首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aim We analyse patterns of biodiversity in the spring snail genus Bythinella, a group of highly isolated and stenotopic freshwater species. We aim to test: (1) whether there are European areas of increased diversity (i.e. ‘hotspots’), (2) whether the potential hotspots inferred show qualitative differences in biodiversity characteristics such as endemicity, distinctiveness of taxa, age of lineages or degree of fragmentation, and (3) whether these hotspots match the Pleistocene refugia of Bythinella spp. Location Europe, Asia Minor. Methods The analyses are based on genetic data from 717 Bythinella specimens sampled at 194 sites. We used haplotypes as operational units in all analyses. To test hypothesis 1, mean pairwise genetic distances between Bythinella populations within each 1° × 1° geographical grid cell sampled in Europe were calculated. Within individual mountain ranges, grid cells with high diversity were grouped with neighbouring ones and hotspots were identified based on pre‐defined criteria. Then, to test hypothesis 2, different biodiversity indices of these regions were calculated and compared. Finally, to test hypothesis 3, the spatial distribution of the identified hotspots was compared with the known Pleistocene refugia of Bythinella spp. Results Five areas showed increased levels of genetic diversity: the Massif Central/Pyrenees, the western and eastern Alps, and the western and eastern Carpathians. These regions showed qualitative differences in biodiversity, with the eastern Carpathians holding the highest number of (endemic) haplotypes, the oldest and most distinct lineages and the highest degree of fragmentation. Only three of the five detected hotspots matched previously identified Pleistocene refugia for Bythinella spp. Main conclusions The genetic diversity of Bythinella spp. is not randomly distributed throughout Europe. Some of the hotspots we identify coincide with those found in other freshwater taxa; others have not previously been reported. Thus, spring organisms may reflect a unique evolutionary history that is distinct from lentic and lotic taxa. Our findings may be useful for conservation purposes even though the species‐level taxonomy of the genus is still under discussion.  相似文献   

2.
Question: Can we recognize areas of high endemism and high endemic richness, using data from collections, and what are the ecological variables that best explain these areas? Location: Peninsula of Baja California, Mexico. Methods: We analysed the distribution of 723 endemic vascular plants species along the peninsula of Baja California and neighbouring islands distributed in 218 cartographic cells 15’ x 20’ in size. By means of a residual analysis, we identified areas of significantly high endemic species richness, and we calculated the degree of endemicity (or rarity) in each cell by giving to each species a weight factor inversely proportional to the land area it covers. Results: Nine regions of high‐endemicity and/or high endemic species richness were found. Discussion and conclusions: The analyses of rarity and endemic species richness showed two contrasting scenarios: High endemicity values in oceanic and sky islands accounts for a high number of species with a restricted distribution, promoted most likely by genetic isolation and high environmental heterogeneity. High endemic richness along the peninsular coast is related to ecotonal transition along vegetation types. After correcting for collection effort (i.e. the number of specimens collected within a cell), we found the phytogeographic region and altitudinal heterogeneity to be the variables that best predicted endemic richness. Both high endemism and high endemic richness have distinct geographic patterns within our study region. The nine endemic regions provide elements for priority definitions in future conservation programs.  相似文献   

3.
Refugia are critical for the maintenance of biodiversity during the periods of Quaternary climatic oscillations. The long‐term persistence of refugial populations in a large continuous refugium has resulted in a homogenous pattern of genetic structure among populations, while highly structured evolutionary lineages characterize the restriction of refugial populations to smaller subrefugia. These mechanisms have resulted in the identification of hot spots of biodiversity within putative glacial refugia. We studied phylogeography of Potamon ibericum (Brachyura: Potamidae) in the drainages of the western Caucasus biodiversity hot spot (i.e., Colchis and the Caucasus) to infer spatial genetic structure and potential refugia for a freshwater crab in this region. These areas have traditionally considered as a refugium due to the presence of Tertiary relict species. We integrated population genetic data and historical demographic analysis from cytochrome oxidase subunit I sequences and paleoclimatic data from species distribution modeling (SDM). The results revealed the lack of phylogeographic structure and provided evidence for demographic expansion. The SDM presented a rather homogenous and large refugium that extended from northeast Turkey to Colchis during the last glacial period. In contrast to these findings, previous phylogeographic study on P. ibericum of the eastern Caucasus biodiversity hot spot (i.e., Hyrcania) identified multiple independent refugia. By combining these results, we explain the significance of this important western Palearctic hot spot of biological diversity in shaping the geographic distribution of intraspecific genetic diversity in a freshwater taxon.  相似文献   

