首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
重金属镉的转运蛋白研究进展   总被引:2,自引:0,他引:2  
重金属镉(Cadmium,Cd)是一种工业和环境污染物,长期接触可对人体及其他动植物造成毒害。镉作为机体的非必需金属,需要借助必需金属的转运蛋白进入细胞。文章总结了机体中参与镉运输的关键转运蛋白,包括金属硫蛋白、谷胱甘肽、植物螯合素等富含半胱氨酸的蛋白质以及必需金属离子的转运蛋白等,以期为后续镉中毒防治靶点的研究提供一些参考。  相似文献   

2.
美国农业部批准了肯塔基大学对含有一种能调节重金属浓度的小鼠肝基因的烟草进行田间试验.该鼠基因指使植物产生一种与重金属如镉、汞和铜结合的蛋白——金属硫因。大学科学家们对鼠基因转化的烟草植株进行温室试验发现,叶中的镉含量降低约1/4. 美农业部动植物卫生检疫处的L.B.Slagle说“重金属与许多疾病的发生有关,当人类  相似文献   

3.
金属硫蛋白是一种低分子量(6,000—10,000),富含半胱氨酸(25—35%),并能结合重金属如Zn、Cd、Cu、Hg 或Ag的蛋白质。因其含硫及金属故称为金属硫蛋白(Metallothionein,简称MT)。自1957年Margashes和Vallee在马的肾脏皮质中第一次分离出含有镉的蛋白质以来,在哺乳动物(包括人)、微生物、原核生物蓝绿藻及植物中已先后分离出金属硫蛋白。它是一种诱导性的蛋白质。在实验的动物和培养的细胞中(如 Hela 细胞、人的上皮细胞等)金属硫蛋白不仅能被重金属离子而且也  相似文献   

4.
金属硫蛋白是一种低分子量(6,000—10,000),富含半胱氨酸(25—35%),并能结合重金属如Zn、Cd、Cu、Hg或Ag的蛋白质。因其含硫及金属故称为金属硫蛋白(Metallothionein,简称MT)。自1957年Margashes和Vallee在马的肾脏皮质中第一次分离出含有镉的蛋白质以来,在哺乳动物(包括人)、微生物、原核生物蓝绿藻及植物中已先后分离出金属硫蛋白。它是一种诱导性的蛋白质。在实验的动物和培养的细胞中(如Hela细胞、人的上皮细胞等)金属硫蛋白不仅能被重金属离子而且也能为皮质激素诱导而合成。并已证明二者诱导MT的合成是受转录水平调节。  相似文献   

5.
采用营养液培养法,研究了缺硫对万寿菊(Tagetes erecta)各器官镉积累的影响,以及巯基化合物和有机酸等在各器官镉积累中的作用.结果表明:0.1 mg·L-1镉处理7 d,缺硫处理显著降低了植物根、茎和叶中的镉含量,较对照分别降低了47%、38%和61%;缺硫对植物体内半胱氨酸、γ-谷氨酰半胱氨酸、谷胱甘肽和有机酸的合成没有显著影响,而且3种巯基化合物的含量都很低;缺硫植物根部合成的植物络合素的量显著降低,这可能是植物体内镉积累减少的主要原因;在植物的各器官中,叶片中的有机酸含量最高,而在叶片中未检测到植物络合素,由此可推断,叶片中积累的镉主要与有机酸结合;缺硫影响了根部植物络合素的合成,进而降低了植物体内镉的积累,而缺硫没有影响植物体内有机酸的合成,有机酸可能仅是参与植物组织中与镉的络合作用.  相似文献   

6.
为研究金属硫蛋白(Metallothionein, MT)对生物体抵抗重金属毒性的效应,获得一种具有镉高耐受性的膨胀肾形虫(Colpoda inflata)东北种群,该种群96h最高镉耐受浓度10 mg/L,其金属硫蛋白含量表现出与镉浓度、肾形虫种群增长率存在正相关关系。克隆获得金属硫蛋白Col-MT1基因,对基因序列和氨基酸序列特征分析表明,其为金属硫蛋白基因家族7a亚型的新成员。qRT-PCR实验证实, Col-MT1基因在60h、84h和108h三个时间点对5种浓度镉胁迫均上调表达,与镉浓度之间呈现出一定的剂量-效应关系。其分子调控机制还有待进一步研究。上述结果补充了原生动物MT基因数据库,为进一步揭示C. inflata MT基因的功能,以及应用于镉污染监测和环境修复奠定了基础。  相似文献   

