首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipase A(2) (PLA(2)) is activated in spermatozoa in response to progesterone and Ca(2+) ionophores, but to our knowledge, no study has yet reported zona pellucida (ZP)-induced activation of PLA(2). We investigated whether PLA(2) is involved in ZP-stimulated acrosomal exocytosis, if Ca(2+) is required for activation of PLA(2), and signal transduction pathways modulating PLA(2) using guinea pig sperm as a model. Spermatozoa were capacitated and labeled in low-Ca(2+) medium with [(14)C]choline chloride or [(14)C]arachidonic acid and were then exposed to millimolar Ca(2+) and various reagents and stimulated with ZP. Precapacitated spermatozoa exposed to millimolar Ca(2+) and stimulated with ZP experienced increases in arachidonic acid (AA) and lysophosphatidylcholine (lysoPC) levels and a parallel decrease in phosphatidylcholine level; these changes are indicative of PLA(2) activation. Simulation with ZP also led to acrosomal exocytosis in a high proportion of spermatozoa. Lipid changes and exocytosis were prevented if spermatozoa were exposed to aristolochic acid, a PLA(2) inhibitor, before treatment with ZP. Stimulation with ZP in medium without added Ca(2+) or in medium with millimolar Ca(2+) and EGTA or La(3+) resulted in no lipid changes or exocytosis. Pretreatment with pertussis toxin, a G(i) protein inhibitor, before stimulation with ZP blocked the release of AA and lysoPC as well as acrosomal exocytosis. Exposure of spermatozoa to the diacylglycerol (DAG) kinase inhibitor R59022 before ZP stimulation led to a significant increase in generation of lysoPC and exocytosis. Taken together, these results indicate very strongly that PLA(2) plays an essential role in ZP-induced exocytosis in spermatozoa, that PLA(2) activation requires Ca(2+) internalization, and that PLA(2) activation is regulated by signal transduction pathways involving G proteins and DAG.  相似文献   

2.
Chen WY  Ni Y  Pan YM  Shi QX  Yuan YY  Chen AJ  Mao LZ  Yu SQ  Roldan ER 《FEBS letters》2005,579(21):4692-4700
We investigated whether GABA activates phospholipase A2 (PLA2) during acrosomal exocytosis, and if the MEK-ERK1/2 pathway modulates PLA2 activation initiated by GABA, progesterone or zona pellucida (ZP). In guinea pig spermatozoa prelabelled with [14C]arachidonic acid or [14C]choline chloride, GABA stimulated a decrease in phosphatidylcholine (PC), and release of arachidonic acid and lysoPC, during exocytosis. These lipid changes are indicative of PLA2 activation and appear essential for exocytosis since inclusion of aristolochic acid (a PLA2 inhibitor) abrogated them, along with exocytosis. GABA activation of PLA2 seems to be mediated, at least in part, by diacylglycerol (DAG) and protein kinase C since inclusion of the DAG kinase inhibitor R59022 enhanced PLA2 activity and exocytosis stimulated by GABA, whereas exposure to staurosporine decreased both. GABA-, progesterone- and ZP-induced release of arachidonic acid and exocytosis were prevented by U0126 and PD98059 (MEK inhibitors). Taken together, our results suggest that PLA2 plays a fundamental role in agonist-stimulated exocytosis and that MEK-ERK1/2 are involved in PLA2 regulation during this process.  相似文献   

