首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to the European Water Framework Directive, waterbodies have to be classified on the basis of their ecological status using biological quality elements, such as macroinvertebrates. This needs to take into consideration the influence of natural variation (both spatial and temporal) of reference biological communities as this may obscure the effects caused by anthropogenic disturbance. We studied the influence of among-habitat and temporal (seasonal and interannual) changes on the macroinvertebrate communities of an Iberian shallow lake and the variability of 21 measures potentially useful for bioindication purposes. Two series of data were examined: (a) macroinvertebrate samples taken on four occasions over an annual cycle were used to assess the effects of seasonality and among-habitat variability; (b) macroinvertebrate samples collected in three consecutive summers were used to assess interannual variability. Coefficients of variation, expressed as percentage, were used to quantify the effect of among-habitat and temporal variability on the selected metrics. According to our results, % Insecta, Shannon–Wiener diversity index and the qualitative taxonomic metrics (measures based on number of taxa) were robust in terms of temporal (seasonal and interannual) and among-habitat variability. Abundance ratio and some metrics based on functional feeding groups were highly variable. Therefore, qualitative taxonomic metrics may be promising tools in biomonitoring programs of Mediterranean shallow lakes due to their comparatively low variability.  相似文献   

2.
Temporary streams are characterised by short periods of seasonal or annual stream flow after which streams contract into waterholes or pools of varying hydrological connectivity and permanence. Although these streams are widespread globally, temporal variability of their ecology is understudied, and understanding the processes that structure community composition in these systems is vital for predicting and managing the consequences of anthropogenic impacts. We used multivariate and univariate approaches to investigate temporal variability in macroinvertebrate compositional data from 13 years of sampling across multiple sites from autumn and spring, in South Australia, the driest state in the driest inhabited continent in the world. We examined the potential of land-use, geographic and environmental variables to predict the temporal variability in macroinvertebrate assemblages, and also identified indicator taxa, that is, those highly correlated with the most significantly associated physical variables. Temporal trajectories of macroinvertebrate communities varied within site in both seasons and across years. A combination of land-use, geographic and environmental variables accounted for 24% of the variation in community structure in autumn and 27% in spring. In autumn, community composition among sites were more closely clustered together relative to spring suggesting that communities were more similar in autumn than in spring. In both seasons, community structure was most strongly correlated with conductivity and latitude, and community structure was more associated with cover by agriculture than urban land-use. Maintaining temporary streams will require improved catchment management aimed at sustaining seasonal flows and critical refuge habitats, while also limiting the damaging effects from increased agriculture and urban developments.  相似文献   

3.
1. A spatially‐extensive data set of stream macroinvertebrate communities from 49 northern New Zealand sites sampled over a 10‐year period was analysed to assess relationships between the environment (catchment land‐cover, landscape position and regional‐scale weather patterns), and (i) community persistence and stability based on the constancy of species occurrence (presence–absence) and abundance (per cent composition), respectively and (ii) the temporal variability of various community condition metrics. 2. No significant relationship was evident between community stability or persistence within sites and a gradient of increasing land‐use stress (LUS) based on types of upstream land‐cover, with interannual mean similarities at all sites falling within the standard deviations recorded at long‐term reference sites. In contrast, condition metrics were inversely related to LUS. Land‐use appeared to be a key factor influencing community composition among sites whereas climate influenced stability and persistence within sites. 3. Three response trajectories of community variability to increasing LUS were distinguished based on the coefficient of variation of mean interannual similarities, such that (i) persistence and stability appeared to be more variable at developed sites with low LUS and at sites with high stress relative to the variability experienced naturally, but similar to the natural range at intermediate levels of stress (‘sinusoidal response’); (ii) variability in Ephemeroptera, Plecoptera and Trichoptera metrics increased at low‐to‐moderate stress and then accelerated rapidly at highly developed sites (‘stepped‐exponential response’) and (iii) variability in a pollution tolerance metric increased rapidly and then maintained a similar level of variability along the remaining stress gradient (‘plateau response’). 4. The results of this study have implications for biomonitoring approaches that assume high temporal persistence and stability of communities to define site impairment. Misclassifications caused by interannual variability could lead to misinterpretation of site condition, if conclusions are based on single annual surveys. Temporal variability in stability and persistence may help distinguish low levels of impairment where a predominantly healthy fauna experiences increased environmental fluctuations.  相似文献   

