首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
—The uptake of radioactive amino acid by incubated cerebral cortex slices is found to be a first order process. Incorporation of the radioactive amino acid into tissue protein is from a precursor pool that has first equilibrated with the intracellular endogenous free amino acids. Ways of calculating the amino acid incorporation in molar quantities from the observed incorporation of radioactivity are discussed, and it is concluded that the specific radioactivity of the intracellular acid-soluble fraction is the best basis for such estimates. The in vitro incorporation of leucine into tissue protein is estimated to be approximately 1±2 mμnol/mg protein/h, and of valine 0±4 mμmol/mg protein/h. Addition of free amino acids to the media had little or no effect on the calculated rates of incorporation. On incubation for 1 h the total free valine in tissue and medium increased by 0±43 μmol/g and leucine increased by 0±55 μmol/g. Estimates of amino acid incorporation based on the specific radioactivity of the media amino acids can give misleading results if this considerable release of amino acids into the medium is not taken into account. Electrical stimulation of neocortical slices with a variety of types of pulses was either without effect or decreased incorporation into portein. The decrease could not be directly correlated with changes in tissue K+ nor with the utilization of ATP. Mild, local stimulation of the lateral olfactory tract of piriform cortex slices was without effect on tissue phosphocreatine, K+ or amino acid incorporation.  相似文献   

2.
Abstract— Unilateral sympathetic decentralization of the superior cervical ganglion of rats was performed 3 days prior to the experiments. A two-compartment kinetic model was proposed to describe the effect of decentralization on (1) the uptake of a nonphysiological amino acid from plasma to the submaxillary gland and (2) the incorporation of a physiological amino acid from precursor pool into protein. The calculations based on the model showed that the fractional rate constant for efflux of the nonphysiological amino acid, α-[3-14C] aminoisobutyric acid, was greater in the decentralized than in the normal gland. However, efflux rate was equal in the two glands because the extrapolated zero time value of the initial concentration was greater in the normal gland.
The labelled physiological amino acid, [14C]leucine, was used in initial experiments to assess turnover rate of the gland proteins but it was rapidly metabolized to many other radioactive compounds. Therefore, arginine[14C]guanido was employed-arginine being the only labelled amino acid found after injection. Since the steady state content of submaxillary gland proteins was not changed but the fractional rate constant of conversion of free arginine into protein (kp) was greater in the decentralized gland (kp= 0-40 h_l) than in the normal (kp= 0-27 h−1), we can conclude that decentralization increases protein turnover rate; thus, assuming that arginine[14C]guanido is homogeneously distributed in the tissue pools of free arginine, the rate of protein turnover is greater in the sympathetically decentralized gland than in the normal.  相似文献   

3.
Incubation of brain cell suspensions with 14 mM-phenylalanine resulted in rapid alterations of amino acid metabolism and protein synthesis. Both thc rate of uptake and the final intracellular concentration of several radioactively-labelled amino acids were decreased by high concentrations oi phenylalanine. By prelabelling cells with radioactive amino acids, phenylalanine was also shown to effect a rapid loss of the labelled amino acids from brain cells. Amino acid analysis after the incubation of the cells with phenylalanine indicated that several amino acids were decreased in their intracellular concentrations with effects similar to those measured with radioisotopic experiments (large neutral > small and large basic > small neutral > acidic amino acids). Although amino acid uptake and efflux were altered by the presence of 14 mwphenylalanine, little or no alteration was detected in the resulting specific activity of the intracellular amino acids. High levels of phenylalanine did not significantly altcr cellular catabolism of either alanine, lysine, leucine or isoleucine. As determined by the isolation of labcllcd aminoacyl-tRNA from cells incubated with and without phenylalanine, there was little or no alteration in the level of this precursor for radioactive alanine and lysine. There was, however, a detectable decrease in thc labelling of aminoacyl-tRNA for leucine and isoleucine. Only aftcr correcting for the changes of the specific activity of the precursors and thcir availability to translational events, could the effects of phenylalanine on protein synthesis be established. An inhibition of the incorporation into protein for each amino acid was approximately 20%.  相似文献   

