首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guan CM  Zhu SS  Li XG  Zhang XS 《Plant cell reports》2006,25(11):1133-1137
To study hormone-regulated inflorescence development, we established the in vitro regeneration system of Arabidopsis inflorescences in the presence of cytokinin and auxin. Media containing a combination of thidiazuron (TDZ) and 2,4-dichlorophenoxyacetic acid (2,4-D) were used to induce callus formation. Higher frequencies of calli were obtained by using the inflorescence stems as explants. After transferring the calli to media containing a combination of zeatin and indole-3-acetic acid (IAA), the inflorescences were induced from the calli. The morphology of regenerated inflorescences was similar to that of inflorescences in plants; however, flowers of regenerated inflorescences often lacked a few floral organs. Furthermore, TFL1, a gene involved in floral transition in Arabidopsis, was activated during the inflorescence induction. Our results suggest that the TFL1 gene plays an important role in hormone-regulated inflorescence formation.  相似文献   

2.
Response of twenty eight cultivars of durum wheat (Triticum turgidum var. durum) to immature embryo culture, callus production and in vitro salt tolerance was evaluated. For assessment of cultivars to salt tolerance, growing morphogenic calli were exposed to different concentrations of NaCl (0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 and 2.1% w/v) added to the culture medium during two subsequent subcultures (4 weeks each). Comparison of cultivars for callus induction from immature embryo was based on callus induction frequency and fresh weight growth of callus (FWG). While, for salt tolerance, the relative fresh weight growth (RFWG) and necrosis percent of callus were used. There were significant differences among cultivars for potential of regeneration from immature embryo, and ‘Shahivandi’ a native durum wheat cultivar originating from western Iran was superior among the cultivars tested. The FWG distinguished cultivars more than callus induction frequency did for callus induction evaluation. Hence, a range of FWG from 1.23 to 14.65 g was observed in ‘Mexical-75’ and ‘Omrabi-5’ cultivars, respectively. Growing calli derived from cultivars ‘PI 40100’ and ‘Dipper-6’ showed superiority for tolerating salinity under in vitro conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Callus cultures were obtained from immature and mature embryos of Hordeum marnium on MS media containing 0.5 mg l-1 parachlorophenoxyacetic acid or 2 mg l-1 2,4-dichlorophenoxyacetic acid. Regeneration occurred after transferring calli to MS either devoid of hormones or supplemented with 1 mg l-1 indole-3-acetic acid and 1 mg l-1 zeatin. The regeneration capacity of the immature embryo derived calli (94%) was about 5 times higher than that of mature embryo derived calli (17%). A total of 30 and 964 plantlets were obtained from 21 mature and 59 immature embryo derived calli, respectively. Low frequency (less than 1%) of albino plantlets was obtained from both explants after 3–9 months in culture. Plants expressing transient chlorophyll deficiency were produced from immature embryo derived cultures at a frequency of 10%. However, when transferred to soil, these plantlets became green.  相似文献   

4.
Summary Immature embryos, inflorescences, and anthers of eight commercial cultivars of Triticum aestivum (wheat) formed embryogenic callus on a variety of media. Immature embryos (1.0–1.5 mm long) were found to be most suitable for embryogenic callus formation while anthers responded poorly; inflorescences gave intermediate values. Immature embryos of various cultivars showed significant differences in callus formation in response to 11 of the 12 media tested. No significant differences were observed when the embryos were cultred under similar conditions on MS medium with twice the concentration of inorganic salts, supplemented with 2,4-D, casein hydrolysate and glutamine. Furthermore, with inflorescences also no significant differences were observed. Explants on callus formation media formed two types of embryogenic calli: an off-white, compact, and nodular callus and a white compact callus. Upon successive subcultures (approximately 5 months), the nodular embryogenic callus became more prominent and was identified as aged callus. The aged callus upon further subculture, formed an off-white, soft, and friable embryogenic callus. Both the aged and friable calli maintained their embryogenic capacity over many subculture passages (to date up to 19 months). All embryogenic calli (1 month old) from the different callus-forming media, irrespective of expiant source, formed only green shoots on regeneration media that developed to maturity in the greenhouse. There were no significant differences in the response of calli derived from embryos and inflorescences cultured on the different initiation media. Also, the shoot-forming capacity of the cultivars was not significantly different. Anther-derived calli formed the least shoots. Aged and friable calli on regeneration media also formed green shoots but at lower frequencies. Plants from long-term culture have also been grown to maturity in soil.Florida Agricultural Experiment Station Journal Series No. R-00494  相似文献   

