首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinesin is a force-generating ATPase that drives the sliding movement of microtubules on glass coverslips and the movement of plastic beads along microtubules. Although kinesin is suspected to participate in microtubule-based organelle transport, the exact role it plays in this process is unclear. To address this question, we have developed a quantitative assay that allows us to determine the ability of soluble factors to promote organelle movement. Salt-washed organelles from squid axoplasm exhibited a nearly undetectable level of movement on purified microtubules. Their frequency of movement could be increased greater than 20-fold by the addition of a high speed axoplasmic supernatant. Immunoadsorption of kinesin from this supernatant decreased the frequency of organelle movement by more than 70%; organelle movements in both directions were markedly reduced. Surprisingly, antibody purified kinesin did not promote organelle movement either by itself or when it was added back to the kinesin-depleted supernatant. This result suggested that other soluble factors necessary for organelle movement were removed along with kinesin during immunoadsorption of the supernatant. A high level of organelle motor activity was recovered in a high salt eluate of the immunoadsorbent that contained only little kinesin. On the basis of these results we propose that organelle movement on microtubules involves other soluble axoplasmic factors in addition to kinesin.  相似文献   

2.
What are the functions of kinesin?   总被引:2,自引:0,他引:2  
A variety of intracellular motile processes involve the directed movement of particles along microtubules, including organelle transport, endoplasmic reticulum extension, and movements in mitosis. Recently, a microtubule-dependent motor protein, kinesin, was purified and was found to be present in a soluble form in a wide variety of organisms and tissues. Because microtubules provide polar pathways over long distances within cells, kinesin and the motors which move in the opposite direction to kinesin on microtubules provide a mechanism for directed communications within cells. The possible roles of kinesin and other soluble microtubule-dependent motors in intracellular motile functions are discussed in the light of recent studies of the reconstitution of organelle motility with isolated components.  相似文献   

3.
Neurons require a large amount of intracellular transport. Cytoplasmic polypeptides and membrane-bounded organelles move from the perikaryon, down the length of the axon, and to the synaptic terminals. This movement occurs at distinct rates and is termed axonal transport. Axonal transport is divided into the slow transport of cytoplasmic proteins including glycolytic enzymes and cytoskeletal structures and the fast transport of membrane-bounded organelles along linear arrays of microtubules. The polypeptide compositions of the rate classes of axonal transport have been well characterized, but the underlying molecular mechanisms of this movement are less clear. Progress has been particularly slow toward understanding force-generation in slow transport, but recent developments have provided insight into the molecular motors involved in fast axonal transport. Recent advances in the cellular and molecular biology of one fast axonal transport motor, kinesin, have provided a clearer understanding of organelle movement along microtubules. The availability of cellular and molecular probes for kinesin and other putative axonal transport motors have led to a reevaluation of our understanding of intracellular motility.  相似文献   

4.
UNC-104 (KIF1A) is a kinesin motor that transports synaptic vesicles from the neuronal cell body to the terminal. Previous in vitro studies have shown that a Dictyostelium relative of UNC-104 transports liposomes containing acidic phospholipids, but whether this interaction is needed for the recognition and transport of synaptic vesicles in metazoans remains unexplored. Here, we have introduced mutations in the nonmotor domain of UNC-104 and examined whether these mutant motors can rescue an unc-104 Caenorhabditis elegans strain. We show that a pleckstrin homology (PH) domain in UNC-104 is essential for membrane transport in living C. elegans, that this PH domain binds specifically to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)), and that point mutants in the PH domain that interfere with PI(4,5)P(2) binding in vitro also interfere with UNC-104 function in vivo. Several other lipid-binding modules could not effectively substitute for the UNC-104 PH domain in this in vivo assay. Real time imaging also revealed that a lipid-binding point mutation in the PH domain reduced movement velocity and processivity of individual UNC-104::GFP punctae in neurites. These results reveal a critical role for PI(4,5)P(2) binding in UNC-104-mediated axonal transport and shows that the cargo-binding properties of the distal PH domain can affect motor output.  相似文献   

