.
F-actin distribution was studied in mitotic cells of embryogenic suspension culture of Norway spruce [Picea abies (L.) Karst.]. Actin was present in dividing cells of embryo head during whole mitosis. Transient co-localization of actin microfilaments with preprophase band of microtubules was observed. Weak actin staining occurred with non-kinetochor microtubular fibers in metaphase spindle. F-actin was not localized with kinetochore microtubular fibres in metaphase as well as with shortening kinetochore fibres in late anaphase. On the other hand, abundant actin microfilaments array was formed in the area of late anaphase spindle in equatorial level of the cell between separating chromatids. F-actin was also present in phragmoplast area in telophase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号