5.
An efficient genotype independent, in vitro regeneration system was developed for nine popular Indian wheat cultivars, three each of Triticum aestivum L. viz., CPAN1676, HD2329 and PBW343, Triticum durum Desf. viz., PDW215, PDW233 and WH896, and Triticum dicoccum Schrank. Schubl. viz., DDK1001, DDK1025 and DDK1029, by manipulating the concentration and time of exposure to the growth regulator, thidiazuron (TDZ). A total of 18 (for immature inflorescence and embryo explant) and six (for mature embryo explant) different combinations of growth regulators were tried for callusing and regeneration, respectively. Media combination with low concentration of TDZ (2.2 μM) in combination to auxin and/or cytokinin (depending upon culture stage), was found to be effective for immature and mature explants. Compact, nodular and highly embryogenic calli were obtained by using immature embryo, immature inflorescence and mature embryo explants, and regeneration frequency up to 25 shoots/explant with an overall 80% regeneration was achieved. Comparable regeneration frequency was achieved for mature embryo explants. No separate hormone combination for rooting was required and plantlets ready to transfer to soil could be obtained in a short period of 8–10 weeks. This protocol can be used for raising transgenic plants for functional genomics analysis of agronomically important traits in the three species of wheat.  相似文献   

6.
We report here a method of ‘two cycles of selection’ for rapidly establishing rice embryogenic cell suspensions which had high regeneration potential even after long-term culture (up to 14 months). Embryogenic calli were induced from immature embryos of 17 genotypes of cultivated japonica rice (Oryza sativa L.) and tested for their regeneration potential. Five of the 17 genotypes showed relatively high regeneration frequencies (27%–45%) and were selected. This process was the first cycle selection, namely, the selection for responding genotypes. The second cycle of selection, or the selection for responding individual callus, was then conducted. Calli from different immature embryos of the same genotype were found to differ in regeneration potential, therefore calli with high regeneration potential were selected again in each of the five genotypes. Five finely-dispersed and rapidly-growing embryogenic cell suspensions, one for each of the genotypes, were established from the calli chosen by the two cycles of selection. The regeneration potential of these cell suspensions was tested every two months over a period of 14 months. All of the five genotypes retained high regeneration frequency (above 62%) over the whole period tested.  相似文献   

7.
Liu  G.S.  Liu  J.S.  Qi  D.M.  Chu  C.C.  Li  H.J. 《Plant Cell, Tissue and Organ Culture》2004,76(2):175-178
Chinese leymus (Leymus chinensis Trin.) is a perennial grass of the Gramineae, which is widely distributed in China, Mongolia and in Russian-Siberian. In order to explore the potential of biotechnology for genetic improvement of this forage grass, an efficient tissue culture system was established and the factors affecting plant regeneration were evaluated. Immature inflorescence segments 3–5 mm in length from eight accessions were cultured on N6 medium supplemented with 2.26–22.60 µM 2,4-D. The callus induction frequency ranged from 72.11 to 82.19%. Shoots were differentiated from the calli on N6 medium containing 4.65 µM kinetin and 4.44 µM BA. Viable regenerants were developed on hormone-free medium. Normal plants were obtained after natural vernalization in the field. The plant regeneration frequency in Chinese leymus was associated with different genotypes and different combinations of growth regulators in medium. The concentration of 2,4-D in the callus induction medium had a strong effect on successive plant regeneration. Relatively higher concentrations of 2,4-D (i.e., 9.04 and 22.60 µM) were more favorable to the plant regeneration than lower ones (i.e., 2.26 and 4.52 µM). This is the first report on plant regeneration in vitro in L. chinensis.  相似文献   