7.
植物金属硫蛋白及其重金属解毒机制研究进展   总被引:23,自引:0,他引:23  
全先庆  张洪涛  单雷  毕玉平 《遗传》2006,28(3):375-382
金属硫蛋白是一类分子量较小、富含Cys的金属结合蛋白,广泛分布于生物界。近年来从植物中克隆到许多编码金属硫蛋白的基因,并在研究基因表达模式、组织表达特异性以及基因结构,如启动子、内含子在染色体上的定位等方面取得了一定进展,但对其功能的研究还处于起步阶段。很多实验表明,植物金属硫蛋白可以通过其大量的Cys残基螯合重金属并清除活性氧,使植物避免氧化损伤。文章介绍了植物金属硫蛋白的分类、特征、基因结构及其在植物重金属解毒中的作用。   相似文献   

8.
岸蟹(Carcinus maenas)金属硫蛋白cDNA及其基因的克隆   总被引:3,自引:0,他引:3  
利用已知的C.maenas金属硫蛋白氨基酸序列资料,用全简并的PCR引物,从鳃组织总RNA中扩增出两种金属硫蛋白cDNA片断,并将其克隆到pGEM-T载体中,序列测定表明,其中一种cDNA片断核苷酸序列和推知的C.maenas金属硫蛋白核苷酸序列完全吻合;另一种cDNA片断则在3’端有较大变异。根据前者cDNA片段序列设计特异性引物,扩增并克隆了其编码区全长cDNA和其编码基因,测序结果表明,岸蟹  相似文献   

9.
水稻类金属硫蛋白(rgMT)的两端是高度保守的半胱氨酸富含区的结构域(CR区),中间是不含半胱氨酸的间隔区,呈典型的三段式结构。本研究分别采用距离几何算法和同源建模相结合的方法对水稻类金属硫蛋白进行三级结构建模。在排列出CR区的所有可能的半胱氨酸-金属硫络合的组合方式,并对每一种组合方式给出一定的限制条件后各生成20个随机构象。根据生成的随机构象足否能形成金属硫络合结构,从900个随机构象中最终选出6个构象(N端4种,C端2种组合)作为可能的结构模型。另一方面,采用GOR方法对间隔区进行了二级结构预测,随后用同源建模法对其建模。将上述建成的三部分模型连接起来后形成rgMT的整体三维构象。结果表明rgMT能像哺乳动物MT蛋白一样,可形成两个独立的、在结构和能量上均没有障碍的金属-硫络合结构。介于所有植物类金属硫蛋白都具有典型的三段式结构,其中的一部分还具有与rgMT相同的半胱氨酸排列方式,所以rgMT三维结构模型的建立对于其他植物类金属硫蛋白的结构研究具有重要的参考价值。  相似文献   

10.
植物的硫同化及其相关酶活性在镉胁迫下的调节   总被引:11,自引:0,他引:11  
植物对土壤中硫的利用包括根系对硫酸盐的吸收、转运、同化、分配等过程,也是由一系列酶和蛋白质参与和调节的代谢过程。近年来的研究表明,在植物体内,硫同化与植物对镉等重金属元素的胁迫反应机制有着密切关系。镉胁迫能调节植物对硫酸盐的吸收、转运、同化,以及半胱氨酸、谷胱甘肽(glutathione,GSH)和植物螯合肽(Dhytochelatins,pc)的合成。植物在镉胁迫下通过多种调节机制,增强对硫酸盐的吸收和还原,迅速合成半胱氨酸和谷胱甘肽等代谢物,从而合成足够的PC,以满足植物生理的需要。  相似文献   