4.
INHIBITION OF AMINO ACID UPTAKE BY THE ABSENCE OF Na+ IN SLICES OF BRAIN   总被引:5,自引:5,他引:0  
—The Na+ requirement of amino acid transport was measured in brain slices. The tissue was first washed free of Na+ and then Na+ was replaced by one of the following: choline, Li+, Rb+, or mannose. Amino acid uptake was measured at different times (5–120 min) and at low (10-7–10-5m ) and high (10-3m ) concentrations. Most of the Na+ could be washed out of the tissue; this also decreased K+ levels despite increased K+ in the medium. K+ tissue levels were partially restored when Na+ was added. The absence of Na+ abolished the uptake of Glu, Asp, GABA, Gly, Tau and Pro. Most of the neutral amino acids (Ala, Val, Trp, His) were very strongly inhibited by the absence of Na+ under most experimental conditions. Basic amino acids (Arg, Lys) were not completely inhibited, in that 30 per cent of the equilibrium uptake remained and some of the basic amino acid influx was independent of the Na+ tissue level. The uptake of amines (tyramine, cadaverine, putrescine) did not require Na+, and often was greater in the absence of Na+. We conclude that amino acid uptake in brain slices is Na+ dependent, although the absence of Na+ may affect transport indirectly.  相似文献   

5.
The inhibition of protein synthesis by ethionine reported previously was found to be apparent, and ethionine inhibited only amino acid uptake like other usual amino acids. Even under such strong inhibition of the uptake, the syntheses of protein and DNA remained almost undiminished. The uptake of amino acid mixture by sea urchin embryos in the early cleavage stage was found to be carried out by active transport, since it was temperature-sensitive and was inhibited by 2,4-dinitrophenol. The uptake of an amino acid mixture or of single amino acids, e.g., valine, leucine and phenylalanine, was inhibited nonspecifically by an excess amount of other single amino acids added exogenously. Reflecting the inhibition of amino acid uptake, in vivo incorporation of amino acids into the protein fraction was apparently inhibited by excess amounts of other amino acids. As far as tested, the inhibition seems to be nonspecific and competitive for all amino acid species. The uptakes of leucine and phenylalanine were inhibited mutually by competition, with almost the same Km and Ki.  相似文献   

6.
Compartmentation of the free amino acid pool of brain slices was investigated by measuring the approach to isotopic equilibrium between tissue and medium when slices were incubated with traces of radioactive amino acids. Trace quantities were used to minimize the effects of uptake, which could make the detection of slowly equilibrating pools difficult by greatly increasing tissue amino acid levels. Small, sequestered compartments were found. After 2 h in 20 vol of glucose-containing, oxygenated medium, the nonequilibrating compartments for lysine, leucine, tyrosine, histidine, valine, and threonine were 41, 20, 17, 16, 11, and 6% of their final tissue concentrations, respectively. The data for rapidly metabolized, nonessential, amino acids were more difficult to interpret. Considerable mixing of incoming glutamic and aspartic acids with their endogenous pools was observed and tissue glycine reached isotopic equilibrium within 1 h. With higher concentrations of amino acids, equilibration was complete in 30 min with 2 mm glycine in the medium; 83% in 30 min with 2 mm glutamic acid, and 95% in 60 min with 5 mm glutamic acid in the medium. The amino acid composition of protein free extracts of slices and medium was determined. During incubation, despite a large efflux of amino acids into the medium, most tissue amino acids remained close to their initial concentrations. Net increases in essential amino acids were accounted for by the breakdown of 0.7% of total tissue protein during the first hour and 0.3% during the second hour of incubation.  相似文献   

7.
Abstract— The distribution of ribosomal fractions has been examined in fresh cerebral cortex tissue and in slices maintained in vitro both with and without electrical stimulation. The electrical stimulation used was of a type that has previously been shown to diminish amino acid incorporation into protein.
Membrane-bound and free fractions were obtained and the ratio of their RNA contents were, for the control tissue 3, and for the electrically stimulated tissue 1 , 8. Electrical stimulation was found to decrease the Mg2+ binding affinity of the free. fraction but was without effect on the bound fraction. Stimulation was also found to increase the leakage of soluble protein and RNA from the tissue and its accumulation in the incubation medium.  相似文献   

8.
1. Incorporation of [(14)C]leucine into protein in rat liver slices, incubated in vitro, increased as the concentration of unlabelled amino acids in the incubation medium was raised. A plateau of incorporation was reached when the amino acid concentration was 6 times that present in rat plasma. Labelling of RNA by [(3)H]orotic acid was not stimulated by increased amino acid concentration in the incubation medium. 2. When amino acids were absent from the medium, or present at the normal plasma concentrations, no effect of added growth hormone on labelling of protein or RNA by precursor was observed. 3. When amino acids were present in the medium at 6 times the normal plasma concentrations addition of growth hormone stimulated incorporation of the appropriate labelled precursor into protein of liver slices from normal rats by 31%, and into RNA by 22%. A significant effect was seen at a hormone concentration as low as 10ng/ml. 4. Under the same conditions addition of growth hormone also stimulated protein labelling in liver slices from hypophysectomized rats. Tissue from hypophysectomized rats previously treated with growth hormone did not respond to growth hormone in vitro. 5. No effect of the hormone on the rate or extent of uptake of radioactive precursors into acid-soluble pools was found. 6. Cycloheximide completely abolished the hormone-induced increment in labelling of both RNA and protein. 7. It was concluded that, in the presence of an abundant amino acid supply, growth hormone can stimulate the synthesis of protein in rat liver slices by a mechanism that is more sensitive to cycloheximide than is the basal protein synthesis. The stimulation of RNA labelling observed in the presence of growth hormone may be a secondary consequence of the hormonal effect on protein synthesis. 8. The mechanism of action of growth hormone on liver protein synthesis in vitro was concluded to be similar to its mechanism of action in vivo.  相似文献   