4.
5.
This paper investigates the distribution of species richness, rarity and endemicity of European land mammals (bats and introduced species excluded). The highest level of species richness was in Central Europe, while Southern areas had the highest rarity and endemicity scores. The distribution of richness was affected by the location of sampling points in islands and peninsulas. After excluding these sampling points, richness continued to decrease Westward suggesting the existence of a large-scale peninsular effect on mammal distribution. These patterns of continental distribution of richness, rarity and endemicity could be the result of the distribution of refuge areas in the southern Mediterranean peninsulas, and the Pleistocene advances and retreats of mammals throughout the Western Palearctic. Thus, European mammal distribution can be interpreted on the basis of two different patterns of abundance distribution in which Palearctic species reduce their abundance from central-Europe outwards, while endemic, rare species show a similar depletion in the North. It should be useful to evaluate the role of the different regions in Europe in conserving the demographic interactions between central and peripheral populations of mammal species. Given the restricted distribution and potential small size of population, these endemic species are most likely to be susceptible to anthropogenic environmental degradation.  相似文献   

6.
The collision of the Indian and Eurasian landmasses in the Cenozoic was a decisive factor in shaping biodiversity patterns in Southern and Southeastern Asia. While most studies thus far have focused on the biotic interchange between India and Eurasia and evolutionary diversification on or around the Tibetan Plateau, little attention has been paid to the biodiversity buildup in the Eastern Himalaya biodiversity hotspot (EHH) which harbors over 540 freshwater fish species with a high degree of endemicity. An important component of the regional ichthyofauna are snakehead fishes of the family Channidae comprising throughout their African-Asian distribution 47 valid species, but a poorly known species-level diversity. In order to evaluate channid intrarelationships and biogeography, a temporal and geographic framework of channid evolution in conjunction with a critical reevaluation of the channid fossil record is warranted. Based on molecular data, we provide a comprehensive species-level phylogeny based on 223 channid individuals belonging to 37 species and one additional currently undescribed species. The first split within channids separates the African genus Parachanna from the Asian genus Channa which can be divided into eight distinct species groups (Argus, Asiatica, Gachua, Lucius, Marulius, Micropeltes, Punctata, and Striata groups). Large intraspecific divergences were observed within several species and potentially indicate additional species-level diversity. Almost 40% of the channid species are narrow-range endemics belonging to the Gachua group. These are found in the EHH making this area an outstanding hotspot for endemic channid diversity. The large majority of the EHH endemics are restricted to the southern foothills of the Eastern Himalaya and the Shillong-Mikir Hills Plateau, areas west of the Indoburman Ranges. Our results reveal complex and difficult to interpret biogeographic patterns indicating that both vicariance and dispersal events have potentially been responsible in shaping current distribution patterns in Asian channids. We recognize †Parachanna fayumensis as the oldest reliable channid fossil and argue that the three oldest so-called channid fossils (i.e., †Eochanna chlorakkiensis, †Anchichanna kuldanensis, andOphiocephalus lydekkeri) lack clear diagnostic features that would allow them to be unequivocally placed within Channidae.  相似文献   