11.
水稻类金属硫蛋白(rgMT)的两端是高度保守的半胱氨酸富含区的结构域(CR区),中间是不含半胱氨酸的间隔区,呈典型的三段式结构.本研究分别采用距离几何算法和同源建模相结合的方法对水稻类金属硫蛋白进行三级结构建模.在排列出CR区的所有可能的半胱氨酸-金属硫络合的组合方式,并对每一种组合方式给出一定的限制条件后各生成20个随机构象.根据生成的随机构象是否能形成金属硫络合结构,从900个随机构象中最终选出6个构象(N端4种,C端2种组合)作为可能的结构模型.另一方面,采用GOR方法对间隔区进行了二级结构预测,随后用同源建模法对其建模.将上述建成的三部分模型连接起来后形成rgMT的整体三维构象.结果表明rgMT能像哺乳动物MT蛋白一样,可形成两个独立的、在结构和能量上均没有障碍的金属-硫络合结构.介于所有植物类金属硫蛋白都具有典型的三段式结构,其中的一部分还具有与rgMT相同的半胱氨酸排列方式,所以rgMT三维结构模型的建立对于其他植物类金属硫蛋白的结构研究具有重要的参考价值.  相似文献   

12.
分离及纯化兔肝金属硫蛋白制备去金属金属硫蛋白、锌7与镉7金属硫蛋白.在不同pH条件下,比较后二者清除羟自由基能力;在pH6条件下,比较锌7-金属硫蛋白与有关蛋白和无机锌盐清除羟自由基效果.结论是在近生理pH条件下锌7-金属硫蛋白清除羟自由基能力远强于镉7-金属硫蛋白.金属硫蛋白清除羟自由基的能力主要来源于蛋白中处于还原态的流基.  相似文献   

13.
植物中表观遗传修饰研究进展   总被引:2,自引:1,他引:1  
郑小国  陈亮  罗利军 《植物学报》2013,48(5):561-572
表观遗传是指DNA序列不发生变化, 但基因表达发生了可遗传的改变, 主要涉及DNA与染色体上的一些可逆修饰以及一些转录调控机制。DNA甲基化、组蛋白修饰和非编码RNA调控是表观遗传学研究的三大支柱。三者在植物生长发育、应对生物和非生物胁迫以及适应环境变化中发挥着极其重要的作用。该文综述了植物中DNA甲基化、组蛋白修饰、非编码RNA调控的研究进展及其对植物株高、生育期、花型、果实着色以及应对环境胁迫等方面的影响。  相似文献   

14.
1 实验目的利用质粒转移技术将有用 (目的 )基因整合到植物基因组 DNA中 ,创造出植物遗传新类型。本实验用根癌农杆菌介导 ,将菌体中的冠瘿瘤基因 (T- DNA)导入桑、紫景天中 ,使其形成植物瘤。通过本实验操作 ,可使学生了解植物转基因技术的基本原理 ,提高对生物课程学习的兴趣具有重要意义。2 实验原理植物经人工刺伤并感染农杆菌后 ,因伤流中含有一定量的酚类、氨基酸、糖等有机物 ,这类物质能诱导农杆菌合成参与 T- DNA剪切、加工、转移的酶系 ,并将 T-DNA整合到宿主细胞的基因组 DNA中。由于 T- DNA中有编码生长素 (tmsl、tm…  相似文献   

15.
为建立一种适于法庭科学实践的植物物证DNA提取优化方法,以期获得高质量的适于PCR分析的模板DNA.用8种方法从不同植物的干叶片中提取DNA,利用线粒体DNA非编码区的PCR扩增结果分析评价提取DNA的质量.结果表明8种DNA提取方法所提取的DNA都可以获得线粒体DNA非编码区的PCR扩增产物,对照紫外波长扫描结果显示,以改进的CTAB方法制备的模板DNA纯度最高,可达到进口试剂盒同等制备精度,OD260/280稳定在1.7~1.9之间.因此改进的CTAB方法适用于微量植物样本的DNA提取,可应用于法庭科学实践.  相似文献   