9.
1. The effects of insulin in vitro on tissue pools and incorporation into protein of glycine and leucine in the extensor digitorum longus muscle of the rat are reported. 2. It was found that insulin decreased the lag period before the establishment of a linear rate of incorporation of radioactive glycine into protein. 3. The hormone increased the size of the free intracellular glycine pool. No such effect was found for leucine. The accumulation of radioactive glycine in the intracellular fluid compartment was increased. The content of radioactive leucine in the intracellular compartment was decreased. 4. Insulin decreased the specific radioactivity of both glycine and leucine in the extracellular fluid. 5. The hormone also decreased protein catabolism. 6. The effect on protein synthesis was not caused by an increase in the specific radioactivity of the extracellular pool but was possibly related to increased amino acid concentrations in this pool, which could in turn have affected the aggregation of ribosomes.  相似文献   

10.
MEASUREMENTS OF RATES OF PROTEIN SYNTHESIS IN RAT BRAIN SLICES   总被引:7,自引:7,他引:0  
The use of tracer concentrations of labelled amino acids to measure incorporation in incubated slices of brain results in wide fluctuations with time in the specific activity of the precursor. Using concentrations of about 1 mm of labelled amino acid facilitates the accurate measurement of rates of synthesis. These higher precursor levels in the medium decrease the fluctuations in free amino acid specific activity due to dilution by endogenous amino acid and the production of amino acid by protein degradation, and decrease the lag in incorporation due to transport phenomena. Concentrations of 1 mm amino acid in the medium did not inhibit protein synthesis; with valine, leucine, phenylalanine, lysine and histidine, incorporation rates were similar when measured at trace concentrations and at 1 mm medium levels. The source of amino acid for protein synthesis appears to be intracellular. No evidence could be found for the preferential use of extracellular medium amino acid. The rate of incorporation of amino acids in incubated slices of rat brain was 0.087 per cent of the protein amino acid/h.  相似文献   

11.
The binding of labeled free amino acids to liver and to purified protein by commonly used fixatives was investigated. Glutaraldehyde caused 25% of free leucine to be bound to serum albumin in solution, whereas formaldehyde bound only 0.5%. Liver slices were incubated for 2 min in the presence of labeled leucine and of puromycin, which permits absorption of leucine into the cell but inhibits incorporation into protein. Both counting and radioautographic techniques showed that glutaraldehyde bound 30 times, and osmic acid six times, as much free amino acid as did formaldehyde. By comparing liver slices incubated with and without puromycin for 2 min, it was calculated that in radioautographs prepared after fixation with glutaraldehyde, osmic acid, or formaldehyde 63, 25, and 4% respectively of the grains were due to binding of free amino acid. Formaldehyde, freshly prepared from paraformaldehyde, gives good preservation and is the recommended fixative for radioautography. When levels of free substrate in a tissue are high at the time fixative is added, the amount of binding of free substrate induced by the fixative should be included as a control in radioautographic experiments.  相似文献   

12.
1. Apparatus is described in which rat extensor digitorum longus muscle can be incubated in buffer under conditions of light tension and be subject to contractures induced by electrical stimulation in vitro. Under these conditions the tissue retains its weight, its content of potassium and size of the extracellular space at values similar to those in vivo. 2. Though uptake of glucose was enhanced on addition of insulin, there was little increase in glucose consumption on stimulation. Breakdown of glycogen and enhancement of lactate output were found on stimulation. 3. Incorporation into protein of several labelled amino acids was diminished during stimulation. Accumulation of [(14)C]leucine was enhanced whereas that of glycine was decreased. 4. There were no very consistent changes in the content of free unlabelled amino acids during incubation with or without stimulation. Comparison of actual amino acid concentrations in tissue and incubation mixture with accumulation of (14)C-labelled amino acid indicated that full equilibration of the cell pool of amino amino acids with the medium is slow. 5. Substantial oxidation of several (14)C-labelled acids was observed. 6. The ATP content of the tissue declined a little during incubation and somewhat faster after a period of stimulation. 7. The results are discussed in relation to the way in which exercise can induce muscle hypertrophy.  相似文献   