7.
8.
Delineating biogeographical regions is a critical step towards the establishment and evaluation of conservation priorities. In the present study, we analysed the distribution patterns of the freshwater fish of an understudied European biodiversity hotspot, the Balkan Peninsula. Based on the most extensive available database of native freshwater fish species distributions, we performed a hierarchical clustering analysis to identify the major biogeographical regions of the Balkan Peninsula. We also highlighted the ‘hottest hotspots’ of freshwater fish diversity across the delimited biogeographical regions by describing the patterns of species richness, endemic and vulnerable species; indicator species were also determined. The bioregionalisation scheme consisted of eight groups of drainage basins that correspond to distinct regions of the Balkan Peninsula. Overall, the delineated biogeographical regions varied in terms of species richness, endemism, vulnerability (i.e. extinction threats) and indicator species composition. From a conservation perspective, this study emphasises the prioritisation of areas characterised by high levels of irreplaceability (endemism) and vulnerability (i.e. the Attikobeotia region, Ionian Sea and Prespa Lakes) and stresses the necessity of implementing a network of protected freshwater areas across the Balkan Peninsula.  相似文献   

9.
Rates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world''s 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction. The level of extinction risk differed between families, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae. Four described species were Extinct and 21% were assessed as Data Deficient. There was geographical variation in the dominant threats affecting the main centres of crayfish diversity. The majority of threatened US and Mexican species face threats associated with urban development, pollution, damming and water management. Conversely, the majority of Australian threatened species are affected by climate change, harvesting, agriculture and invasive species. Only a small proportion of crayfish are found within the boundaries of protected areas, suggesting that alternative means of long-term protection will be required. Our study highlights many of the significant challenges yet to come for freshwater biodiversity unless conservation planning shifts from a reactive to proactive approach.  相似文献   

10.
Jan Simons  Emile Nat 《Hydrobiologia》1996,336(1-3):127-135
Across the world there is a prevailing view that freshwater algae are cosmopolitan. The notion has seldom been tested and is unlikely to be true in genetic terms. Nonetheless, some morphospecies of several groups of algae do have a worldwide distribution. Others have restricted distributions and may be regarded as endemic to a region. However there is always the possibility that they will be discovered in far away places. Australia has a rather large element of endemicity in its algal flora. From the early days of Australian phycology many new genera and species of freshwater algae have been described. Some are of such distinctive appearance or novelty as to be regarded as ‘flagship’ taxa. There is little doubt about their endemicity and their existence increases the probability of less-distinguished species also being endemic. The degree of endemicity is probably masked by the ‘force-fitting’ of European names to Australian species. Some Australian endemics are robust and are widely distributed in a variety of types of water body. Others, the frail endemics, the ones of greatest novelty and phylogenetic significance, have a very restricted range with their strongholds in dystrophic coastal lagoons where tracts or remnant patches of native vegetation survive. Their survival and the conservation of their biodiversity depends on recognition of the significance of coastal lagoons and swamps.  相似文献   

11.
An assessment of animal species diversity in continental waters   总被引:4,自引:4,他引:0  
There is a need for monitoring the status and trends of freshwater biodiversity in order to quantify the impacts of human actions on freshwater systems and to improve freshwater biodiversity conservation. Current projects carrying assessment of freshwater biodiversity focus mainly on leading-better-known groups such as fish, or identify keystone species and/or endemic freshwater systems for conservation purposes. Our purpose is to complete these existing projects by providing quantitative estimates of species number for all freshwater groups on each continent and/or major eco-regions. This article present the results of the first implementation phase carried out from September 2002 to June 2003 and which addressed only freshwater animal species. The project consisted of: (1) compiling existing data from literature, web sites and museum collections; (2) contacting scientific experts of each group to provide a ‘to the best of their knowledge, estimates of species numbers. In this study, we consider as true freshwater species, those that complete part or all of their life cycle in freshwater, and water-dependant species those that need freshwater for food or that permanently use freshwater habitats. The current order of magnitude for known freshwater animal species world wide is 100 000, of which half are insects. Among other groups, there are some 20 000 vertebrate species; 10 000 crustacean species and 5000 mollusc species that are either true freshwater or water-dependant species. The study highlighted gaps in the basic knowledge of species richness at continental and global scales: (1) Some groups such as Protozoa, nematodes or annelids have been less studied and data on their diversity and distribution is scarce. Because current richness estimates for these groups are greatly biased by knowledge availability, we can expect that real species numbers might be much higher. (2) Continents are not equal in the face of scientific studies: South America and Asia are especially lacking global estimates of species richness for many groups, even for some usually well-known ones such as molluscs or insects. The second phase of the project will address freshwater plants and algae. The present status should be considered as a first sketch of the global picture of freshwater biodiversity. We hope that this project will initiate interactive exchange of data to complete and update this first assessment.  相似文献   