16.
壳聚糖对镉胁迫条件下小麦生长及生理的影响   总被引:4,自引:0,他引:4  
王云  蔡汉  陆任云  王振斌  董英 《生态学杂志》2007,26(10):1671-1673
以小麦为材料,研究了镉对水培小麦幼苗的胁迫作用及壳聚糖对镉胁迫的缓解效应。结果表明:250μmol·L-1的镉胁迫处理后,小麦幼苗的生长受到严重抑制,叶片中叶绿素含量明显下降,金属硫蛋白和丙二醛的含量显著上升(P<0.05);培养液中添加0.01%的壳聚糖能降低小麦幼苗中镉的积累,对小麦幼苗的镉胁迫具有明显地缓解效应。  相似文献   

17.
金属硫蛋白是一类普遍存在于生物体内、富含半胱氨酸的小分子蛋白,能螯合多种金属离子。本研究根据EST序列信息,利用RACE技术克隆到1条家蝇Musca domestica金属硫蛋白基因MdMtn(GenBank登录号为GU289398)。序列分析表明,MdMtn cDNA全长408 bp,包含1个123 bp的开放阅读框,编码40个氨基酸残基,其中半胱氨酸残基10个,呈-C-X-C-方式排列。此蛋白理论分子量为3.8 kD,等电点为878。为了解家蝇金属硫蛋白对重金属的结合活性,构建了pET-DsbA-MT表达载体,并转化Escherichia coli BL21(DE3)宿主菌进行融合表达。研究发现MT重组菌对重金属镉的耐受性得到了明显加强,提示MdMtn基因可能在家蝇适应重金属环境中起到积极作用。  相似文献   

18.
转基因小鼠的研究   总被引:2,自引:0,他引:2  
编码人生长激素的结构基因(hGH)与编码小鼠金属硫蛋白的基因启动子(MT一1)融合,用显微注射法将此融台基因导入小鼠受精卵的原核中,共注射了121个受精卵、将卵移入11只假孕母鼠的输卵管中,11只母鼠中的7只生了43只小鼠。在小鼠的饮水中加入锌(zn。+)可诱导基因表达。小鼠长到30天时开始称体重、每隔10天记录体重、并与同时出生的对照小鼠体重比较。第一代雄性小鼠体重较对照组重、统计学分析有明显差异。小鼠长到三个月,切尾制备DNA,DNA斑点杂交法和Southern杂交法检测基因整合情况,43只小鼠中有18只有融合基因整合。用Northern、杂交法检测转录的人生长激素mRNA。用这三种方法同样检测了第二代和第三代小鼠,发现融合基因能代代相传,而后代小鼠的表型只在个别小鼠中保留下来。绝大多数转基因小鼠后代的体重减轻。用带人生长激素基因或不带人生长激素基因的小鼠做双亲,进行不同组合的交配,所得到的后代也不相同。  相似文献   

19.
高质量的基因组DNA是分子生物学研究的基础,而从富含糖类和次生代谢物且异质性强的植物材料中分离DNA相对困难。本方法在CTAB法和商业DNA提取试剂盒的基础上,在裂解细胞之前,对植物材料进行预处理.去除干扰DNA提取的代谢物,并在后续步骤中进行了一些优化。该方法适于多种不同的植物种类,所提取的基因组DNA质量较好,能满足下一步基因操作的要求,是一种通用的植物基因组DNA提取方法。  相似文献   

20.
植物对重金属的吸收和分布   总被引:70,自引:2,他引:68  
植物修复是利用植物来清除污染土壤中重金属的一项技术。该技术成功与否取决于植物从土壤中吸取金属以及向地上部运输金属的能力。植物对金属的吸收主要取决于自由态离子活度。许多螯合剂能诱导植物对重金属的吸收。金属离子在液泡中的区域化分布是植物耐重金属的主要原因。同时,细胞内的金属硫蛋白、植物螯合脓等蛋白质以及有机酸、氨基酸等在金属贮存和解毒方面也起重要作用。本文还论述了重金属在植物体内运输的生理及分子方面的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号