3.
Capacitated acrosome-intact spermatozoa interact with specific sugar residues on neoglycoproteins (ngps) or solubilized zona pellucida (ZP), the egg's extracellular glycocalyx, prior to the initiation of a signal transduction cascade that results in the fenestration and fusion of the sperm plasma membrane and the outer acrosomal membrane at multiple sites and exocytosis of acrosomal contents (i.e., induction of the acrosome reaction (AR)). The AR releases acrosomal contents at the site of sperm-zona binding and is thought to be a prerequisite event that allows spermatozoa to penetrate the ZP and fertilize the egg. Since Ca(2+)/calmodulin (CaM) plays a significant role in several cell signaling pathways and membrane fusion events, we have used a pharmacological approach to examine the role of CaM, a calcium-binding protein, in sperm capacitation and agonist-induced AR. Inclusion of CaM antagonists (calmodulin binding domain, calmidazolium, compound 48/80, ophiobolin A, W5, W7, and W13), either in in vitro capacitation medium or after sperm capacitation blocked the npg-/ZP-induced AR. Purified CaM largely reversed the AR blocking effects of antagonists during capacitation. Our results demonstrate that CaM plays an important role in priming (i.e., capacitation) of mouse spermatozoa as well as in the agonist-induced AR. These data allow us to propose that CaM regulates these events by modulating sperm membrane component(s).  相似文献   

4.
To determine if lysophosphatidylcholine (lysoPC) is able to induce proinflammatory changes in monocytes, its ability to stimulate arachidonic acid (AA) release, a product of phospholipase A2 (PLA(2)) activity, has been analyzed. LysoPC increased AA release in THP-1 and Mono Mac6 cells in a time- and concentration-dependent manner. The monocytes expressed both secretory and cytosolic PLA(2) enzymes and AA release was strongly reduced by cellular pretreatment with different PLA(2) inhibitors and by pertussis toxin, an inhibitor of G(i)-protein activation. This indicates that both cytosolic and secretory PLA(2) enzymes regulate specific lysoPC receptor-induced AA release, suggesting lysoPC participation in monocyte proinflammatory activation.  相似文献   

5.
We have investigated pathways of lipid metabolism in spermatozoa and generation of various metabolites with potential messenger functions during exocytosis stimulated with A23187/Ca2+. Stimulation of boar spermatozoa resulted in a considerable rapid increase in saturated/unsaturated 1,2-diacylglycerol (1,2-SU-DAG) and, concomitantly, a substantial reduction in disaturated 1,2-diacylglycerol (1,2-DS-DAG), and in phosphatidylcholine (PC). These changes preceded the onset of exocytosis. Phosphatidic acid was sometimes generated in parallel, but usually rose later, suggesting that 1,2-SU-DAG may be formed directly by phospholipase C action. Lipid changes observed in stimulated spermatozoa that have been prelabelled with several lipid precursors ([14C]palmitic acid, [14C]glycerol, [14C]choline, or [14C]arachidonic acid) suggested the existence of a unique process involving the utilization of the high basal levels of 1,2-DS-DAG to form 1,2-SU-DAG, with the latter being subsequently employed to replenish the PC pool. An ensuing generation of lysoPC and arachidonic acid, which paralleled the occurrence of exocytosis, revealed that the newly synthesized PC was hydrolyzed by phospholipase A2. The highest levels of 1,2-SU-DAG, minimum levels of 1,2-DS-DAG, and the regeneration of the PC pool were tightly coupled to the beginning of visible exocytosis. These results suggest that changes in these lipid metabolites may be fundamental processes during acrosomal exocytosis occurring in response to physiological agonists. Mol. Reprod. Dev. 48:95–105, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Spermatozoa from the sperm-rich fractions of the semen of 6 beagle dogs were capacitated and the effect of both zona pellucida (ZP) proteins and progesterone on calcium flux and the acrosome reaction measured. Sperm calcium flux was determined using the dual wavelength calcium probe indo-1/AM (6 microM) in a flow cytometric assay (one ejaculate from each dog examined; n = 6). No calcium flux was observed in the negative control treatments (RPMI medium or DMSO). Both heat-solubilized bitch ZP proteins and progesterone caused a similar response characterized by a gradual but marked influx of calcium ions which was sustained over 2 min. Acrosomal status was assessed by indirect immunofluorescence using a specific monoclonal antibody following 1 hr incubation for each treatment (four ejaculates from each dog examined; n = 24). The level of acrosomal exocytosis was very high for samples treated with ZP proteins (70.3 +/- 2.1%) and progesterone (84.6 +/- 1.5%) and was significantly different from the respective controls (P < 0.001). Interestingly the patterns of calcium flux in response to both ZP proteins and progesterone were in contrast to the situation in other species studied to date raising the possibility that the mechanism for triggering the acrosome reaction may be different in dog spermatozoa. In addition the high degree of progesterone-induced acrosomal exocytosis compared to other species raises the probability that the majority of dog spermatozoa are already undergoing the acrosome reaction before they reach the egg ZP.  相似文献   