12.
Primary productivity is intimately linked with biodiversity and ecosystem functioning. Much of what is known today about such relationship has been based on the manipulation of species richness. Other facets of biodiversity, such as functional diversity, have been neglected within this framework, particularly in freshwater systems. We assess the adequacy of different diversity measures, from species richness and evenness, to functional groups richness and functional diversity indices, to predict primary productivity in 19 tropical reservoirs of central Brazil, built to generate hydroelectric energy. We applied linear mixed models (and model selection based on the Akaike’s information criterion) to achieve our goal, using chlorophyll-a concentration as a surrogate for primary productivity. A total of 412 species were collected in this study. Overall we found a positive relation between productivity and diversity, with functional evenness representing the only exception. The most parsimonious models never included functional group classifications, with at least one continuous measure of functional diversity being present in many models. The best model included only species richness and explained 24.1% of variability in productivity. We therefore advise the use of species richness as an indicator of productivity in tropical freshwater environments. However, since the productivity–diversity relationship is known to be scale dependent, we recommend the use of continuous measures of functional diversity in future biodiversity and ecosystem functioning studies, in order to be certain that all functional differences between communities are being accounted for.  相似文献   

13.
Freshwater ecosystems are among the most diverse and dynamic ecosystems on Earth. At the same time, they are among the most threatened ecosystems but remain underrepresented in biodiversity research and conservation efforts. The rate of decline of vertebrate populations is much higher in freshwaters than in terrestrial or marine realms. Freshwater megafauna (i.e., freshwater animals that can reach a body mass ≥30 kg) are intrinsically prone to extinction due to their large body size, complex habitat requirements and slow life‐history strategies such as long life span and late maturity. However, population trends and distribution changes of freshwater megafauna, at continental or global scales, remain unclear. In the present study, we compiled population data of 126 freshwater megafauna species globally from the Living Planet Database and available literature, and distribution data of 44 species inhabiting Europe and the United States from literature and databases of the International Union for Conservation of Nature and NatureServe. We quantified changes in population abundance and distribution range of freshwater megafauna species. Globally, freshwater megafauna populations declined by 88% from 1970 to 2012, with the highest declines in the Indomalaya and Palearctic realms (?99% and ?97%, respectively). Among taxonomic groups, mega‐fishes exhibited the greatest global decline (?94%). In addition, freshwater megafauna experienced major range contractions. For example, distribution ranges of 42% of all freshwater megafauna species in Europe contracted by more than 40% of historical areas. We highlight the various sources of uncertainty in tracking changes in populations and distributions of freshwater megafauna, such as the lack of monitoring data and taxonomic and spatial biases. The detected trends emphasize the critical plight of freshwater megafauna globally and highlight the broader need for concerted, targeted and timely conservation of freshwater biodiversity.  相似文献   

14.
Although habitat fragmentation fosters extinctions, it also increases the probability of speciation by promoting and maintaining divergence among isolated populations. Here we test for the effects of two isolation factors that may reduce population dispersal within river networks as potential drivers of freshwater fish speciation: 1) the position of subdrainages along the longitudinal river gradient, and 2) the level of fragmentation within subdrainages caused by natural waterfalls. The occurrence of native freshwater fish species from 26 subdrainages of the Orinoco drainage basin (South America) was used to identify those species that presumably arose from in‐situ cladogenetic speciation (i.e. neo‐endemic species; two or more endemic species from the same genus) within each subdrainage. We related subdrainages fish diversity (i.e. total, endemic and neo‐endemic species richness) and an index of speciation to our two isolation factors while controlling for subdrainages size and energy availability. The longitudinal position of subdrainages was unrelated to any of our diversity measures, a result potentially explained by the spatial grain we used and/or the contemporary connection between Orinoco and Amazon basins via the upstream Casiquiare region. However, we found higher neo‐endemic species richness and higher speciation index values in highly fragmented subdrainages. These results suggest that habitat fragmentation generated by natural waterfalls drives cladogenetic speciation in fragmented subdrainages. More generally, our results emphasize the role of history and natural waterfalls as biogeographic barriers promoting freshwater biodiversity in river drainage basins.  相似文献   