8.
Summary Single cells were obtained from hypocotyl-derived callus ofLavandula latifolia Medicus. Cells were plated in Murashige and Skoog medium supplemented with indoleacetic acid (IAA), benzyladenine (BA), and several IAA-BA combinations. Cell division required the simultaneous presence of IAA and BA in the culture medium, but callus formation was only achieved with 0.1 or 1 mg/liter IAA and 2 mg/liter BA. To induce organogenesis, calli were transferred to various regeneration media. Shoot-bud differentiation efficiency depended on the composition of both the callus induction and the shoot regeneration media, best results being obtained when calli grown in 1 mg/liter IAA and 2 mg/liter BA were subcultured to media containing 2 mg/liter BA and 15% coconut milk. Under these conditions, up to 75% of calli formed shoots that subsequently were rooted and established in soil.  相似文献   

9.
In order to optimize tissue culture conditions for bermudagrass, an important warm-season turfgrass species, tissue culture responses of young inflorescences of a hybrid bermudagrass cultivar `Tifgreen' (Cynodon dactylon×Cynodon transvaalensis) and a common bermudagrass cultivar `Savannah' (Cynodon dactylon) were investigated. When cultured on Murashige and Skoog medium with 4.52 to 13.57 μM (1–3 mg l-1) 2,4-D, young inflorescence segments yielded non-embryogenic calli which were unorganized and had loosely associated, long tubular cells on the surface. However, inclusion of 6-benzyladenine (BA) in callus induction medium at a level of 0.044 μM (0.01 mg l-1) induced formation of a compact, nodular embryogenic structure on approximately 20% of the calli. Calli with such a compact embryogenic structure were highly regenerable. When young inflorescences smaller than 0.75 cm were cultured, the embryogenic structure yielded green plantlets with regeneration rates of 79.5% and 83.3%, respectively for the two cultivars. All 96 plants regenerated from calli induced in the BA-containing medium were green and morphologically normal. The embryogenic nature of the compact structure was confirmed by scanning electron microscopy. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Summary With the aim of the development of a culture method for efficient plant regeneration from barley (Hordeum vulgare L.) protoplasts, we examined several culture conditions for primary calli from immature embryos of cvs. Dissa and Igri, which were used for initiation of cell suspensions. Among the primary callus culture conditions tested, growth condition of donor plants had a great impact on these efficiencies; Igri protoplasts derived from embryos of plants grown in a greenhouse gave rise to albino plants and few green shoots while several cell lines originating from embryos of plants grown in a growth chamber (16h light, 12°C) yielded protoplasts developing into green plants. In contrast, cell suspensions were produced at higher frequencies from calli derived from embryos of greenhouse-grown Dissa plants. In Igri, increased levels of 2,4-dichlorophenoxyaceticacid (2,4-D) significantly reduced the efficiency of cell suspension establishment and plant regeneration from protoplasts was achieved only with suspension cells derived from calli induced at the lowest level (2.5 mg/l), while the effect of the 2,4-D concentration was not clear in Dissa. The developmental stage of immature embryos also affected the efficiency of cell suspension establishment, and the optimal embryo size was determined to be approximately 1mm in diameter. These results demonstrate the importance of callus induction conditions for successful barley protoplast culture.  相似文献   