4.
Climate change is expected to alter precipitation patterns worldwide, which will affect streamflow in riverine ecosystems. It is vital to understand the impacts of projected flow variations, especially in tropical regions where the effects of climate change are expected to be one of the earliest to emerge. Space‐for‐time substitutions have been successful at predicting effects of climate change in terrestrial systems by using a spatial gradient to mimic the projected temporal change. However, concerns have been raised that the spatial variability in these models might not reflect the temporal variability. We utilized a well‐constrained rainfall gradient on Hawaii Island to determine (a) how predicted decreases in flow and increases in flow variability affect stream food resources and consumers and (b) if using a high temporal (monthly, four streams) or a high spatial (annual, eight streams) resolution sampling scheme would alter the results of a space‐for‐time substitution. Declines in benthic and suspended resource quantity (10‐ to 40‐fold) and quality (shift from macrophyte to leaf litter dominated) contributed to 35‐fold decreases in macroinvertebrate biomass with predicted changes in the magnitude and variability in the flow. Invertebrate composition switched from caddisflies and damselflies to taxa with faster turnover rates (mosquitoes, copepods). Changes in resource and consumer composition patterns were stronger with high temporal resolution sampling. However, trends and ranges of results did not differ between the two sampling regimes, indicating that a suitable, well‐constrained spatial gradient is an appropriate tool for examining temporal change. Our study is the first to investigate resource to community wide effects of climate change on tropical streams on a spatial and temporal scale. We determined that predicted flow alterations would decrease stream resource and consumer quantity and quality, which can alter stream function, as well as biomass and habitat for freshwater, marine, and terrestrial consumers dependent on these resources.  相似文献   

5.
Semiarid saline streams are rare aquatic ecosystem types. Their constituent biota is expected to have adapted evolutionarily to strong hydrological variability and salinity stress; however, their ecology is not well known. In this study, we quantify the seasonal changes in the structure of the macroinvertebrate community in the Reventón Rambla (south-eastern Spain), a permanent saline spring stream which is included in a drainage system consisting of ephemeral dry channels (so-called “ramblas”). Seasonal patterns of community structure were studied in two reaches with contrasting environmental regimes using univariate and multivariate statistics. The upstream site showed more stable environmental conditions than the downstream site, and both sites also differed with regard to species richness, and structural and functional group attributes. On a seasonal basis, community dissimilarity was high during periods when both sites were isolated during summer droughts but dissimilarity decreased when both sites were connected through surface flow. Furthermore, the communities tended to show cyclical trajectories in multivariate ordination space. Rather than being related to salinity stress, these patterns seemed to track the hydrological disturbance regime of this rambla system. Spates tended to disrupt communities, while signs of recovery were evident during low-flow periods. Results suggest that salinity fluctuation does not pose a severe abiotic constraint to these adapted macroinvertebrate communities. Their suits of functional properties provide them with the necessary traits to recover quickly from natural disturbance. While human-caused salinization of streams severely impacts communities eventually reducing their recovery potential, our results suggest that communities in natural saline streams may show similar responses to hydrological disturbance as communities from non-saline streams.  相似文献   

6.
Maul  J.D.  Farris  J.L.  Milam  C.D.  Cooper  C.M.  Testa  S.  Feldman  D.L. 《Hydrobiologia》2004,518(1-3):79-94
Streams in the loess hills of northwest Mississippi have undergone dramatic physical changes since European settlement and both physical and water quality processes may play a role in influencing biotic communities of these stream systems. The objectives of this study were to identify the response of macroinvertebrate taxa to water quality and habitat parameters in streams of northwest Mississippi, examine the efficacy of an a priori classification system of stream channel evolution and condition class using macroinvertebrate communities, and examine short-term (<2 yr) temporal variation of macroinvertebrate communities. Separation of sites based on four condition classifications was not distinct. However, best attainable sites did plot together in an ordination analysis suggesting similarity in macroinvertebrate communities for least disturbed sites. Similarly, for stage of channel evolution, sites characterized by lack of bank failure and sinuous fluvial processes had relatively similar macroinvertebrate communities. Ordination analysis also indicated high temporal variation of macroinvertebrate communities. Reference sites (best attainable and stable sites) had more similar communities between years than unstable and impacted sites. Results of this study: (1) suggest total solids, total phosphorus concentration, percent substrate as sand, ammonia concentration, and conductivity were important variables for structuring stream macroinvertebrate communities in northwest Mississippi, (2) identify potential indicator taxa for assessing such streams based on water quality and physical habitat, (3) provide support for current a priori site classifications at the best attainable (least impacted) category relative to the macroinvertebrate communities, and (4) demonstrate that between-year variation is an important factor when assessing streams of north Mississippi and this variability may be related to the degree of stream degradation.  相似文献   

