首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
C-reactive protein (CRP) is an acute-phase protein that binds to components of damage tissue, activates C, and stimulates phagocytic cells. CRP binding to receptors on monocytic and polymorphonuclear phagocytes has been shown. Recently, CRP-binding proteins of 38 to 40 kDa and 57 to 60 kDa have been identified on the human promonocyte cell line U-937 and the mouse macrophage cell line PU5 1.8, respectively. However, analysis of CRP binding to these cells and to peripheral blood leukocytes suggests that additional CRP receptor sites may be present. Because many studies have shown interactions between CRP binding and IgG binding to leukocytes, we have examined further the CRP binding sites on U-937 cells and determined their relationship to the FcR for IgG (Fc gamma R) expressed on these cells. Our results demonstrate specific saturable binding of CRP to peripheral blood monocytes and U-937 cells, which is readily inhibited by aggregated IgG. Monomeric IgG, which binds specifically to Fc gamma RI, inhibited a maximum of 20% of CRP binding to these cells. mAb 197 and mAb IV.3, which block IgG binding to Fc gamma RI and Fc gamma RII, respectively, failed to inhibit CRP binding to U-937 cells. Two CRP-binding molecules were identified by precipitation of lysates from surface-labeled U-937 cells and cross-linking experiments. One of these had a molecular mass of 43 to 45 kDa, similar to the molecule previously described as the CRPR on U-937 cells. The other had the same mobility by SDS-PAGE as Fc gamma RI. The identity of this protein with Fc gamma RI was confirmed by the ability of both IgG-Sepharose and CRP-Sepharose to preclear the protein from cell lysates and by inhibition of binding to both IgG-Sepharose and CRP-Sepharose by anti-Fc gamma RI mAb 197.  相似文献   

2.
The mitogenic activity of anti-CD3 mouse monoclonal antibodies (mAb) in cultures of human peripheral blood mononuclear cells (PBMC) depends on the ability of the mAb to interact with CD3 molecules on the T cells, and with Fc receptors (FcR) on monocytes. Two types of FcR with distinct specificity for murine (m) IgG subclasses are involved: a 72-kDa receptor (FcRI) binds mIgG2a and a 40-kDa receptor (FcRII) binds mIgG1. In this study we examined the mitogenic activity of mIgG3 anti-CD3 mAb RIV9. In cultures of human PBMC, the mAb induced T cell proliferation and interleukin 2 production. We found that subjects, unresponsive to mIgG2a anti-CD3 (e.g., OKT3), were also RIV9 nonresponders. In contrast, nonresponders to mIgG1 anti-CD3 (e.g., anti-Leu4) had a normal response to RIV9. Our results therefore suggested that anti-CD3 mAb of the mIgG2a and mIgG3 subclass bind to the same monocytic FcR. Human monomeric IgG, which has been shown to bind to FcRI only, blocked T cell proliferation induced by mIgG2a and mIgG3 anti-CD3, but had no effect on T cell proliferation induced by mIgG1 anti-CD3. In contrast, a mAb (IV.3) to FcRII, which blocks ligand binding of the receptor, blocked the mitogenic activity of mIgG1 anti-CD3 antibodies, but had no effect on T cell proliferation induced by mIgG3 anti-CD3 or by mIgG2a anti-CD3. Binding of RIV9 to FcR of responder monocytes could be demonstrated in immunofluorescence. Monocytes from the RIV9 nonresponder subjects however were unable to bind the Fc portion of this antibody. The binding of fluorescein (FITC)-conjugated mIgG3 or FITC-conjugated mIgG2a to responder monocytes could be inhibited by human monomeric IgG and by mIgG2a and mIgG3, but not by the mAb to FcRII. The results demonstrate that mIgG3 binds to FcRI on human monocytes and that this binding is needed for the mitogenic activity of mIgG3 anti-CD3.  相似文献   