11.
Summary Tissue cultures ofTriticum aestivum L. (wheat) initiated from young inflorescences and immature embryos possessed the potential for regeneration of whole plants. Both a friable and a compact type of callus were produced on Murashige and Skoog's medium with 2 mg/l 2,4-dichlorophenoxyacetic acid. The friable callus contained meristematic centers in which the peripheral cells ceased dividing, elongated, and could be easily separated. Roots were frequently formed in this type of callus. The compact, yellowish, and nodular callus arose from the epithelial and sub-epithelial cells of the embryo scutellum, and the rachis and glumes of the young inflorescence. Such callus had a smooth surface and characteristic chlorophyllous areas. Plants were regenerated only from the compact callus. The first sign of differentiation in the compact callus was the formation of a cleft or notch on the smooth surface, followed by the appearance of trichomes and the direct development of leafy structures which were not associated initially with any shoot meristems. Multiple shoots subsequently arose at the bases of the leafy structures, which are considered modifications of the scutellum, a definitive part of the cereal embryo. Accordingly, we suggest that while typical bipolar embryos are generally not formed, plant regeneration nevertheless takes place through embryogenesis and the precocious germination of the embryoids. Plants regenerated from immature embryo and inflorescence cultures were grown to maturity in soil, and were shown to have the normal chromosome number of 2n=6x=42.  相似文献   

12.
Optimization of the conditions for an efficient induction of somatic embryogenic calli and regeneration of plants from mature seeds of japonica rice cultivars was attempted. The number, color, size, shape, and appearance time of the induced embryogenic calli varied among the rice cultivars depending on the type of basal medium (LS, MS, N6). Presence of adequate amount of sucrose in the medium was an absolute requirement for embryogenic callus formation and shoot induction. Induction of the embryogenic calli, whose overall rates ranged from 30 to 56%, was most efficient in N6 medium supplemented with 3.0 mg l–1 of 2,4-D and 30 g l–1 of sucrose. Agar concentration in the regeneration medium was also critical for the shoot induction. Kinetin was found to be more effective for shoot regeneration compared with BA, while the highest shoot regeneration frequencies were observed when either cytokinin was combined with high concentration (2.0 mg l–1) of NAA. The optimal concentration of kinetin for the highest shoot regeneration frequency (6777%) was different among the cultivars tested. The embryogenic calli-derived shoots rooted on a plant growth regulator-free MS medium were successfully established in soil, producing fertile seeds.  相似文献   

13.
Inflorescence explants of two winter wheat cultivars, Triticum durum cv. Kızıltan-91 and T. aestivum cv. Bezostaja-01, were used to evaluate the effects of vernalization period of donor plants, callus age and medium composition on regeneration capacity. Donor plants were grown for 7 d and they were exposed to 4 °C for 1, 2, 3, 4, and 5 weeks. The maximum inflorescence formation was observed as 79 % at 4 weeks and 73 % at 5 weeks of vernalization period for Kızıltan-91 and Bezostaja-01, respectively. Among 6 different callus induction and regeneration mediums, I1-R1 and I3-R3 have to be the best responding mediums for Kızıltan-91 and Bezostaja-01, respectively. In Kızıltan-91, calli induced from donor plants, vernalized for 3 weeks, showed a significantly lower regeneration capacity than counterparts vernalized for 4 and 5 weeks. The highest regeneration capacity of 69 % was obtained from 6-week-old calli produced from 4 weeks vernalized Kızıltan-91 donor plants. In contrast to Kızıltan-91 cultures, the effects of vernalization period and callus age on regeneration capacity were not significant in Bezostaja-01 cultures. The maximum numbers of tillers were obtained from 6-and 15-week-old calli for Bezostaja-01 and Kızıltan-91, respectively. In contrast to vernalization period of donor plants, callus age had no effect on seed number.  相似文献   

14.
Thirty-two barley cultivars grown in Spain, 18 of the two-row type and 14 of the six-row type, were screened for plant regeneration from cultured immature embryos. Although there was much variation in regeneration capacity among the cultivars, plants were obtained from all cultivars except Almunia. No statistical differences were found in the percentage of regeneration between two- and six-row types. The influence of the auxins 2,4-dichlorophenoxyacetic acid, dicamba, and picloram on the induction and maintenance of embryogenesis and regeneration capacity after 3–4 months in culture, were evaluated for cultivars Cobra, Hop and Reinette. Hop had the highest rates of maintenance of embryogenic capacity and plant regeneration. The medium containing dicamba gave the best embryogenic callus induction, maintenance and regeneration. Five regeneration media, differing in growth regulators and micronutrient composition, as well as partial desiccation of the calli before regeneration, were tested. The regeneration medium containing 10 μm copper sulfate gave the best results. Regeneration frequencies after 3–4 months in culture of cultivar Hop were raised from 59.5 to 93.7% in this medium. Silver nitrate and partial desiccation of the calli also enhanced plant regeneration, but the medium containing 10 μm of silver nitrate reduced root formation. Received: 30 October 1997 / Revision received: 3 April 1998 / Accepted: 17 April 1998  相似文献   