15.
Life history, diversity and distribution: a study of Japanese pteridophytes   总被引:2,自引:0,他引:2  
Many studies address the relationships between diversity or distribution and attributes of the physical environment. However, how these relationships are connected to variation in life history is poorly understood. This is particularly true in the case of pteridophytes. Japanese ferns and their allies comprise one of the best-known pteridophyte floras in the world. We analyzed ca 600 species of Japanese pteridophytes for which there is detailed information on distribution, reproduction, and chromosome number. Species richness was greatest in groups with a single reproductive mode (sexual, followed by apogamous), but distribution was greatest in species groups with multiple reproductive modes: sexual plus either sterile (irregular in meiosis) or apogamous. Geographical ranges varied greatly among species with small chromosome numbers but were uniformly small among species having high chromosome numbers. Seasonally green (mostly summer green) species had significantly larger distribution ranges than evergreen species. Endemic species had higher proportions of apogamy and sterility than non-endemic species. Seasonally green species had significantly larger distributional ranges, and a smaller proportion of species with apogamous reproduction, than evergreen species. There was no clear relationship between distribution and spore size, either among endemic species, non-endemic species, or all species combined. There was no relationship between spore size and chromosome number when all species were combined. However, positive relationships were detected within three of the nine largest genera, suggesting potential phylogenetic effects. We concluded that habitat availability, rather than dispersability, may be the limiting factor for the distribution of pteridophytes in Japan.  相似文献   

16.
Ancient lakes as places of extensive speciation processes have been characterized by a high degree of endemicity and biodiversity. The most outstanding European ancient lake is the oligotrophic and karstic Balkan Lake Ohrid. The lake is inhabited by a number of endemic species, but their evolutionary history is largely unresolved. in the present study, the genetic structure, gene genealogy and demographic history of the representatives of the Ohridian endemic Proasellus species were studied using both biparentally (allozyme loci) and maternally (partial mitochondrial cytochrome oxidase subunit I gene) inherited markers. Both data sets gave similar results and supported discrepancies among genetic differentiation, the current morphology-based taxonomy and bathymetric segregation. Horizontal distribution of endemic Proasellus species (Lake Ohrid vs adjacent feeder springs) within the lake presumably promote parapatric speciation whereas the main role of vertical barriers into diversification processes was not fully supported. The analyses of demographic history suggested the decline of endemic isopod populations. The radiation of endemic Proasellus populations within the lake could have started from the sublittoral/profundal zone towards the littoral or in the opposite direction — from the littoral to the profundal. Our analyses did not exclude both possibilities.  相似文献   

17.
The Western Ghats mountain range in India is a biodiversity hotspot for a variety of organisms including a large number of endemic freshwater crab species and genera of the family Gecarcinucidae. The phylogenetic relationships of these taxa, however, have remained poorly understood. Here, we present a phylogeny that includes 90% of peninsular Indian genera based on mitochondrial 16S rRNA and nuclear histone H3 gene sequences. The subfamily Gecarcinucinae was found to be paraphyletic with members of two other subfamilies, Liotelphusinae and Parathelphusinae, nesting within. We identify a well‐supported clade consisting of north Indian species and one clade comprising mostly south Indian species that inhabit the southern ‘sky islands’ of the Western Ghats. Relationships of early diverging genera, however, were resolved with low support. This study also includes newly sampled material from an isolated mountain plateau in the northern part of the Western Ghats, representing a new species of Gubernatoriana, which we describe here as Gubernatoriana basalticola sp. n. The new species is immediately distinguished from its congeners and the related genera Ghatiana and Inglethelphusa by its carapace and cheliped morphology, which are unique among Indian freshwater crabs. This study highlights the urgent need for continued faunistic studies to assess the true diversity of gecarcinucid crabs on the Indian subcontinent, to fully understand the basal phylogenetic relationships within the freshwater crab family Gecarcinucidae, and to evaluate the conservation threat status and biogeography of the montane freshwater crabs of the Western Ghats.  相似文献   