7.
Coal mining in central Appalachia USA causes increased specific conductance in receiving streams. Researchers have examined benthic macroinvertebrate community structure in such streams using temporally discrete measurements of SC and benthic macroinvertebrates; however, both SC and benthic macroinvertebrate communities exhibit intra-annual variation. Twelve central Appalachian headwater streams with reference quality physical habitat and physicochemical conditions (except for elevated SC in eight streams) were sampled ≤fourteen times each between June 2011 and November 2012 to evaluate benthic macroinvertebrate community structure. Specific conductance was recorded at each sampling event and by in situ data loggers. Streams were classified by mean SC Level (Reference, 17–142 μS/cm; Medium, 262–648 μS/cm; and High, 756–1535 μS/cm). Benthic macroinvertebrate community structure was quantified using fifteen metrics selected to characterize community composition and presence of taxa from orders Ephemeroptera, Plecoptera, and Trichoptera. Metrics were analyzed for differences among SC Levels and months of sampling. Reference streams differed significantly from Medium-SC and High-SC streams for 11 metrics. Medium-SC streams had the most metrics exhibiting significant differences among months. Relative abundances of Plecoptera and Trichoptera were not sensitive to SC, as the families Leuctridae and Hydropsychidae exhibited increased relative abundance (vs. reference) in streams with elevated SC. In contrast, Ephemeroptera richness and relative abundance were lower, relative to reference, in elevated-SC streams despite increased relative abundance of Baetidae. Temporal variability was evident in several metrics due to influence by taxa with seasonal life cycles. These results demonstrate that benthic macroinvertebrate communities in elevated-SC streams are altered from reference condition, and that metrics differ in SC sensitivity. The time of year when samples are taken influenced measured levels and differences from reference condition for most metrics.  相似文献   

8.
1. The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4‐year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (Δ NBR) from satellite imagery to quantify the percentage of each catchment’s riparian and upland vegetation that burned at high and low severity. 2. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year‐to‐year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. 3. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. 4. These analyses suggest that interactions among fire, flow and stream habitat may increase inter‐annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area.  相似文献   

9.
10.
As increased growth and development put pressure on freshwater systems in Arctic environments, there is a need to maintain a meaningful and feasible framework for monitoring water quality. A useful tool for monitoring the ecological health of aquatic systems is by means of the analysis and inferences made from benthic invertebrates in a biomonitoring approach. Biomonitoring of rivers and streams within the Arctic has been under‐represented in research efforts. Here, we investigate an approach for monitoring biological impairment in Arctic streams from anthropogenic land use at two streams with different exposure to urban development in Iqaluit, Nunavut, Arctic Canada. Sites upstream of development, at midpoint locations, and at the mouth of each waterbody were sampled during 6 campaigns (2008, 2009, 2014, 2015, 2018, and 2019) to address spatial and temporal variability of the macroinvertebrate community. The influence of taxonomic resolution scaling was also examined in order to understand the sensitivity of macroinvertebrates as indicators in Arctic aquatic systems. We demonstrate that standard biological metrics were effective in indicating biological impairment downstream of sources of point‐source pollutants. A mixed‐design ANOVA for repeated measures also found strong interannual variability; however, we did not detect intra‐annual variation from seasonal factors. When examining metrics at the highest taxonomic resolution possible, the sensitivity of metrics increased. Likewise, when trait‐based metrics (α functional diversity) were applied to indicators identified at high taxonomic resolution, a significant difference was found between reference and impacted sites. Our results show that even though Arctic systems have lower diversity and constrained life‐history characteristics compared to temperate ecosystems, biomonitoring is not only possible, but also equally effective in detecting trends from anthropogenic activities. Thus, biomonitoring approaches in Arctic environments are likely a useful means for providing rapid and cost‐effective means of assessing future environmental impact.  相似文献   