13.
Abstract— Brain slices were incubated with [3H]GABA in a medium containing aminooxyacetic acid to prevent metabolism of [3H]GABA by GABA-glutamate transaminase. The slices, which rapidly accumulated radioactivity, were then continuously perfused and the efflux of [3H]GABA from the tissue was measured. The spontaneous efflux of [3H]GABA consisted of an initial rapid phase followed by a much slower release of [3[H]GABA. After 40 min perfusion 90 per cent of the radioactivity remained in the tissue.
The slices were depolarized by electrical stimulation or by perfusion with a medium containing a high potassium concentration (40 mM). These procedures caused a striking increase in the efflux of [3H]GABA. The increased efflux produced by potassium, but not that produced by electrical stimulation, was dependent on calcium ions in the medium. The effect of electrical stimulation on [3H]GABA release was considerably reduced by a raised concentration (10 mM) of magnesium in the medium.
High potassium concentrations and electrical stimulation did not cause an increase in the efflux of [14C]urea, L-[3H]leucine or [14C]α-amino-isobutyric acid from brain slices. These results are consistent with the suggestion that GABA may be an inhibitory transmitter in the cerebral cortex.  相似文献   

14.
Abstract— Levels of free amino acids, profiles of polyribosomes, and rates of protein synthesis and degradation were examined in the brains of chicks fed toxic levels of galactose. The content of a number of amino acids were altered; alanine and leucine were most strikingly depressed, whereas levels of aspartate were elevated. Polyribosomal profiles were unaltered. There appeared to be no detrimental effect on protein synthesis as judged by in vivo incorporation of L-[U-14C]leucine and L-[guanidino-14C]arginine. Likewise, the half-lives of proteins, measured by the loss of L-[guanidino-14C]arginine, were similar in experimental and control groups. In contrast, initial rates of incorporation of [3H]glucosamine into glycoproteins were enhanced. The effect was greatest in the microsomal fraction and typically 50 per cent greater than controls. Levels of free glucosamine and protein-bound hexosamine were essentially unaltered in the galactose-fed chicks.  相似文献   

15.
Slices from the forebrains of day-old chicks represent a highly active in vitro protein-synthesising system. The in vitro incorporation of L-[14C]leucine into protein of slices was estimated to be 2.5 mmol/mg protein/h. Incorporation was linear over 90 min of incubation and was suppressed by 92% by 1 mM cycloheximide. The highest incorporation was into microsomal and cell-soluble fractions. Under the electron microscope, slices appeared vacuolated near the cut surfaces, but well preserved internally (greater than 40 micron from the edge). Autoradiography showed that radioactivity was incorporated evenly across the slice with no decrease in label in the central part of the tissue. The rate of incorporation was only weakly dependent on leucine concentration in the medium (0.04-1 mM). Addition of a mixture of unlabelled amino acids (1 mM) produced a 20-50% inhibition of incorporation of radioactive L-leucine depending on the amino acids involved. In slices prepared from chicks 1 h after training on a one-trial passive avoidance paradigm, L-[14C]leucine incorporation was 23% higher (p less than 0.01) in the forebrain roof than in slices from control chicks. This figure is comparable to the one previously reported in vivo. Subcellular fractionation of incubated slices from the forebrain roof of trained and control birds revealed that the increased protein synthesis was due mainly to an elevated leucine incorporation into the soluble fraction.  相似文献   

16.
—Total proteins, free amino acids, tritiated water and subcellular proteins of mouse brain were examined for changes in radioactivity during operant conditioning after subcutaneous administration of labelled amino acids. The conditioning was based on appetitive learning, using sweetened milk as a reward. During training and incorporation for 20-30 min, both [3H]leucine and [1-14C]leucine underwent a significant increase in catabolism, resulting in a decreased radioactivity in the free amino acids. [2-2H]Methionine underwent a rapid loss of isotope, so that 90% of the radioactivity was in the form of tritiated water at the end of training, and this phenomenon masked any possible effect of training. The brain uptake of [35S]methionine increased during the training, resulting in an increased radioactivity in the proteins. Uptake of [3H]lysine increased slightly during training only after 1 h incorporation and not after 20 or 30 min, as judged from a time course of radioactivity in the free amino acids. Incorporation into nuclear proteins increased selectively during 20 min, and into nuclear and cytosol proteins after 60 min incorporations. It is concluded that changes in the observed rate of incorporation of a precursor into brain subcellular proteins under the influence of behaviour might be the result of changes in precursor catabolism or uptake, or both, and that each amino acid behaves in a different way. Even the same amino acid gives different results depending on the isotope and its position in the amino acid.  相似文献   