7.
The acrosome reaction in human spermatozoa   总被引:5,自引:0,他引:5  
During gamete interaction, sperm acrosome reaction (AR) induced by oocyte investment is a prerequisite event for the spermatozoa to pass through the zona pellucida (ZP), fuse with and penetrate the oocyte. Progesterone (P4), secreted by cumulus cells, is an important cofactor for the occurrence of this exocytosis event. The AR results from the fusion between outer acrosomal and plasma membranes, leading to inner acrosomal membrane exposure. Binding of agonists, P4 or ZP3 glycoprotein, to plasma membrane sperm receptors activates intraspermatic signals and enzymatic pathways involved in the AR. Among the proteins or glycoproteins described as potential sperm receptors for ZP, Gi/Go protein-coupled and tyrosine kinase receptors have been described. Sperm receptors for P4 are poorly characterized, except a putative GABA(A)-like receptor. ZP- and P4-promoted AR is mediated by an obligatory intracellular calcium increase, appearing first at the acrosome equatorial segment and spreading throughout the head. The plasma membrane channels involved in calcium entry are operated by a plasma membrane depolarization and protein phosphorylations mediated by protein kinase C and tyrosine kinase protein. Part of the calcium increase could also be due to intracellular store release through IP3- and nucleotide (cAMP)-gated channels. Besides adenylate cyclase and phospholipase C activations, intracellular calcium increase also stimulates PLA2 activity and actin depolymerization, leading to membrane fusion. Evaluation of AR by staining or fluorescent probes can be useful to predict fertilization success and to direct the therapeutic strategy in male infertility.  相似文献   

8.
Spermatozoa from teratospermic domestic cats (>60% morphologically abnormal spermatozoa per ejaculate) consistently exhibit lower levels of oocyte penetration in vitro than their normospermic (<40% abnormal spermatozoa per ejaculate) counterparts. This could be caused by structural abnormalities or intracellular defects resulting in disruption of normal cellular functions. Spermatozoa from teratospermic cats also are compromised in the ability to capacitate and undergo the acrosome reaction (AR) in vitro. Further, we recently identified two tyrosine phosphorylated proteins (95- and 160-kDa) localized over the acrosome region in domestic cat spermatozoa. Phosphorylation of these proteins is reduced in teratospermic compared with normospermic ejaculates. To begin to understand the relationship between tyrosine phosphorylation and sperm function, we examined the effects of two protein tyrosine kinase inhibitors (tyrphostin RG-50864 and genistein) on (1) sperm motility; (2) protein tyrosine phosphorylation; (3) the ionophore A23187-induced AR; (4) the spontaneous and zona pellucida (ZP)–induced AR, and (5) the ability of spermatozoa from normospermic cats to penetrate conspecific ZP-intact oocytes. Over a wide range of concentrations, neither inhibitor affected sperm percentage motility during incubation (P > 0.05). Preincubation with either inhibitor reduced tyrosine phosphorylation of both (95- and 160-kDa) sperm proteins. Although both inhibitors blocked the ZP-induced AR, neither influenced the spontaneous AR nor the A23187-induced AR, suggesting that tyrosine phosphorylation may be involved in physiologic AR. No differences (P > 0.05) were observed in the ability of control or inhibitor-treated spermatozoa to bind to or penetrate the outer ZP layer. However, percentages of oocytes with treated spermatozoa in the inner ZP (tyrphostin, 8.7%; genistein, 20.4%) and perivitelline space (tyrphostin, 0%; genistein, 2.3%) were less (P < 0.001) than untreated controls (inner ZP, 62.7%; perivitelline space, 10.2%). These results (1) demonstrate that ZP-induced acrosomal exocytosis in domestic cat spermatozoa is regulated via a tyrosine kinase–dependent pathway and (2) suggest that defects in these signaling pathways may represent one of the causes for compromised sperm function in teratospermic males. Mol. Reprod. Dev. 49:48–57, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Mouse spermatozoa stimulated with epidermal growth factor (EGF) or zona pellucida (ZP) experienced phosphatidylinositol 4,5-bisphosphate hydrolysis, diacylglycerol (DAG) generation and acrosomal exocytosis. The agonists showed additive effects but the action of EGF is likely to be mediated by a distinct receptor because maximal stimulation achieved with EGF was enhanced further by ZP. Generation of DAG and exocytosis stimulated by EGF were inhibited by tyrphostin A48, indicating that tyrosine kinase activity mediates EGF action. On the other hand, pertussis toxin did not affect the EGF-induced formation of DAG or exocytosis, ruling out the involvement of sperm Gi-like proteins. These results indicate that EGF could be an important co-factor in the initiation of exocytosis in spermatozoa.  相似文献   