3.
Human C-reactive protein (CRP) is known to activate mouse macrophages (M phi) to a tumoricidal state and to serve as an opsonin for M phi. Therefore, cell surface receptors for CRP on mouse M phi were characterized and their relationship to the IgG FcR determined. The specific binding of 125I-CRP to resident or elicited mouse M phi was saturable, reversible, and involved both a high and a low affinity receptor population. Binding of CRP to the mouse M phi cell lines PU5 1.8 and J774 was nearly identical to that observed with peritoneal M phi. The high affinity receptor population had a calculated K of 10 nM and a receptor density of approximately 10(5) sites per cell. Mouse Ig of the IgG2a, IgG2b, or IgG1 isotypes inhibited binding of 125I-CRP to PU5 1.8 cells at concentrations five-fold greater than that of the homologous ligand. In the converse experiment, unlabeled CRP failed to inhibit specific binding of 125I-labeled IgG2a, IgG2b or IgG1. Isolation of CRP binding proteins from surface iodinated PU5 1.8 cells by ligand-affinity chromatography or chemical cross-linking yielded a major protein band of 57 to 60 kDa which appeared to be distinct from the IgG1/IgG2b FcR (FcR-II) membrane proteins. Removal of radiolabeled IgG2b/IgG1 binding membrane proteins by affinity chromatography did not remove CRP-binding proteins. The rat mAb 2.4G2 which inhibits binding of radiolabeled mouse IgG2b, did not inhibit the binding of CRP. A rat polyclonal antiserum to CRP-binding membrane proteins of PU5 1.8 cells inhibited 125I-CRP binding, but not 125IgG2b binding. The rat polyclonal antibody reacted with two 57 to 60 kDa membrane proteins from PU5 1.8 cells that appear to be of a similar size on Western blots. The 125I-CRP was internalized via endosomes and intact CRP subunits could be detected intracellularly. The findings suggest that binding of CRP occurs through a receptor that is distinct from the IgG FcRs, but that CRP-R activity may be influenced by an association with an IgG FcR.  相似文献   

4.
Two types of IgG FcR, FcRI and FcRII, are constitutively expressed by human monocytes. FcRI (identified by mAb 32.2) binds human (h) IgG, FcRII (identified by mAb IV.3) has a low affinity for hIgG but interacts strongly with murine (m) IgG1. These receptors can be assayed by using indicator E sensitized by hIgG (EA-hIgG) or mIgG1 (EA-mIgG1), respectively. We further characterized these two FcR by modulation studies by using substrate-immobilized immune complexes containing rabbit IgG, goat IgG, or one of the mouse Ig classes or subclasses. After incubating monocytes in microtiter wells containing such immune complexes, binding of the two types of indicator red cells on the apical surface of the monocytes was quantitated using a photometric assay employing the pseudoperoxidase activity of E. No effect on the binding of sensitized E was observed after incubation of monocytes with immune complexes containing mouse IgE, IgA, or IgM, or F(ab')2 fragments of rabbit IgG. High concentrations of immune complexes containing IgG of mouse, rabbit, or goat, however, were able to induce a decrease in binding of both types of sensitized E, suggestive of modulation of both FcRI and FcRII. At lower concentrations of immune complexes, more selective patterns of modulation emerged. Under these conditions, immune complexes containing mIgG1 or mIgG2b, or, surprisingly, goat IgG induced a selective decrease in the binding of EA-mIgG1 (FcRII modulation), while immune complexes containing mIgG2a or rabbit IgG mainly affected the binding of EA-hIgG (FcRI modulation). By using anti-FcR mAb IV.3, it was confirmed that FcRII was modulated from the apical surface of monocytes after incubation on immune complex coated substrates. Selectivity of FcR-modulation was demonstrated by showing that under these conditions binding of anti-C receptor mAb, and several other anti-monocyte mAb did not decrease.  相似文献   

5.
Three classes of FcR have been defined on human myeloid cells by their reactivity with mAb; FcRI (mAb 32); FcRII (mAb IV3); and FcRIII (mAb 3G8). We have quantitated the expression of each FcR on human myeloid leukemia cells and cell lines (KG-1, HL-60, U937, and K562). Detailed analysis of FcR surface expression is provided for the U937 cell line after exposure to CSF and cytokines. Increased expression of FcRI and FcRII occurred at 72 h in cells exposed to GCT or Mo cell line-conditioned medium as well as to medium from PHA-treated mononuclear cells. The augmentation of FcRII required protein synthesis and was diminished by a neutralizing antibody to granulocyte-macrophage CSF. We also show that fractions containing natural granulocyte CSF or granulocyte-macrophage CSF as well as r-granulocyte and r-granulocyte-macrophage CSF are capable of inducing FcRII on these cells, whereas other cytokines such as IL-1 and IL-2, TNF-alpha, INF-gamma and macrophages CSF failed to do so.  相似文献   