5.
Conventional kinesin is capable of long-range, processive movement along microtubules, a property that has been assumed to be important for its role in membrane transport. Here we have investigated whether the Caenorhabditis elegans monomeric kinesin unc104 and the sea urchin heteromeric kinesin KRP85/95, two other members of the kinesin superfamily that function in membrane transport, are also processive. Both motors were fused to green fluorescent protein, and the fusion proteins were tested for processive ability using a single-molecule fluorescence imaging microscope. Neither unc104-GFP nor KRP85/95-GFP exhibited processive movement (detection limit approximately 40 nm), although both motors were functional in multiple motor microtubule gliding assays (v = 1760 +/- 540 and 202 +/- 37 nm/s, respectively). Moreover, the ATP turnover rates (5.5 and 3.1 ATPs per motor domain per second, respectively) are too low to give rise to the observed microtubule gliding velocities, if only a single motor were driving transport with an 8 nm step per ATPase cycle. Instead, the results suggest that these motors have low duty cycles and that high processivity may not be required for efficient vesicle transport. Conventional kinesin's unusual processivity may be required for efficient transport of protein complexes that cannot carry multiple motors.  相似文献   

6.
Unc104 (KIF1A) kinesin transports membrane vesicles along microtubules in lower and higher eukaryotes. Using an in vitro motility assay, we show that Unc104 uses a lipid binding pleckstrin homology (PH) domain to dock onto membrane cargo. Through its PH domain, Unc104 can transport phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P2)-containing liposomes with similar properties to native vesicles. Interestingly, liposome movement by monomeric Unc104 motors shows a very steep dependence on PtdIns(4,5)P2 concentration (Hill coefficient of approximately 20), even though liposome binding is noncooperative. This switch-like transition for movement can be shifted to lower PtdIns(4,5)P2 concentrations by the addition of cholesterol/sphingomyelin or GM1 ganglioside/cholera toxin, conditions that produce raft-like behavior of Unc104 bound to lipid bilayers. These studies suggest that clustering of Unc104 in PtdIns(4,5)P2-containing rafts provides a trigger for membrane transport.  相似文献   

7.
Microtubules facilitate the maturation of phagosomes by favoring their interactions with endocytic compartments. Here, we show that phagosomes move within cells along tracks of several microns centrifugally and centripetally in a pH- and microtubuledependent manner. Phagosome movement was reconstituted in vitro and required energy, cytosol and membrane proteins of this organelle. The activity or presence of these phagosome proteins was regulated as the organelle matured, with “late” phagosomes moving threefold more frequently than “early” ones. The majority of moving phagosomes were minus-end directed; the remainder moved towards microtubule plus-ends and a small subset moved bi-directionally. Minus-end movement showed pharmacological characteristics expected for dyneins, was inhibited by immunodepletion of cytoplasmic dynein and could be restored by addition of cytoplasmic dynein. Plus-end movement displayed pharmacological properties of kinesin, was inhibited partially by immunodepletion of kinesin and fully by addition of an anti-kinesin IgG. Immunodepletion of dynactin, a dynein-activating complex, inhibited only minus-end directed motility. Evidence is provided for a dynactin-associated kinase required for dyneinmediated vesicle transport. Movement in both directions was inhibited by peptide fragments from kinectin (a putative kinesin membrane receptor), derived from the region to which a motility-blocking antibody binds. Polypeptide subunits from these microtubule-based motility factors were detected on phagosomes by immunoblotting or immunoelectron microscopy. This is the first study using a single in vitro system that describes the roles played by kinesin, kinectin, cytoplasmic dynein, and dynactin in the microtubule-mediated movement of a purified membrane organelle.  相似文献   

8.
Association of kinesin with characterized membrane-bounded organelles.   总被引:10,自引:0,他引:10  
The family of molecular motors known as kinesin has been implicated in the translocation of membrane-bounded organelles along microtubules, but relatively little is known about the interaction of kinesin with organelles. In order to understand these interactions, we have examined the association of kinesin with a variety of organelles. Kinesin was detected in purified organelle fractions, including synaptic vesicles, mitochondria, and coated vesicles, using quantitative immunoblots and immunoelectron microscopy. In contrast, isolated Golgi membranes and nuclear fractions did not contain detectable levels of kinesin. These results demonstrate that the organelle binding capacity of kinesin is selective and specific. The ability to purify membrane-bounded organelles with associated kinesin indicates that at least a portion of the cellular kinesin has a relatively stable association with membrane-bounded organelles in the cell. In addition, immunoelectron microscopy of mitochondria revealed a patch-like pattern in the kinesin distribution, suggesting that the organization of the motor on the organelle membrane may play a role in regulating organelle motility.  相似文献   