10.
Zona pellucida glycoprotein-3 (ZP3) has been postulated as the primary sperm receptor in various mammalian species including bonnet monkey (Macaca radiata). However, information on the domain responsible for its binding to spermatozoa is inadequate. In the present study, bonnet monkey ZP3 (bmZP3), corresponding to amino acid (aa) residues 223-348 [bmZP3(223-348)] has been cloned and expressed using baculovirus expression system. SDS-PAGE and Western blot analysis of the purified renatured recombinant protein revealed it as a closely spaced doublet of approximately 25 kDa. Lectin-binding studies documented the presence of both O- as well as N-linked glycans. The biotinylated r-bmZP3(223-348) binds to the acrosomal region of the capacitated spermatozoa but fails to bind to the acrosome-reacted spermatozoa as investigated by immunofluorescence studies. In ELISA, nonbiotinylated r-bmZP3(223-348) and baculovirus expressed r-bmZP3, devoid of signal sequence and transmembrane-like domain [r-bmZP3(23-348)] competitively inhibit its binding to the capacitated spermatozoa. Interestingly, binding of biotinylated r-bmZP3(23-348) to the capacitated sperm is also inhibited by nonbiotinylated r-bmZP3(223-348). In contrast to r-bmZP3(23-348), r-bmZP3(223-348) failed to induce acrosomal exocytosis in the capacitated sperm. Interestingly, it competitively inhibits the acrosomal exocytosis induced by r-bmZP3(23-348). These studies, for the first time, identify a domain of ZP3 capable of binding to capacitated spermatozoa and inhibiting ZP3-mediated induction of acrosomal exocytosis furthering our understanding of mammalian fertilization.  相似文献   