15.
A short-term regeneration system from leaf-base-derived callus of wheat (Triticum aestivum L.) was developed. Embryogenic callus formation and shoot regeneration were achieved from the first basal segments of 3–4-day-old seedlings. Callus formation frequency as well as plantlet regeneration frequency was dependent on the composition of basal medium and the concentration of 2,4-dichlorophenoxyacetic acid (2,4-D). MS medium with 2,4-D 4.5–9.0 mol l–1 was optimal for the culture of wheat leaf base. Effects of different combinations of plant growth regulators, which were added in either callus induction medium or shoot regeneration medium, were tested. Adding of BAP in callus induction medium shortened the time of shoot emergence but could not improve the producing of embryogenic calli and green plantlets. Optimal ratio of 2,4-D, BAP and NAA gave similar regeneration frequency to control. Existence of cytokinins in regeneration medium had no effect on increasing the regeneration frequency. The regenerants could grow to normal, fertile plants after they were transferred into soil.  相似文献   

16.
Calli from hypocotyl and root explants of Digitalis obscura L. showed regeneration of adventitious shoots, roots and embryos when transferred to Murashige & Skoog medium supplemented with cytokinins alone or in combination with auxins. Optimum shoot-bud formation was achieved in the presence of IAA and BA, while roots mainly appeared either in absence of growth regulators or with IAA and Kn. Embryo formation took place only in those combinations that included Kn. Embryo development was influenced by the type of auxin, and precocious germination occurred in media with NAA. Mechanically isolated cells from hypocotyl- and root-derived calli were plated in MS medium supplemented with several IAA and BA combinations. Single cells were able to proliferate forming callus within 20–30 days in culture. In order to induce organogenesis, calli were transferred to various regeneration media. Shoot-bud differentiation efficiency depended on both callus origin and medium initially used for cell culture, best results being obtained in calli grown from hypocotyl-derived cells cultured in the presence of casein hydrolysate. A further subculture to medium containing coconut milk and lower concentrations of NH4NO3 and sucrose promoted shoot development. Rooting was readily achieved upon transferring shoots onto half-strength MS medium. Plantlets were ultimately established in soil.Abbreviations BA benzyladenine - BM basal medium - CH casein hydrolysate - CM coconut milk - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indoleacetic acid - Kn kinetin - MS Murashige & Skoog - NAA naphthaleneacetic acid  相似文献   

17.
Unfertilized ovaries isolated from immature female flowers of coconut (Cocos nucifera L.) were tested as a source of explants for callogenesis and somatic embryogenesis. The correct developmental stage of ovary explants and suitable in vitro culture conditions for consistent callus production were identified. The concentration of 2,4-dichlorophenoxyacetic acid (2,4-D) and activated charcoal was found to be critical for callogenesis. When cultured in a medium containing 100 μM 2,4-D and 0.1% activated charcoal, ovary explants gave rise to 41% callusing. Embryogenic calli were sub-cultured into somatic embryogenesis induction medium containing 5 μM abscisic acid, followed by plant regeneration medium (with 5 μM 6-benzylaminopurine). Many of the somatic embryos formed were complete with shoot and root poles and upon germination they gave rise to normal shoots. However, some abnormal developments were also observed. Flow cytometric analysis revealed that all the calli tested were diploid. Through histological studies, it was possible to study the sequence of the events that take place during somatic embryogenesis including orientation, polarization and elongation of the embryos.  相似文献   