11.
Long-term data are needed to assess spatial and temporal variability of communities and their resilience to natural and anthropogenic disturbances, particularly in climatic regions marked by high interannual variability (e.g. mediterranean-climate). A long-term study at four sites on two streams in mediterranean-climate California (annual sampling over 20  yr) allowed us to quantify the influence of a 5-yr prolonged drought on stream invertebrate and fish communities. Invertebrate community composition did not show recovery following drought. The primary environmental factors influencing community composition, identified through principle components and multiple correspondence analyses were precipitation and flow permanence. Invertebrate taxon richness and abundance exhibited few responses (some site specific) and recovered quickly. Native fish abundance was lowest during the drought period and highest during the wet years that occurred at the end of the study period. Importantly, the prolonged drought facilitated the establishment and success of the invasive green sunfish (Centrarchidae: Lepomis cyanellus ) that was then resilient to subsequent large flow events. There was high spatial synchrony in the temporal changes among all four sites, and three distinct periods were identified: early drought, late drought, and post-drought years. However, we still found differences among sites along the flow permanence gradient from temporary to perennial in the response to drought of both invertebrate and fish assemblages likely as a result of changes in substrate, vegetation, and other habitat characteristics. The observed lack of resilience and negative impacts to biodiversity due to prolonged drought associated with long-term habitat changes is important because hydroclimatic extremes are predicted to increase in frequency and magnitude with global climate change.  相似文献   

12.
This article examines the trophic ecology of freshwater fishes (22 species in 15 families) in a wet and dry tropical Australian river of high intra‐annual and interannual hydrological variability. Seven major trophic groups were identified by cluster analysis; however, four food items (filamentous algae, chironomid larvae, Trichoptera larvae and Ephemeroptera nymphs) comprised almost half of the average diet of all species. The influence of species, fish size, spatial effects and temporal effects on food use was investigated using redundancy analysis. Size, time and space accounted for little of the perceived variation. Ontogenetic changes in diet were minor and limited to a few large species. Spatial variation in trophic composition of the fish assemblages reflected the effects of the Burdekin Falls and dam, a major geographic barrier, on species distributions. Little spatial variation in diet was detected after accounting for this biogeographical effect. Temporal variations in flow, although marked, had little effect on variations in fish diet composition due to the low temporal diversity of food resources in physically monotonous sand and gravel channels. Species identity accounted for<50% of the observed variation in food choice; omnivory and generalism were pronounced. The aquatic food web of the Burdekin River appears simple, supported largely by autochthonous production (filamentous and benthic microalgae, and to some extent, aquatic macrophytes). Allochthonous food resources appear to be unimportant. The generalist feeding strategies, widespread omnivory and absence of pronounced trophic segregation reported here for Burdekin River fishes may be common to variable and intermittent rivers of subtropical and tropical northern Australia with similar fish communities and may be a general feature of rivers of low habitat diversity and characterized by flow regimes that vary greatly both within and between years.  相似文献   

13.
Aims Despite wide consensus that ecological patterns and processes should be studied at multiple spatial scales, the temporal component of diversity variation has remained poorly examined. Specifically, rare species may exhibit patterns of diversity variation profoundly different from those of dominant taxa. Location Southern Finland. Methods We used multiplicative partitioning of true diversities (species richness, Shannon diversity) to identify the most important scale(s) of variation of benthic macroinvertebrate communities across several hierarchical scales, from individual samples to multiple littorals, lakes and years. We also assessed the among‐scale variability of benthic macroinvertebrate community composition by using measures of between‐ and within‐group distances at hierarchical scales. Results On average, a single benthic sample contained 23% of the total regional macroinvertebrate species pool. For both species richness and Shannon diversity, beta‐diversity was clearly the major component of regional diversity, with within‐littoral beta‐diversity (β1) being the largest component of gamma‐diversity. The interannual component of total diversity was small, being almost negligible for Shannon index. Among‐sample (within‐littoral) diversity was related to variation of substratum heterogeneity at the same scale. By contrast, only a small proportion of rare taxa was found in an average benthic sample. Thus, dominant species among lakes and years were about the same, whereas rare species were mostly detected in a few benthic samples in one lake (or year). For rare species, the temporal component of diversity was more important than spatial turnover at most scales. Main conclusions While individual species occurrences and abundances, particularly those of rare taxa, may vary strongly through space and time, patterns of dominance in lake littoral benthic communities are highly predictable. Consequently, many rare species will be missed in temporally restricted samples of lake littorals. In comprehensive biodiversity surveys, interannual sampling of littoral macroinvertebrate communities is therefore needed.  相似文献   