9.
The microtubule motors, cytoplasmic dynein and kinesin II, drive pigmented organelles in opposite directions in Xenopus melanophores, but the mechanism by which these or other motors are regulated to control the direction of organelle transport has not been previously elucidated. We find that cytoplasmic dynein, dynactin, and kinesin II remain on pigment granules during aggregation and dispersion in melanophores, indicating that control of direction is not mediated by a cyclic association of motors with these organelles. However, the ability of dynein, dynactin, and kinesin II to bind to microtubules varies as a function of the state of aggregation or dispersion of the pigment in the cells from which these molecules are isolated. Dynein and dynactin bind to microtubules when obtained from cells with aggregated pigment, whereas kinesin II binds to microtubules when obtained from cells with dispersed pigment. Moreover, the microtubule binding activity of these motors/dynactin can be reversed in vitro by the kinases and phosphatase that regulate the direction of pigment granule transport in vivo. These findings suggest that phosphorylation controls the direction of pigment granule transport by altering the ability of dynein, dynactin, and kinesin II to interact with microtubules.  相似文献   

10.
Microtubule based motors like conventional kinesin (Kinesin-1) and Unc104 (Kinesin-3), and classical microtubule associated proteins (MAPs), including MAP2, are intimately involved in neurite formation and organelle transport. The processive motility of both these kinesins involves weak microtubule interactions in the ADP-bound states. Using cosedimentation assays, we have investigated these weak interactions and characterized their inhibition by MAP2c. We show that Unc104 binds microtubules with five-fold weaker affinity and two-fold higher stoichiometry compared with conventional kinesin. Unc104 and conventional kinesin binding affinities are primarily dependent on positively charged residues in the Unc104 K-loop and conventional kinesin neck coiled-coil and removal of these residues affects Unc104 and conventional kinesin differently. We observed that MAP2c acts primarily as a competitive inhibitor of Unc104 but a mixed inhibitor of conventional kinesin. Our data suggest a specific model in which MAP2c differentially interferes with each kinesin motor by inhibiting its weak attachment to the tubulin C-termini. This is reminiscent of the defects we have observed in Unc104 and kinesin mutants in which the positively charged residues in K-loop and neck coiled-coil domains were removed.  相似文献   

11.
BACKGROUND: Kinesin and cytoplasmic dynein are force-generating molecules that move in opposite directions along microtubules. They have been implicated in the directed transport of a wide variety of cellular organelles, but it is unclear whether they have overlapping or largely independent functions. RESULTS: We analyzed organelle transport in kinesin and dynein single mutants, and in a kinesin and dynein double mutant of Neurospora crassa. Remarkably, the simultaneous mutation of kinesin and dynein was not lethal and resulted in an additive phenotype that combined the features of the single mutants. The mutation of kinesin and dynein had opposite effects on the apical and retrograde transport, respectively, of vesicular organelles. In the kinesin mutant, apical movement of submicroscopic, secretory vesicles to the Spitzenk?rper - an organelle in the hyphal apex - was defective, whereas the predominantly retrograde movement of microscopic organelles was only slightly reduced. In contrast, the dynein mutant still had a prominent Spitzenk?rper, demonstrating that apical transport was intact, but retrograde transport was essentially inhibited completely. A major defect in vacuole formation and dynamics was also evident. In agreement with the observations on apical transport, protein secretion into the medium was markedly inhibited in the kinesin mutant but not in the dynein mutant. CONCLUSIONS: Transport of secretory vesicles is necessary but not sufficient for normal apical extension. A component of retrograde transport, presumably precursors of the vacuole system, is also essential. Our findings provide new information on the role microtubule motors play in cell morphogenesis and suggest that kinesin and cytoplasmic dynein have largely independent functions within separate pathways.  相似文献   

12.
Membrane-bound organelles move bidirectionally along microtubules in the freshwater ameba, Reticulomyxa. We have examined the nucleotide requirements for transport in a lysed cell model and compared them with kinesin and dynein-driven motility in other systems. Both anterograde and retrograde transport in Reticulomyxa show features characteristic of dynein but not of kinesin-powered movements: organelle transport is reactivated only by ATP and no other nucleoside triphosphates; the Km and Vmax of the ATP-driven movements are similar to values obtained for dynein rather than kinesin-driven movement; and of 15 ATP analogues tested for their ability to promote organelle transport, only 4 of them did. This narrow specificity resembles that of dynein-mediated in vitro transport and is dissimilar to the broad specificity of the kinesin motor (Shimizu, T., K. Furusawa, S. Ohashi, Y. Y. Toyoshima, M. Okuno, F. Malik, and R. D. Vale. 1991. J. Cell Biol. 112: 1189-1197). Remarkably, anterograde and retrograde organelle transport cannot be distinguished at all with respect to nucleotide specificity, kinetics of movement, and the ability to use the ATP analogues. Since the "kinetic fingerprints" of the motors driving transport in opposite directions are indistinguishable, the same type of motor(s) may be involved in the two directions of movement.  相似文献   