11.
Sperm acrosome reaction (AR) is a prerequisite step for in vivo fertilization. In the vicinity of the oocyte, zona protein(s) (ZP) and progesterone (P4), a component of follicular fluid, are proven to be responsible for physiological AR induction. In the present study, a thorough analysis of the role of the progesterone receptor (PR) in this processing including in vitro physiological studies and biochemical isolation and characterization of the receptor protein was conducted. Following capacitation for 0, 2, 4 and 6h, pooled fertile boar semen samples (n=6) with >70% sperm motility were labeled with P4-BSA-FITC (100 microg/ml) to detect the activation of PR. Parallel sperm samples were treated with P4 (10 microg/ml) for 20 min to test AR inducing efficiency at different time points. To compare the ability of ZP and P4 to induce AR, spermatozoa capacitated in a modified medium supplemented with 1mg/ml heparin for 4h, were then treated with heat solubilized ZP (150 microg/ml), P4 (10 microg/ml) or ZP+P4 for 20 min. FITC-peanut agglutinin staining was applied to observe the disrupt acrosomal morphology. A purification protocol for crude boar sperm membrane proteins was developed based on ligand-receptor affinity chromatography procedures. The PR proteins were then identified by using mAb C262 raised against intracellular PR, combined with second antibody (SDS-PAGE, Western blotting). Their N-terminal amino acid sequence was determined. The amount of PR-activated spermatozoa was enhanced with time (onset: 27+/-5%, 2h: 41+/-4%, 4h: 49+/-3% and 6h: 52+/-4%, mean+/-S.E., n=6) as evidenced by increasing percentage of spermatozoa with completed cap fluorescent staining. In parallel sperm samples, percentages of AR induced by P4 were 9+/-2, 14+/-2, 18+/-2, and 24+/-2%, respectively. In solvent control at all time points, less than 10% spermatozoa had undergone AR. Capacitation for 4h or greater time periods resulted in optimal percentage of PR-activated and acrosome-reacted spermatozoa. After sperm incubation in heparin-medium, ZP+P4 treatment induced greater amounts of AR than either P4 or ZP alone (13+/-1% compared with 8+/-1 and 10+/-1%, P<0.01). Inducing capacity of P4 was comparable to that of ZP. The molecule weights of two apparent PR molecular masses were detected to be at Mr 74 kDa and Mr 63 kDa. N-terminal amino acid sequence of 74 kDa protein was XPXNIVLIFADXLXY, which had 78% homology to arylsulfatase A and 88% homology to 72 kDa protein from boar spermatozoa. The activation of PR is associated with the capacitating process and that appears to be required for P4-induced AR. P4 and ZP appear to be equally capable of independently inducing the AR but lack synergetic or additive effects in this induction process. Both might represent alternative pathways thus resulting in alternative systems for induction of the prerequisite acrosomal exocytosis (supported by NSC 90-2313-B-005-114; 91-2313-B-005-131).  相似文献   

12.
To delineate the functional aspects of zona pellucida (ZP) glycoproteins during fertilization in human, in the present study, fluorochrome-conjugated Escherichia coli (E. coli)- and baculovirus-expressed recombinant human ZP glycoprotein-2 (ZP2), -3 (ZP3), and -4 (ZP4) were employed. In an immunofluorescence assay, capacitated human sperm exhibited binding of the baculovirus-expressed recombinant ZP3 as well as ZP4 to either acrosomal cap or equatorial region whereas acrosome-reacted sperm failed to show any binding to the acrosomal cap. Using double labeling experiments, simultaneous binding of ZP3 and ZP4 to the acrosomal cap was observed suggesting the possibility of different binding sites of these proteins on the sperm surface. No binding of ZP2 was observed to the capacitated sperm. However, acrosome-reacted sperm (20.00 +/- 1.93%) showed binding of ZP2 that was restricted to only equatorial region. Interestingly, E. coli-expressed recombinant human zona proteins also showed very similar binding profiles. Competitive inhibition studies with unlabeled recombinant human zona proteins revealed the specificity of the above binding characteristics. Binding characteristics have been further validated by an indirect immunofluorescence assay using native human heat solubilized isolated zona pellucida. Employing baculovirus-expressed recombinant ZP3 and ZP4 with reduced N-linked glycosylation and respective E. coli-expressed recombinant proteins, it was observed that glycosylation is required for induction of acrosomal exocytosis but its absence may not compromise on their binding ability. These studies have revealed the binding profile of individual human zona protein to spermatozoa and further strengthened the importance of glycosylation of zona proteins for acrosomal exocytosis in spermatozoa.  相似文献   