14.
1. Stream and riparian ecosystems in arid montane areas, like the interior western United States, are often just narrow mesic strands, but support diverse and productive habitats. Meadows along many such streams have long been used for rangeland grazing, and, while impacts to riparian areas are relatively well known, the effect of livestock grazing on aquatic life in streams has received less attention. 2. Attempts to link grazing impacts to disturbance have been hindered by the lack of spatial and temporal replication. In this study, we compared channel features and benthic macroinvertebrate communities (i) between 16 stream reaches on two grazed allotments and between 22 reaches on two allotments where livestock had been completely removed for 4 years, (ii) before and after the 4‐year grazing respite at a subset of eight sites and (iii) inside and outside of small‐scale fenced grazing exclosures (eight pairings; 10+ year exclosures) in the meadows of the Golden Trout Wilderness, California (U.S.A.). 3. We evaluated grazing disturbance at the reach scale in terms of the effects of livestock trampling on per cent bank erosion and found that macroinvertebrate richness metrics were negatively correlated with bank erosion, while the percentage of tolerant taxa increased. 4. All macroinvertebrate richness metrics were significantly lower in grazed areas. Bank angle, temperature, fine sediment cover and erosion were higher in grazed areas, while riparian cover was lower. Regression models identified riparian cover, in‐stream substratum, bank conditions and bankfull width‐to‐depth ratios as the most important for explaining variability in macroinvertebrate richness metrics. 5. Small‐scale grazing exclosures showed no improvements for in‐stream communities and only moderate positive effects on riparian vegetation. In contrast, metrics of macroinvertebrate richness increased significantly after a 4‐year period of no grazing. 6. The success of grazing removal reported here suggests that short‐term removal of livestock at the larger, allotment meadow spatial scale is more effective than long‐term, but small‐scale, local riparian area fencing, and yields promising results in achieving stream channel, riparian and aquatic biological recovery.  相似文献   

15.
Flow disturbances and conversions of land‐use types are two major factors that influence river ecosystems. However, few studies have considered their interactions and separated their individual effects on aquatic organisms. Using monthly monitoring data from two streams with different land‐use types (i.e. forest and agriculture) in the subtropical Central China over three years, we accurately predicted the changes of macroinvertebrate communities under flood disturbances and land‐use type conversions. The dominant taxa and main community metrics significantly declined following flash floods. Several mayflies and chironomid had rapid rates of recovery, which could reach high abundance in three months after floods. And most of the community metrics recovered more rapidly in the forested river than that in the agricultural river. Stepwise multiple regression (SMR) models were used to investigate the relationships between biotic metrics and hydrological and temporal variables. For example, SMR revealed that floods reduced the stability of benthic communities, and the length of low flow period was of considerable importance to the recovery of the fauna. Two‐way ANOVA indicated that intra‐annual fluctuation had more (e.g. the total abundance and wet biomass), equal (e.g. total richness, EPT richness, percent EPT abundance, and Margalef index), or less (e.g. tolerant value) influence on macroinvertebrate communities than land‐use types. Consequently, the effects of floods on macroinvertebrates should be taken into account when macroinvertebrates are used as indicators for assessing river ecosystem. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
1. We quantified spatial and temporal variability in benthic macroinvertebrate species richness, diversity and abundance in six unpolluted streams in monsoonal Hong Kong at different scales using a nested sampling design. The spatial scales were regions, stream sites and stream sections within sites; temporal scales were years (1997–99), seasons (dry versus wet seasons) and days within seasons. 2. Spatiotemporal variability in total abundance and species richness was greater during the wet season, especially at small scales, and tended to obscure site‐ and region‐scale differences, which were more conspicuous during the dry season. Total abundance and richness were greater in the dry season, reflecting the effects of spate‐induced disturbance during the wet season. Species diversity showed little variation at the seasonal scale, but variability at the site scale was apparent during both seasons. 3. Despite marked variations in monsoonal rainfall, inter‐year differences in macroinvertebrate richness and abundance at the site scale during the wet season were minor. Inter‐year differences were only evident during the dry season when streams were at base flow and biotic interactions may structure assemblages. 4. Small‐scale patchiness within riffles was the dominant spatial scale of variation in macroinvertebrate richness, total abundance and densities of common species, although site or region was important for some species. The proportion of total variance contributed by small‐scale spatial variability increased during the dry season, whereas temporal variability associated with days was greater during the wet season. 5. The observed patterns of spatiotemporal variation have implications for detection of environmental change or biomonitoring using macroinvertebrate indicators in streams in monsoonal regions. Sampling should be confined to the dry season or, in cases where more resources are available, make use of data from both dry and wet seasons. Sampling in more than one dry season is required to avoid the potentially confounding effects of inter‐year variation, although variability at that scale was relatively small.  相似文献   