13.
Kinectin-kinesin binding domains and their effects on organelle motility   总被引:5,自引:0,他引:5  
Intracellular organelle motility involves motor proteins that move along microtubules or actin filaments. One of these motor proteins, kinesin, was proposed to bind to kinectin on membrane organelles during movement. Whether kinectin is the kinesin receptor on organelles with a role in organelle motility has been controversial. We have characterized the sites of interaction between human kinectin and conventional kinesin using in vivo and in vitro assays. The kinectin-binding domain on the kinesin tail partially overlaps its head-binding domain and the myosin-Va binding domain. The kinesin-binding domain on kinectin resides near the COOH terminus and enhances the microtubule-stimulated kinesin-ATPase activity, and the overexpression of the kinectin-kinesin binding domains inhibited kinesin-dependent organelle motility in vivo. These data, when combined with other studies, suggest a role for kinectin in organelle motility.  相似文献   

14.
Eukaryotic cells use diverse cytoskeleton-dependent machineries to control inheritance and intracellular positioning of mitochondria. In particular, microtubules play a major role in mitochondrial motility in the filamentous fungus Neurospora crassa and in mammalian cells. We examined the role of two novel Unc104/KIF1-related members of the kinesin family, Nkin2 and Nkin3, in mitochondrial motility in Neurospora. The Nkin2 protein is required for mitochondrial interactions with microtubules in vitro. Mutant hyphae lacking Nkin2 show mitochondrial motility defects in vivo early after germination of conidiospores. Nkin3, a member of a unique fungal-specific subgroup of small Unc104/KIF1-related proteins, is not associated with mitochondria in wild-type cells. However, it is highly expressed and recruited to mitochondria in Deltankin-2 mutants. Mitochondria lacking Nkin2 require Nkin3 for binding to microtubules in vitro, and mitochondrial motility defects in Deltankin-2 mutants disappear with up-regulation of Nkin3 in vivo. We propose that mitochondrial transport is mediated by Nkin2 in Neurospora, and organelle motility defects in Deltankin-2 mutants are rescued by Nkin3. Apparently, a highly versatile complement of organelle motors allows the cell to efficiently respond to exogenous challenges, a process that might also account for the great variety of different mitochondrial transport systems that have evolved in eukaryotic cells.  相似文献   

15.
Treatment of cultured cells with brefeldin A (BFA) induces the formation of extensive membrane tubules from the Golgi apparatus, trans-Golgi network, and early endosomes in a microtubule-dependent manner. We have reconstituted this transport process in vitro using Xenopus egg cytosol and a rat liver Golgi-enriched membrane fraction. The presence of BFA results in the formation of an intricate, interconnected tubular membrane network, a process that, as in vivo, is inhibited by nocodazole, the H1 anti-kinesin monoclonal antibody, and by membrane pretreatment with guanosine 5'-O-(3-thiotriphosphate). Surprisingly, membrane tubule formation is not due to the action of conventional kinesin or any of the other motors implicated in Golgi membrane dynamics. Two candidate motors of approximately 100 and approximately 130 kDa have been identified using the H1 antibody, both of which exhibit motor properties in a biochemical assay. Finally, BFA-induced membrane tubule formation does not occur in metaphase cytosol, and because membrane binding of both candidate motors is not altered after incubation in metaphase compared with interphase cytosol, these results suggest that either the ATPase or microtubule-binding activity of the relevant motor is cell cycle regulated.  相似文献   

16.
Organelles transported along microtubules are normally moved to precise locations within cells. For example, synaptic vesiceles are transported to the neruronal synapse, the Golgi apparatus is generally found in a perinuclear location, and the membranes of the endoplasmic reticulum are actively extended to the cell periphery. The correct positioning of these organelles depends on microtubules and microtubule motors. Melanophores provide an extreme example of organized organelle transport. These cells are specialized to transport pigment granules, which are coordinately moved towards or away from the cell center, and result in the cell appearing alternately light or dark. Melanophores have proved to be an ideal system for studying the mechanisms by which the cell controls the direction of its organelle transport. Pigment granule dispersion (the movement away from the cell center) requires protein phosphorylation, while pigment aggregation (the movement towards the cell center) requires protein dephosphorylation. The target of this phosphorylation and dephosphorylation event is a protein that interacts with the microtubule motor protein, kinesin. Thus, the direction of organelle transport along microtubules may be regulated by controlling the activity of a microtubule motor.  相似文献   