6.
Human monocytes and U937 cells bear two distinct Fc receptors for IgG   总被引:33,自引:0,他引:33  
Several convergent lines of evidence have led us to propose that human monocytes and the related cell line U937 possess a second class of IgG Fc receptor (FcR) in addition to the 72-Kd high affinity FcR previously described. IgG affinity purification from detergent lysates of surface radiolabeled U937 cells has yielded both a 40-Kd IgG-binding membrane protein (p40) and the 72-Kd FcR protein. By the same procedure, only the p40 was isolated from the erythroblast cell line K562 and from the B cell lines, Daudi and Raji. Serologic cross-reactivity between the 40-Kd FcR on U937 and Daudi cells was demonstrated using a goat anti-FcR antiserum. A murine (m) monoclonal antibody, raised against the FcR of K562 cells, precipitated the 40-Kd FcR from lysates of U937 and K562 cells but not from Daudi or Raji cells. This antibody, referred to as anti-p40 (IV.3), selectively inhibited the binding of murine IgG1-coated erythrocytes to U937 cells, whereas monomeric human IgG selectively inhibited binding of human anti-Rh(D)-coated erythrocytes to U937 cells. Both Daudi and U937 cells mediated mIgG1 anti-T3 (Leu-4)-induced stimulation of T lymphocytes. In contrast, mIgG2a anti-T3 (OKT3)-induced stimulation was supported effectively by U937 cells but only modestly by Daudi cells. Intact IgG or Fab fragments of anti-p40 (IV.3) blocked mIgG1 anti-T3 (Leu-4) stimulation but not mIgG2a anti-T3 (OKT3) stimulation of T cells; monomeric human IgG blocked only OKT3-induced stimulation. The simplest interpretation of these results is that human monocytes and U937 cells bear two classes of IgG FcR, one of 72 Kd and the other, as described above, of 40 Kd. We propose that the 72-Kd FcR mediates rosette formation with red cells coated by human anti-Rh IgG as well as T cell stimulation by mIgG2a anti-T3 (OKT3) and that the 40-Kd FcR mediates rosette formation with erythrocytes bearing mIgG1 as well as T cell stimulation by mIgG1 anti-T3 (Leu-4). Furthermore, we suggest that these two FcR are the human homologues of the murine macrophage FcRI (binding mIgG2a) and FcRII (binding mIgG2b/1).  相似文献   

7.
We have utilized monoclonal antibodies against the two IgG Fc receptors (p40 and p72) of U937 cells to stimulate the release of superoxide. The monoclonal antibody (mAb) specific for p40 (IV3) has been described elsewhere. A murine IgG1 mAb specific for the high affinity p72 Fc receptor (designated mAb FcR32 or simply mAb 32) bound to the same p72 precipitated by Sepharose-human IgG as shown by preclearing experiments and by identical isoelectric focussing patterns. Binding of mAb 32 to p72 was independent of the Fc region of the antibody since Fab' fragments of mAb 32 affinity adsorbed p72. The binding of both mAb 32 and human IgG1 to the intact U937 cell was not reciprocally inhibitory, indicating that mAb 32 does not interfere with the ligand binding site of p72. mAb 32 bound to human monocytes, U937, and HL60 cells, but not to granulocytes or lymphocytes. U937 cells cultured in gamma-interferon and 1,25-dihydroxycholecalciferol generated superoxide when incubated with mAb 32 or IV3 followed by cross-linking with F(ab')2 anti-murine Ig. Incubation with mAb 32 or IV3 alone or with 3 of 5 other anti-U937 mAbs cross-linked with anti-murine Ig did not result in superoxide generation. Immune complex-mediated superoxide production was inhibited 80% by IgG, but not by mAb 32 or IV3.  相似文献   