13.
Mammalian spermatozoa must complete an acrosome reaction prior to fertilizing an oocyte. The acrosome reaction is a unique exocytotic event involving a series of prolonged membrane fusions that ultimately result in the production of membrane vesicles and release of the acrosomal contents. This event requires the concerted action of a large number of fusion-competent signaling and scaffolding proteins. Here we show that two different members of the dynamin GTPase family localize to the developing acrosome of maturing mouse germ cells. Both dynamin 1 and 2 also remain within the periacrosomal region of mature mouse spermatozoa and are thus well positioned to regulate the acrosome reaction. Two pharmacological inhibitors of dynamin, dynasore and Dyngo-4a, blocked the in vitro induction of acrosomal exocytosis by progesterone, but not by the calcium ionophore A23187, and elicited a concomitant reduction of in vitro fertilization. In vivo treatment with these inhibitors also resulted in spermatozoa displaying reduced acrosome reaction potential. Dynamin 1 and 2 phosphorylation increased on progesterone treatment, and this was also selectively blocked by dynasore. On the basis of our collective data, we propose that dynamin could regulate specific membrane fusion events necessary for acrosomal exocytosis in mouse spermatozoa.  相似文献   

14.
The effect of various phospholipase A2 and protein kinase inhibitors on the arachidonic acid liberation in bovine platelets induced by the protein kinase activator 12-O-tetradecanoylphorbol-13-acetate (TPA) was studied. TPA stimulates arachidonic acid release mainly by activating group IV cytosolic PLA2 (cPLA2), since inhibitors of this enzyme markedly inhibited arachidonic acid formation. However, group VI Ca2+-independent PLA2 (iPLA2) seems to contribute to the arachidonic acid liberation too, since the relatively specific iPLA2 inhibitor bromoenol lactone (BEL) decreased arachidonic acid generation in part. The pronounced inhibition of the TPA-induced arachidonic acid release by the protein kinase C (PKC) inhibitors GF 109203X and Ro 31-82220, respectively, and by the p38 MAP kinase inhibitor SB 202190 suggests that the activation of the PLA2s by TPA is mediated via PKC and p38 MAP kinase.  相似文献   

15.
In some animal species, the zona pellucida protein 3 (ZP3) plays a central role during fertilization, functioning as a specific receptor for sperm and as an inducer of the acrosome reaction. On the other hand, the zona pellucida protein 2 (ZP2) acts as a secondary receptor, binding to acrosome-reacted sperm. The objective of these studies was to identify ZP2 and ZP3 domains that may be of importance for the induction of the acrosome reaction. For this purpose, we synthesized a number of ZP2 and ZP3 peptides that were either conserved among species or that were species-specific according to their respective primary structures. We identified a defined, conserved ZP3 decapeptide (ZP3-6 peptide) that bound to the surface of the acrosomal region and induced the acrosome reaction in a concentration-dependent manner in capacitated bovine sperm; this effect was significant in the nanomolar range. Pertussis toxin inhibited the ZP3-6 peptide-induced acrosome reaction but had no effect on the progesterone-induced exocytotic event. Our data are in accordance with previous studies showing that progesterone induces acrosomal exocytosis via a different pathway than ZP3 and strengthen the hypothesis that the effect of ZP3-6 peptide upon acrosomal exocytosis is G protein regulated. Despite the commonly accepted idea that glycosylation of ZP proteins is required for successful sperm-oocyte interaction, we found that acrosomal exocytosis can be induced by a synthetic ZP3 peptide that is not glycosylated. The results presented in this study may be useful for the investigation of the molecular mechanisms of sperm-egg interaction in bovine and other species.  相似文献   