17.
The movement of pollen tube organelles relies on cytoskeletal elements. Although the movement of organelles along actin filaments in the pollen tube has been studied widely and is becoming progressively clear, it remains unclear what role microtubules play. Many uncertainties about the role of microtubules in the active transport of pollen tube organelles and/or in the control of this process remain to be resolved. In an effort to determine if organelles are capable of moving along microtubules in the absence of actin, we extracted organelles from tobacco pollen tubes and analyzed their ability to move along in vitro-polymerized microtubules under different experimental conditions. Regardless of their size, the organelles moved at different rates along microtubules in the presence of ATP. Cytochalasin D did not inhibit organelle movement, indicating that actin filaments are not required for organelle transport in our assay. The movement of organelles was cytosol independent, which suggests that soluble factors are not necessary for the organelle movement to occur and that microtubule-based motor proteins are present on the organelle surface. By washing organelles with KI, it was possible to release proteins capable of gliding carboxylated beads along microtubules. Several membrane fractions, which were separated by Suc density gradient centrifugation, showed microtubule-based movement. Proteins were extracted by KI treatment from the most active organelle fraction and then analyzed with an ATP-sensitive microtubule binding assay. Proteins isolated by the selective binding to microtubules were tested for the ability to glide microtubules in the in vitro motility assay, for the presence of microtubule-stimulated ATPase activity, and for cross-reactivity with anti-kinesin antibodies. We identified and characterized a 105-kD organelle-associated motor protein that is functionally, biochemically, and immunologically related to kinesin. This work provides clear evidence that the movement of pollen tube organelles is not just actin based; rather, they show a microtubule-based motion as well. This unexpected finding suggests new insights into the use of pollen tube microtubules, which could be used for short-range transport, as actin filaments are in animal cells.  相似文献   

18.
The motor domain regions of three novel members of the kinesin superfamily TLKIF1, TLKIFC, and TLBIMC were identified in a thermophilic fungus Thermomyces lanuginosus. Based on sequence similarity, they were classified as members of the known kinesin families Unc104/KIF1, KAR3, and BIMC. TLKIF1 was subsequently expressed in Escherichia coli. The expression level was high, and the protein was mostly soluble, easy to purify, and enzymatically active. TLKIF1 is a monomeric kinesin motor, which in a gliding motility assay displays a robust plus-directed microtubule movement up to 2 microm/s. The discovery of TLKIF1 also demonstrates that a family of kinesin motors not previously found in fungi may in fact be used in this group of organisms.  相似文献   

19.
To address questions about mechanisms of filament-based organelle transport, a system was developed to image and track mitochondria in an intact Drosophila nervous system. Mutant analyses suggest that the primary motors for mitochondrial movement in larval motor axons are kinesin-1 (anterograde) and cytoplasmic dynein (retrograde), and interestingly that kinesin-1 is critical for retrograde transport by dynein. During transport, there was little evidence that force production by the two opposing motors was competitive, suggesting a mechanism for alternate coordination. Tests of the possible coordination factor P150(Glued) suggested that it indeed influenced both motors on axonal mitochondria, but there was no evidence that its function was critical for the motor coordination mechanism. Observation of organelle-filled axonal swellings ("organelle jams" or "clogs") caused by kinesin and dynein mutations showed that mitochondria could move vigorously within and pass through them, indicating that they were not the simple steric transport blockades suggested previously. We speculate that axonal swellings may instead reflect sites of autophagocytosis of senescent mitochondria that are stranded in axons by retrograde transport failure; a protective process aimed at suppressing cell death signals and neurodegeneration.  相似文献   

20.
Vesicular transport of peptide hormones from the cell body to the plasma membrane for activity-dependent secretion is important for endocrine function, but how it is achieved is unclear. Here we uncover a mechanism in which the cytoplasmic tail of transmembrane carboxypeptidase E (CPE) found in proopiomelanocotin (POMC)/ACTH vesicles interacts with microtubule-based motors to control transport of these vesicles to the release site in pituitary cells. Overexpression of the CPE tail in live cells significantly reduced the velocity and distance of POMC/ACTH- and CPE-containing vesicle movement into the cell processes. Biochemical studies showed that the CPE tail interacted with dynactin, which, in turn, recruited microtubule plus-end motors kinesin 2 and kinesin 3. Overexpression of the CPE tail inhibited the stimulated secretion of ACTH from AtT20 cells. Thus, the CPE cytoplasmic tail interaction with dynactin-kinesin 2/kinesin 3 plays an important role in the transport of POMC vesicles for activity-dependent secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号