8.
We have defined two distinct classes of IgG Fc receptors (FcR) on cells of a human monocytic line (U937) by analyzing the direct binding of murine IgG subclasses in medium of low ionic strength. Four lines of evidence support this contention. The binding of aggregated murine IgG2b (AggmIgG2b) to U937 and Daudi cells was enhanced at low ionic strength, whereas monomeric murine IgG2a (mIgG2a) did not bind to Daudi cells and its high affinity binding to U937 cells was unaffected by changes in ionic strength. Double reciprocal inhibition experiments with U937 cells indicated that the binding of both ligands was inhibited 30 to 135 times more efficiently by the homologous ligand than by the heterologous one. That is, the binding of 125I-AggmIgG2b was inhibited 50% by 3.5 micrograms/ml of AggmIgG2b and 100 micrograms/ml of mIgG2a. Similarly, the binding of 125I-mIgG2a was inhibited 50% by 2.5 micrograms/ml of mIgG2a and only 44% by 243 micrograms/ml of AggmIgG2b. A monoclonal antibody of the IgG2b subclass raised against an IgG FcR on K562 cells inhibited binding to U937 cells of AggmIgG2b but not of mIgG2a. Trypsinization of U937 cells abrogated by 32% the binding of mIgG2a but did not affect the binding of AggmIgG2b. Human IgG inhibited binding of both AggmIgG2b and mIgG2a to U937 cells. We propose that the newly recognized FcR that binds AggmIgG2b is the human homologue of the murine macrophage IgG2b/1 FcR (FcRII), and that the previously described 72,000 dalton high-affinity FcR on U937 cells that binds mIgG2a is the human equivalent of the murine macrophage IgG2a FcR (FcRI).  相似文献   

9.
Macrophage Fc receptors (FcR) are essential for antibody-dependent cellular cytotoxicity and for optimal phagocytosis of opsonized particulate antigens. Culture in the presence of conditioned medium from mixed leukocyte cultures (MLC-CM) resulted in a dose- and time-dependent increase (up to 10-fold) in FcR-dependent binding of 125I-labeled IgG1 to promyelocytic HL-60 cells, macrophage-like U-937 cells, and normal cultured human monocytes. FcR increase in HL-60 cells was blocked by cycloheximide (100 microM) and was accompanied by a slight decrease in binding affinity. Since cell volume did not change, the increase in FcR probably represents an increase in the surface density of FcR sites. MLC-CM prepared with or without serum were equally effective in augmenting FcR sites, whereas only serum-containing MLC-CM caused morphologic change of U-937 and HL-60 cells.  相似文献   

10.
The presence of a membrane receptor for C-reactive protein (CRP-R) on the human monocytic cell line U-937 was the basis for determining the metabolic fate of the receptor-bound ligand and the functional response of the cells to CRP. Internalized [125I]CRP was measured by removing cell surface-bound [125I]CRP with pronase. Warming cells to 37 degrees C resulted in the internalization of approx. 50% of the receptor-bound [125I]CRP or receptor-bound [125I]CRP-PC-KLH complexes. U-937 cells degraded about 25% of the internalized [125I]CRP into TCA-soluble radiolabeled products. The lysosomotrophic agents (chloroquine, NH4Cl) greatly decreased the extent of CRP degradation without altering binding or internalization. In addition, a pH less than 4.0 resulted in dissociation of receptor-bound [125I]CRP. Treatment of U-937 cell with monensin, a carboxylic ionophore which prevents receptor recycling, resulted in accumulation of internalized [125I]CRP. Therefore, it appears that the CRP-R complex is internalized into an endosomal compartment where the CRP is uncoupled from its receptor and subsequently degraded. CRP initiated the differentiation of the U-937 cells so that they acquired the ability to produce H2O2 and also display in vitro tumoricidal activity. The results support the concept that internalization and degradation of CRP leads to the activation of monocytes during inflammation.  相似文献   

11.
The effect of iC3b receptor (CR3)-mediated phagocytosis on the expression of CR (C3b receptor, CR3) and IgG FcR (FcRI, FcRII) has been investigated by using serum-opsonized zymosan as a multivalent ligand for CR3. Sixteen hours after a short (1-h) pretreatment of human monocyte monolayers with zymosan opsonized with human AB serum (250 micrograms/ml), CR3 expression (as assessed by flow cytometric analysis with mAb Mo1) was significantly reduced by 59 +/- 3% (mean +/- SEM, n = 15, p less than 0.001). Concomitant with CR3 down modulation, FcR binding activity (as assessed by binding of IgG-coated E) was also found to be decreased to 41 +/- 4% of control (n = 7, p less than 0.001). Reduced FcR function was paralleled by a decrease in the expression of FcRI (as assessed with mAb 32.2). This FcRI modulation was not caused by zymosan-bound IgG because zymosan opsonized with agammaglobulinemic serum equally down regulated CR3 and FcRI expression. Pretreatment with zymosan opsonized with human AB serum, however, did not change the expression of other IgG and C-binding sites such as FcRII (examined with mAb IV.3 and 2E1) and CR1 (assessed with mAb 57F) as well as of unrelated cell membrane structures (beta 2m, MHC class II). In contrast, co-modulation for FcR function and CR3 expression induced by polymeric IgG is accompanied by a decreased expression of FcRII. These data indicate that interaction of a specific receptor with its ligand not only changes the expression of the receptor triggered, but has also a modulating effect on other receptor systems on the same cell.  相似文献   