18.
Huang XQ  Wei ZM 《Plant cell reports》2004,22(11):793-800
An efficient maize regeneration system was developed using mature embryos. Embryos were removed from surface-sterilized mature seeds and sliced into halves. They were used as explants to initiate callus on induction medium supplemented with 4.0 mg l–1 2,4-dichlorophenoxyacetic acid (2,4-D). The induction frequency of primary calli was over 90% for all inbred lines tested. The primary calli were then transferred onto subculture medium supplemented with 2.0 mg l–1 2,4-D. Following two biweekly subcultures, embryogenic calli were formed. Inclusion of a low concentration (0.2 mg l–1) of 6-benzylaminopurine (BA) in the subculture medium significantly promoted the formation of embryogenic callus. The addition of silver nitrate (10 mg l–1) also supported an increased frequency of embryogenesis. The embryogenic callus readily formed plantlets on regeneration medium supplemented with 0.5 mg l–1 BA. The regenerated plantlets were transferred to half-strength Murashige and Skoog medium supplemented with 0.6 mg l–1 indole-3-butyric acid to develop healthy roots. The regenerated plantlets were successful on transfer to soil and set seed. Using this system, plantlets were regenerated from seven elite maize inbred lines. The frequency of forming green shoots ranged from 19.8% to 32.4%. This efficient regeneration system provides a solid basis for genetic transformation of maize.Abbreviations BA 6-Benzylaminopurine - 2,4-D 2,4-Dichlorophenoxyacetic acid - IBA Indole-3-butyric acid - KT KinetinCommunicated by M.C. Jordan  相似文献   

19.
In order to investigate the regeneration of wild beet (Beta maritima) from inflorescence pieces, the effects of growth regulator, genotype, explant source and stage of plant development on adventitious shoot formation and rooting in vitro and subsequent transplanting in the glasshouse were tested. Inflorescence tips produced more adventitious shoots than sub-apical segments and the best micropropagation was achieved on a Murashige and Skoog (MS) medium supplemented with 1.0 mg l–1 BAP. Addition of auxin was not beneficial. The induction rate of adventitious shoots was genotype-dependent and influenced by the stage of plant development. Adventitious shoots were produced from the base of the flower buds, i.e. from the receptacle, not from axils or stalks and only a few buds on inflorescence tip explants produced adventitious shoots. Rooting was increased by using a MS medium with 3% sucrose supplemented with 1.0 mg l–1 NAA. There was no variation in leaf morphology of the transplants. This work shows that inflorescence tips can be used successfully as explants for in vitro multiplication of sugar beet and wild beet.Abbreviations BAP benzylaminopurine - IBA indole-3-butyric acid - GA3 gibberellic acid - MS Murashige and Skoog medium - NAA naphthaleneacetic acid Author for correspondence  相似文献   

20.
Tang  K.  Sun  X.  An  D.  Power  J.B.  Cocking  E.C.  Davey  M.R. 《Plant Cell, Tissue and Organ Culture》2000,60(1):79-82
A reproducible plant regeneration system has been developed for protoplasts from embryogenic cell suspension cultures of the commercial Asian long-grain javanica rice, Oryza sativa cv. Azucena. Protoplasts were isolated routinely from cell suspensions with yields of 5.5–12.0 × 106 g-1 fresh weight. A membrane filter nurse-culture method was adopted and was essential to support sustained mitotic division of protoplast-derived cells, leading to cell colony formation. The protoplast plating efficiency was higher when suspension cells of Lolium multiflorum, rather than those of the japonica rice O. sativa L. cv. Taipei 309, were employed as nurse cells. A two-step shoot regeneration procedure, in which protoplast-derived calli were cultured initially on medium semi-solidified with 1% (w/v) agarose followed by culture on medium containing 0.4% (w/v) agarose, induced plant regeneration from protoplast-derived calli. Fifteen percent of protoplast-derived tissues regenerated shoots; tissues not subjected to this treatment failed to develop shoots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号