18.
The viviparous freshwater gastropod Tylomelania (Caenogastropoda: Cerithioidea: Pachychilidae) endemic to the Indonesian island Sulawesi has radiated extensively in two ancient lake systems. We here present the first systematic species-level review of taxa in the five lakes of the Malili lake system, which contains the most diverse and best studied freshwater fauna on Sulawesi. Our results indicate a significantly higher diversity of Tylomelania in these lakes than previously perceived based on morphological evidence for delimiting the taxa. We describe nine new species, thus increasing the number of taxa known from the Malili lakes to 25. Tylomelania species are inhabiting all available substrates in the lakes, and the diversity of habitats is reflected in an unparalleled range of radula types in this closely related group. Several species show a high intraspecific variability in some characters, and their closer investigation will probably lead to the discovery of more cryptic species. As it is, this species flock on Sulawesi is among the largest freshwater mollusc radiations known. Since the Malili lake system also contains other large endemic species flocks of e.g. crustaceans and fishes, it is a major hotspot of freshwater biodiversity in Asia to become a conservation priority. Handling editor: K. Martens  相似文献   

19.
四川夹金山小型兽类区系及多样性   总被引:2,自引:0,他引:2  
夹金山位于西南山地,是近年来生物多样性研究的热点地区,我们对其不同海拔和不同生境类型的小型兽类进行了调查,共捕获927 号个体,隶属4 目8 科35 种,其中啮齿类16 种,食虫类16 种,鼠兔类有3 种。数据分析显示:(1) 因南北气候差异,夹金山南坡物种(31)显著高于北坡(20);(2)在35 个物种中,中国特有种高达15 种,同样,该地区食虫类具有较高物种多样性;(3)北坡古北界成分显著高于南坡古北界成分,夹金山在一定程度上限制了古北界和东洋界物种的南北交流;(4)南坡小型兽类物种多样性最高见于中海拔区域(2 400 ~ 3 000 m),低海拔区域人类干扰严重,高海拔区域植被类型单一,然而北坡由于低海拔区域气候干旱,多样性最高的海拔区域(3 000 ~ 3 600 m)呈现上移。夹金山内复杂的地形有助于物种分化,并为小型兽类提供了多样化的栖息生境。因此,该地区特有种和物种多样性较丰富。该区域内具丰富的食虫类物种,其原因可能是食虫类具有较多的进化优势.  相似文献   

20.
1. The distribution, species richness and ecology of spring‐dwelling water mites in Italy were investigated with the aim to better elucidate the role of spring habitats to sustain high levels of biodiversity and their contribution to freshwater biodiversity at a local and regional scale. 2. More than 300 springs in different geographic areas (Alps, Central and Southern Apennines, Sicily and Sardinia), were examined with a total of 163 water mite species recorded. 3. Species richness in each area ranged from 33 species on Sardinia to 77 on Sicily. The highest diversity was found in the Gran Sasso (Central Apennines). The proportion of crenobionts (species strictly bound to this type of habitat) exceeded 50% in almost all the areas investigated. 4. A diverse (up to 20 species per spring) and highly specialised mite fauna was observed in undisturbed rheocrenes and in natural springs of intermediate typology (rheohelocrenes and rheopsammocrenes). In springs subjected to human impacts (pasture, deforestation, alteration and transformation of spring sources) species richness declined and crenobionts were replaced by unspecialised crenoxenes. 5. The zoogeographic importance of spring habitats is confirmed by the presence of 18 endemic species and by members of genera with an interesting disjunct and relict distribution. 6. A comparison with other geographic areas suggests that springs contain a significant fraction of the total number of species found in freshwater habitats and may contribute almost one third of regional freshwater biodiversity. The presence of endemic crenobionts and rare taxa highlights the importance of these habitats in maintaining high levels of biodiversity as well as their contribution to a better understanding of biodiversity patterns in freshwaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号