12.
Human monocytes can be triggered to antibody-dependent cell-mediated cytotoxicity (ADCC) by murine antibodies. In this study, a series of H chain isotype switch variant antibodies against glycophorin A on human RBC was used to study the influence of isotype on the induction of ADCC. Furthermore, it was studied whether the functional heterogeneity in responsiveness to IgG1 and IgG2b anti-CD3 antibodies, as found among different donors in T cell proliferation induction experiments, was reflected in ADCC. Whereas IgG2a induced ADCC to the same extent in monocytes from all donors, IgG1 showed a heterogeneous pattern, which corresponded to the heterogeneity in T cell proliferation studies. IgG1 anti-CD3 nonresponder monocytes could, however, be induced to ADCC by IgG1 antiglycophorin, although they needed a much higher antibody density on the target cell than did responder monocytes. IgG2b antiglycophorin at a high density induced ADCC in monocytes from all donors irrespective of responsiveness to IgG2b anti-CD3, whereas IgE and IgA antiglycophorin were barely effective in monocytes from all donors. By specific blocking with mAb, the FcR that were involved in ADCC directed by the various isotypes were characterized. ADCC by IgG2a was predominantly mediated by FcRI and could be specifically enhanced by culturing the monocytes with rIFN-gamma. ADCC by IgG1 was predominantly mediated through FcRII in both anti-CD3 responder and nonresponder monocytes. FcRII was also involved in ADCC by IgG2b, although other receptors seemed to contribute significantly to ADCC. When FcRII or FcRI were blocked, IgG1 and IgG2a could also functionally interact with FcRI and FcRII, respectively, provided that the target cells were sensitized to a high degree. These findings indicate that FcRI and both forms of FcRII can mediate cytotoxicity and that the specificity of human FcR for murine isotypes is relative.  相似文献   

13.
Most previous studies of IgG FcR on neutrophils (PMN) have focused on a single FcR of Mr = 50 to 70 kDa, which is recognized by mAb 3G8 and anti-Leu-11a. In the course of studying the effects of extracellular proteases on PMN receptor expression and function, we found that treatment with human leukocyte elastase reduced the expression of this FcR on the PMN surface by as much as 85% in flow cytometric studies, but did not inhibit ingestion of IgG-coated particles or O2- production induced by multivalent IgG complexes, and caused only a 35% decrease in IC binding to PMN. Since a second FcR with Mr = 40 kDa recognized by mAb IV-3, recently has been identified on PMN, we sought to determine if this FcR was resistant to elastase and thus accounted for the elastase stability of IgG-mediated PMN functions. Elastase treatment that reduced 3G8 binding by 85% caused no decrease in binding of mAb IV-3. For non-elastase-treated PMN, mAb IV-3 against the 40 kDa FcR caused as much as 79 +/- 7% inhibition of IgG-induced O2- production, whereas mAb 3G8 against the 50 to 70 kDa FcR caused only 32 +/- 5% inhibition. In contrast, for IC-binding, mAb IV-3 caused only 15 +/- 6% inhibition, whereas mAb 3G8 caused as much as 80 +/- 9% inhibition, a reversal of their relative effects on O2- production. In parallel studies with elastase-treated PMN, mAb IV-3 actually blocked more IC binding than did mAb 3G8, 55 +/- 4% vs 40 +/- 6%, respectively, presumably because most of the 50 to 70 kDa FcR molecules had been cleaved. The effect of the two mAb together in blocking IC binding was additive, whereas for blocking of O2- production, mAb 3G8 added little or nothing to the effect of mAb IV-3 alone. Direct 125I-labeled Ab binding studies with intact PMN revealed seven times as many 50 to 70 kDa as 40kDa FcR, 110,200 +/- 9600 and 15,100 +/- 700 sites/cell, respectively. Our findings suggest that the elastase-resistant 40 kDa FcR is primarily responsible for IgG-mediated activation of human PMN, whereas the elastase-sensitive 50 to 70 kDa FcR predominates in IC binding, by virtue of its numerical superiority, but does not directly activate the cell. The latter may serve to hold IgG-coated microorganisms or other multivalent IC in place at the PMN surface, enhancing contact with the 40 kDa FcR and thus facilitating cell activation in a cooperative manner.  相似文献   