16.
In previous studies we demonstrated the triggering of the phospholipase C (PLC) pathway during the activation of an Ag-specific human CD4+ T lymphocyte clone by a mitogenic pair of CD2 (X11,D66) mAb. Similar conditions were applied to investigate a possible involvement of a phospholipase A2 (PLA2) acting as an additional alternative pathway during human T cell activation. Our results show that arachidonic acid or its derivatives are released after CD2 triggering. This release is largely independent of PLC activation and is mediated by a PLA2 because: 1) phosphatidylcholine is the preferential source of [3H]arachidonate release; 2) [3H]arachidonic acid release and phosphatidylcholine hydrolysis are blocked by two inhibitors of solubilized PLA2, mepacrine, and 4-p-bromophenacylbromide; and 3) we evidenced a PLA2 activity in cell homogenates. Extracellular calcium appears to play a critical role because the effects of CD2 mAb were inhibited in a Ca2(+)-depleted medium. In contrast, protein kinase C is not implicated since PMA, a protein kinase C activator, neither stimulated arachidonic acid release nor modulated CD2-induced arachidonic acid release. Cyclic AMP which has been proved to regulate the activity of the PLC in T lymphocytes does not appear to play an important role in the regulation of PLA2 activity since PGE2 has only a minimal effect on [3H]-arachidonate release. Altogether, these findings suggest that CD2 triggering stimulates a PLA2 activity in T lymphocytes via an extracellular Ca2(+)-dependent PLC protein kinase C independent mechanism.  相似文献   

17.
Sperm acrosomal exocytosis is essential for successful fertilization, and the zona pellucida (ZP) has been classically considered as the primary initiator in vivo. At present, following what is referred to as primary binding of the sperm to the ZP, the acrosome reaction paradigm posits that the outer acrosomal membrane and plasma membrane fuse at random points, releasing the contents of the acrosome. It is then assumed that the inner acrosomal membrane mediates secondary binding of the sperm to the ZP. In the present work we used a live fluorescence imaging system and mouse sperm containing enhanced green fluorescent protein (EGFP) in their acrosomes. We compared the processes of acrosomal exocytosis stimulated by the calcium ionophore ionomycin or by solubilized ZP. As monitored by the loss of EGFP from the sperm, acrosomal exocytosis driven by these two agents occurred differently. When ionomycin was used, exocytosis started randomly (no preference for the anterior, middle or posterior acrosomal regions). In contrast, following treatment with solubilized ZP, the loss of acrosomal components always started at the posterior zone of the acrosome and progressed in an anterograde direction. The exocytosis was slower when stimulated with ZP and on the order of 10 sec, which is in accordance with other reports. These results demonstrate that ZP stimulates acrosomal exocytosis in an orderly manner and suggest that a receptor‐mediated event controls this process of membrane fusion and release of acrosomal components. These findings are incorporated into a model. J. Cell. Physiol. 220: 611–620, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The mammalian sperm acrosome reaction (AR) is an essential event prior to sperm-egg fusion at fertilization, and it is primarily dependent on an increase in intracellular Ca2+ concentration ([Ca2+]i). Spatiotemporal aspects of the [Ca2+]i increase during the AR induced by solubilized zona pellucida (ZP) in hamster spermatozoa were precisely investigated with a Ca2+ imaging technique using confocal laser scanning microscopy with two fluorescent Ca2+ indicators. A rapid rise in [Ca2+]i occurred immediately after the application of ZP solution through a micropipette. The rise was always initiated in the sperm head, even when the application was directed toward the tail. The elevated [Ca2+]i was little attenuated during measurement for 30-40 s. Acrosomal exocytosis was detected as a sudden decrease of fluorescence in the acrosomal vesicle approximately 20 s after the onset of the [Ca2+]i rise. High-resolution imaging revealed that the [Ca2+]i rise in the sperm head began at the region around the equatorial segment and spread over the posterior region of the head within 0.6 s, whereas Ca2+ concentration in the acrosomal vesicle appeared to be unaltered. The [Ca2+]i rise was completely abolished under Ca2+-free extracellular conditions, indicating that it is totally attributable to Ca2+ influx. Nifedipine, an inhibitor of L-type Ca2+ channels, did not affect the rising phase of the ZP-induced Ca2+ response, but accelerated the decline of the [Ca2+]i rise and inhibited acrosomal exocytosis. The present study provides implicative information about the spatial organization of functional molecules involved in the signal transduction in mammalian AR.  相似文献   