17.
Isolated rat hepatocytes prepared by an enzyme perfusion technique possess a functional amino acid transport system and retain the capacity to synthesize protein. Amino acid transport was studied using the non-metabolizable amino acid analog alpha-aminoisobutyric acid. The transport process was time, temperature and concentration dependent. Similarly, leucine incorporation into protein was time and temperature dependent being optimal at 3m degrees C. Amino acid, fetal calf serum, growth hormone and glucose all produced small, reproducible increases in protein synthesis rates. Bovine serum albumin diminished the uptake of alpha-aminoisobutyric acid and leucine incorporation into protein. The amino acid content on either side of the cell membrane was found to affect transport into or out of the cellular compartment (transconcentration effects). High cell concentrations decreased transport and protein synthesis as a result of isotopic dilution of labelled amino acids with those released by the hepatocytes. This was consistent with the capacity of naturally occurring amino aicds to compete with alpha-aminoisobutyric acid for uptake into the hepatocyte. In order to define more precisely the effects of bioregulators on transport and protein synthesis it will be necessary to define and subfractionate cellular compartments and proteins which are the specific targets of cellular regulation.  相似文献   

18.
1. Rates of RNA and protein synthesis were measured in rat cerebral-cortex slices, and compared with amino acid incorporation into protein by membrane-bound and free ribosomes from the same tissue, in the first 3 weeks of life. 2. A rapid age-dependent decline in the incorporation of labelled precursors into both RNA and protein was observed, which was more marked for amino acid incorporation into protein. 3. Although membrane-bound ribosomes comprise only a small fraction of total ribosomes, they were more active in incorporating amino acids into protein than were free ribosomes, especially immediately after birth. The decline in activity with age was more marked in the membrane-bound fraction than in free ribosomes. This loss of activity was largely independent of alterations in soluble factors or endogenous mRNA content and appeared to involve some alteration of the function of the ribosome itself, with relatively small alterations in the ratio of membrane-bound to free ribosomes. 4. Thyroidectomy, performed soon after birth, had no effect on the incorporation of radioactive precursors into RNA or protein by either slices or the cell-free preparations during the first 3-4 weeks of life.  相似文献   

19.
The incorporation into brain slice protein of externally provided [1-14C]valine was measured at varying levels of valine in the medium, under conditions of constant protein synthesis and equilibration of intracellular valine specific activity. The results indicate that the valine pool used for protein synthesis is not identical to the pool of total free valine. Neither does the incorporation solely occur from an extracellular pool which is in equilibrium with the incubation medium. The data are compatible with a two-site activation model in which aminoacylation of tRNA occurs at both an internal site utilizing amino acid from the intracellular pool and an external (possibly membranous) site converting extracellular valine directly to valyl-tRNA. A good fit to the experimental observations is also provided by a compartmented intracellular valine pool model.  相似文献   

20.
In attempts to distinguish between direct and indirect effects of Ca on brain cell metabolism, respiration, glycolysis, ATP, phosphocreatine, incorporation of [14C] leucine into protein, and accumulation of45Ca was determined in brain slices. Incubation was carried out in normal salt-balanced medium, in high-potassiumor ouabain-containing medium under aerobic and anaerobic conditions. Calcium ions inhibited slightly glycolysis and respiration in normal medium and activated amino acid incorporation into proteins. Levels of ATP and phosphocreatine remained normal. These effects were interpreted as due to a stabilization of plasma membranes by Ca ions to prevent their spontaneous depolarization. Incubation of slices in high-potassium and ouabain media in aerobic conditions in the presence of Ca resulted in activation of respiration and glycolysis, decrease of ATP and phosphocreatine levels, and inhibition of amino acid incorporation into proteins. The disturbances in energy metabolism, caused by the respiration-linked Ca uptake in brain mitochondria and concomitant inhibition of oxidative phosphorylation, may lead to the inhibition of amino acid incorporation into proteins. An increase in Ca levels in the cytoplasm may only be expected in anaerobic conditions during the incubation in high-potassium and ouabain media. This is manifested by a direct inhibition of glycolysis by Ca ions and a drastic decrease of ATP and phosphocreatine in slices. The results suggest that stimulation of aerobic glycolysis and inhibition of anaerobic glycolysis by Ca may explain the unknown mechanism of the so-called reversed Pasteur effect of brain slices incubated in high-potassium media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号