14.
Mechanism of human monocyte activation via the 40-kDa Fc receptor for IgG   总被引:5,自引:0,他引:5  
It is shown that a mAb specific for the human 40-kDa FcR (FcRII) leads to activation of human monocytic cells but that extensive cross-linking of the receptor is required. Calcium mobilization can be induced in immature monocytic cells (undifferentiated U937 cells) and peripheral blood monocytes with an intact IgG1 anti-FcRII antibody (CIKM5) but not by F(ab')2 fragments of this antibody. The intact antibody can bind in a tripartite manner by its two F(ab') sites and its Fc-binding site whereas the F(ab')2 fragments of this antibody can only bind in a divalent fashion. A rise in intracellular free calcium ion concentration occurs when F(ab')2 fragments are cross-linked with F(ab')2 anti-mouse Ig indicating that more extensive cross-linking of FcRII is required rather than an obligatory requirement for an Fc-FcRII interaction. Calcium mobilization in response to intact or cross-linked F(ab')2 fragments of CIKM5 is associated with superoxide production only in IFN-gamma-primed peripheral blood monocytes and IFN-gamma differentiated U937 cells indicating that the activation signal produced via FcRII is inadequate to fully stimulate non-"primed" cells. A second mAb reactive with FcRII (2E1) does not cause calcium mobilization in monocytes or U937 cells, and partially blocks the effects of CIKM5. 2E1 also blocks CIKM5 superoxide production in IFN-gamma-primed monocytes and differentiated U937 cells. This may be explained in part by the fact that 2E1 is an IgG2a antibody and can only participate in bipartite binding with FcRII. When 2E1 is cross-linked with F(ab')2 anti-mouse Ig there is a small calcium response. This does not cause superoxide generation in IFN-primed monocytes but does do so in IFN-gamma differentiated U937 cells. FcRII is also expressed on granulocytes and some B cells but the effects of cross-linking the receptor on these cells differ from those seen in monocytes.  相似文献   

15.
The use of murine monoclonal antibodies in the immunotherapy of human disease has prompted interest in the interactions of murine IgG with Fc receptors (FcR) expressed on human effector cells. We examined the heterocytophilic interactions between monomeric murine IgG subclass proteins and the FcR expressed on human monocytic cells (peripheral blood monocytes and interferon (IFN)-gamma-induced U937 cells). All four murine IgG2a antibodies and both murine IgG3 antibodies that were tested bound to human monocyte FcR with high affinity (10(8) to 10(9) M-1). By contrast, the affinities of four murine IgG1 and four IgG2b monomers were 100-fold to 1000-fold lower than the affinity of the human IgG1-FcR interaction. A 68,000 to 72,000 dalton protein was isolated by affinity chromatography from blood monocytes and from IFN-gamma-induced U937 cells on murine IgG2a, IgG3, and human IgG immunoadsorbents. In binding assays with IFN-stimulated U937 cells, murine IgG2a and IgG3 antibodies showed complete cross-blocking with a human IgG1 myeloma protein, indicating that murine and human IgG interact with the same population of Fc-binding proteins. No evidence for heterogeneity of cross-reactive FcR was observed. The ability of murine IgG2a and IgG3 monomers to compete with human IgG1 monomers for binding to human monocyte FcR suggests the potential usefulness of antibodies of these isotypes in the immunotherapy of diseases in which monocyte- or macrophage-mediated, antibody-dependent cellular cytotoxicity may play a role in the modification or remission of disease.  相似文献   