19.
Caltrin is a small and basic protein of the seminal vesicle secretion that inhibits sperm calcium uptake. The influence of rat caltrin on sperm physiological processes related to fertilizing competence was studied by examining its effect on 1) spontaneous acrosomal exocytosis, 2) protein tyrosine phosphorylation, and 3) sperm-egg interaction. Results show that the presence of caltrin during in vitro capacitation both reduced the rate of spontaneous acrosomal exocytosis without altering the pattern of protein tyrosine phosphorylation, and enhanced the sperm ability to bind to the zona pellucida (ZP). The significantly higher proportion of sperm with intact acrosome observed in the presence of caltrin was accompanied by a strong inhibition in the acrosomal hyaluronidase release. Enhancement of sperm-ZP binding was evident by the increase in the percentage of eggs with bound spermatozoa as well as in the number of bound sperm per egg. Similar results were obtained when the assays were performed using spermatozoa preincubated with caltrin and then washed to remove the unbound protein, indicating that the sperm-bound caltrin was the one involved in both acrosomal exocytosis inhibition and sperm-ZP binding enhancement. Caltrin bound to the sperm head was partially released during the acrosomal exocytosis induced by Ca-ionophore A23187. Indirect immunofluorescence and immunoelectron microscopy studies revealed that caltrin molecules distributed on the dorsal sperm surface disappeared after ionophore exposure, whereas those on the ventral region remained in this localization after the treatment. The present data suggest that rat caltrin molecules bound to the sperm head during ejaculation prevent the occurrence of the spontaneous acrosomal exocytosis along the female reproductive tract. Consequently, more competent spermatozoa with intact and functional acrosome would be available in the oviduct to participate in fertilization.  相似文献   

20.
In the mouse and several other species, including man, capacitated acrosome-intact spermatozoa interact with natural [soluble zona pellucida (ZP) and progesterone (P4)] and synthetic [neoglycoproteins (ngps) and calcium (Ca(2+)) ionophore] agonists, prior to the initiation of a Ca(2+)-dependent signal transduction cascade. The net result is the fusion of the sperm plasma membrane overlying the outer acrosomal membrane at multiple sites and exocytosis of acrosomal contents [i.e., induction of the acrosome reaction (AR)]. This step is believed to be a prerequisite that enables the acrosome-reacted spermatozoon to penetrate the ZP and fertilize the egg. Although the rat is one of the most commonly used laboratory animals, very little is known about the chemical nature of agonists that induce the AR in this species. The lack of this information is primarily due to the fact that the rat sperm acrosome is a relatively thin structure. Thus, it is difficult to assess the status of the sperm acrosome in this species. In this report, we describe the use of a Coomassie brilliant blue dye staining procedure to assess the status of the rat sperm acrosome by light microscopy. The procedure is highly reproducible and has allowed us to determine the effects of carbohydrate (ngps and mouse ZP) and noncarbohydrate (P4 and Ca(2+) ionophore) agonists on capacitated spermatozoa. In addition, we have used a pharmacological approach to examine the functional significance of calmodulin (CaM), a Ca(2+)-binding protein, in induction of the AR in spermatozoa. Data presented in this report demonstrate that several ngps, solubilized mZP, P4, and Ca(2+) ionophores induce the AR in rat spermatozoa. Furthermore, we demonstrate that, whereas CaM antagonists blocked P4-induced AR, most of the inhibitors used had no significant effect on the Ca(2+) ionophore-induced (nonphysiological) AR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号