16.
In man, three distinct classes of receptors for the Fc fragments of IgG (FcRI, II, III) have been defined. The FcRI has a Mr of about 72 kDa, binds human IgG-coated E, and is recognized by mAb such as 32. The FcRII has a Mr of 40 kDa, binds murine IgG1-coated E, and reacts with the mAb IV.3 and CIKM5, which recognize CDw32 moieties. Lastly, the FcRIII has a Mr of 50 to 70 kDa and is recognized by anti-CD16 mAb. In the present study we have shown that i) only murine IgG1-coated E form rosettes with 49 +/- 1.5% (mean +/- SEM, n = 9) of CD1a+ epidermal cells (EC) (which represent Langerhans and indeterminate cells) and that ii) the mAb anti-FcRII CIKM5 prevents this rosette formation. Among the mAb reacting with the three different types of FcR, only those recognizing FcRII i) stain about 55 +/- 1.5% (mean +/- SEM, n = 9) of the CD1a+ EC and ii) reveal the presence of dendritic cells in epidermal sheets obtained by suction blister. Under the electron microscope i) apparently all the cells forming rosettes or reacting with the gold-labeled anti-FcRII mAb (CIKM5 or the F(ab) fragment of IV.3) contained Birbeck granules and ii) the gold-labeled mAb were internalized in unfixed Langerhans cells by receptor-mediated endocytosis and accumulated in lysosomes. Labeling by the anti-FcRII mAb of the CD1a+ cells in suspension disappears after 48 h of culture. All these observations strongly suggest that CD1a+ EC express only the FcRII. This conclusion was confirmed by immunoprecipitation experiments, whereas no specific immunoprecipitate was noted with the anti-FcRI or anti-FcRIII mAb, the anti-FcRII mAb immunoprecipitated a protein of Mr 40 kDa.  相似文献   

17.
Human alveolar macrophage have three distinct receptors for IgG: FcRI, FcRII, and FcRIII. In order to compare the ability of these receptors to mediate target cell lysis, three different assay systems were examined. First, we studied lysis of chicken E (CE) opsonized with heteroantibodies, which are synthetic antibodies composed of Fab fragments with anti-FcR activity covalently linked to Fab fragments with anti-CE activity. We found alveolar macrophage readily lysed heteroantibody-opsonized CE via each of the three FcR classes (FcRI, 20 +/- 5%; FcRII, 27 +/- 7%; and FcRIII, 13 +/- 13%, p less than 0.05). Non-FcR-dependent lysis of anti-beta 2-microglobulin x anti-CE heteroantibody-opsonized CE was not detected. Second, lysis of hybridoma cell lines bearing anti-FcR antibodies on their cell surface was examined to assess killing of "tumor-like" target cells. Whereas peripheral blood monocytes and lymphocytes were able to lyse hybridoma cell lines bearing surface anti-FcR mAb, alveolar macrophages were not. Third, activity of alveolar macrophage FcR was examined in a conventional antibody-dependent cellular cytotoxicity assay by using O+ (R1,R2) human RBC opsonized with human anti-D and anti-CD serum as target cells. We found lysis of anti-D and anti-CD opsonized human RBC was mediated exclusively via FcRI. No activity of FcRII or FcRIII was detected in these latter assays even if performed under conditions that impair FcRI activity. Thus, all three FcR present on alveolar macrophage mediate lysis of heteroantibody-opsonized CE; in contrast, with the use of a conventional antibody-dependent cellular cytotoxicity assay, only FcRI activity was detected. We were unable to demonstrate lysis of anti-FcR-bearing hybridoma cell lines by alveolar macrophages.  相似文献   

18.
Here we have used hybrid mouse IgG1-2a and IgG2a-2b mAb to demonstrate that the interaction between the human high-affinity IgG FcR (huFc gamma RI) and monomeric mouse IgG2a mAb requires only one of the mIgG2a H chains. Recently, we reported a method for the generation and isolation of hybrid hybridomas, producing hybrid mouse mAb. Using this method we have obtained hybrid mouse (m)IgG1-2a and mIgG2a-2b mAb reacting with either horseradish peroxidase or human IgA1 (monospecific mAb) or with both Ag (bispecific mAb). Using protein A- or Ag-affinity chromatography purified hybrid mAb, we demonstrate here the binding of monomeric hybrid mIgG1-2a and mIgG2a-2b mAb to huFc gamma R on U937 cells, whereas no binding could be observed to the K562 cell line. Monomeric mouse IgG2a mAb and human IgG1 were found to be capable of inhibiting the binding of these hybrid mIgG1-2a and mIgG2a-2b mAb in a manner similar to the way they inhibited binding of monomeric mIgG2a mAb to U937 cells; this is in contrast to our findings for mIgG1 and mIgG2b mAb which did not inhibit the binding of both hybrid mAb. In addition, the binding of the hybrid mIgG1-2a and mIgG2a-2b mAb could be blocked by mAb TB-3, which is known to block huFc gamma RI-mediated binding by the "Kurlander phenomenon" and not by the anti-Fc gamma RII mAb CIKM5 and IV.3. These results indicate that both types of monomeric hybrid mAb are bound by the huFc gamma RI. Scatchard plots of mIgG2a, hybrid mIgG1-2a, and mIgG2a-2b mAb binding revealed similar numbers of binding sites and similar affinity constants of huFc gamma RI for these mAb (0.9 to 3.6 x 10(8) M-1). These results suggest that huFc gamma RI, present on the U937 cell line, are capable of binding monomeric hybrid mIgG1-2a and mIgG2a-2b mAb, and that this interaction requires only one of the mIgG2a H chains.  相似文献   

19.
The effect of murine IgG hybridoma antibodies directed against leukocyte antigens on the Fc receptor function of human cells was studied. For this purpose, the specific binding of 125I-labeled monomeric human IgG1 to a macrophage-like cell-line (U-937) was quantitated before and after incubation in the presence of murine monoclonal hybridoma antibodies. Four monoclonal hybridoma antibodies (A1G3, 23D6, 4F2, and 3A 10), each of which binds to different antigens on the surface of U-937 cells, rapidly and potently inhibited the specific binding of labeled IgG1 to these cells. Inasmuch as inhibition was mediated only by IgG antibodies with an intact Fc fragment and antibody activity against surface antigens found on U-937, inhibition appears to have resulted from the formation of a three-component complex composed of antibody bound by its Fab portion to antigen and by its Fc fragment to a Fc receptor. Equilibrium binding studies performed on treated cells confirmed that reduced Fc receptor-mediated binding was due to a reduction in the number of available receptors. Binding studies employing double isotope labeling methods demonstrated that about 0.5 to 1.0 Fc receptor was blocked for each molecule of intact antibody bound to a U-937 cell. Using several techniques, it was shown that most of the monoclonal antibody bound to cells and the Fc receptors blocked by antibody remained on the cell surface despite incubation at 37 degrees C for 3 hr. Thus, the loss of receptor function observed in these experiments was almost exclusively due to reversible receptor blockade rather than receptor internalization or degradation. The antibodies identified in these studies also markedly inhibited Fc receptors on one other human cell line (HL-60) as well as those on normal human peripheral blood monocytes.  相似文献   

20.
Mo3 is an activation Ag expressed by human monocytic cells after stimulation in vitro by PMA, LPS, certain cytokines, and muramyl dipeptide. The structural characterization of Mo3 has been made possible by the development of a mAb (anti-Mo3f) that immunoprecipitates Mo3 from Nonidet P-40 lysates of radiolabeled PMA-stimulated U-937 cells and LPS-activated monocytes. On SDS-PAGE (nonreducing conditions) of anti-Mo3f immunoprecipitates, U-937 Mo3 is a single broad band of 39 to 66 kDa, whereas monocyte Mo3 is smaller with an apparent molecular mass of 32 to 56 kDa. Under reducing conditions, there is an increase in the m.w. of both species of Mo3 suggesting the existence of internal disulfide bonds. Mo3 is a glycoprotein with carbohydrate of the N-linked complex type as evidence by a reduction in m.w. by 40 to 50% after treatment with endoglycosidase F or N-glycanase; neuraminidase treatment produces a 3-kDa reduction in m.w. Deglycosylated Mo3 isolated from U-937 and monocytes have similar m.w. suggesting that the molecular heterogeneity of the native Mo3 may be due to differences in glycosylation. Mo3 is sensitive to phosphatidylinositol-specific phospholipase C with the release of native Mo3 from the surface of PMA-stimulated U-937 cells. These results indicate that Mo3 is a member of the glycosylphosphatidylinositol-linked family of surface glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号