17.
  1. We investigated how compositional differences in riparian leaf litter derived from burned and undisturbed forests influenced leaf breakdown and macroinvertebrate communities using experimental mixed-species leaf packs in boreal headwater streams. Leaf pack mixtures simulating leaf litter from dominant riparian woody-stem species in burned and undisturbed riparian zones were incubated in two references and two fire-disturbed streams for 5 weeks prior to measuring temperature-corrected breakdown rates and macroinvertebrate community composition, richness, and functional metrics associated with decomposers such as shredder abundance and % shredders.
  2. Leaf litter breakdown rates were higher and had greater variability in streams bordered by reference riparian forests than in streams where riparian forests had been burned during a wildfire. Streams bordered by fire disturbance showed significant effects of litter mixture on decomposition rates, observed as significantly higher decomposition rates of a fire-simulated leaf mixture compared to all other mixtures.
  3. Variation among sites was higher than variation among litter mixtures, especially for macroinvertebrate community composition. In general, fire-simulated leaf mixtures had greater shredder abundances and proportions, but lower overall macroinvertebrate abundance; however, the shredder abundance trend was not consistent across all leaf mixtures at each stream.
  4. These results show that disturbance-driven riparian forest condition and resulting composition of leaf subsidies to streams can influence aquatic invertebrate community composition and their function as decomposers. Therefore, if one of the primary goals of modern forest management is to emulate natural disturbance patterns, boreal forest managers should adapt silvicultural practices to promote leaf litter input that would arise post-fire, thereby supporting stream invertebrate communities and their function.
  相似文献   

18.
In 1990–1992, the United States Forest Service sampled six hydrologically variable streams paired in three different drainage basins in the Ouachita Mountains, Arkansas, U.S.A. Fishes, macroinvertebrates, and stream environmental variables were quantified for each stream. We used these data to examine the relationship between regional faunas (based on taxonomy and trophic affiliation of fishes and macroinvertebrates) and measured environmental variables. Because fishes are constrained to their historically defined drainage basins and many insect taxa are able to cross basin barriers, we anticipated that both groups would respond differently to environmental variability. Fishes were influenced more by environmental variability that was unique to their historical drainage basins, but macroinvertebrates were associated more strongly with environmental variability that was independent of drainage basins. Thus, the individual drainage basins represented a historical constraint on regional patterns of fish assembly. For both fishes and macroinvertebrates, groupings based on taxonomy and trophic affiliation showed a similar response to environmental variability and there was a high degree of association between taxonomic and trophic correlation matrices. Thus, trophic group structure was highly dependent on the taxonomic make-up of a given assemblage. At the basin-level, fish and macroinvertebrate taxa were associated more strongly with environmental variability than the trophic groups, and these results have implications for basin-level studies that use trophic groupings as a metric to assess ecological patterns. Trophic categories may not be a useful ecological measure for studies at large spatial scales.  相似文献   

19.
Macrophytes are an important component of aquatic ecosystems and are used widely within the Water Framework Directive (WFD) to establish ecological quality. In the present paper we investigated macrophyte community structure, i.e., composition, richness and diversity measures in 60 unimpacted stream and river sites throughout Europe. The objectives were to describe assemblage patterns in different types of streams and to assess the variability in various structural and ecological metrics within these types to provide a basis for an evaluation of their suitability in ecological quality assessment. Macrophyte assemblage patterns varied considerably among the main stream types. Moving from small-sized, shallow mountain streams to medium-sized, lowland streams there was a clear transition in species richness, diversity and community structure. There was especially a shift from a predominance of species-poor mosses and communities dominated by liverwort in the small-sized, shallow mountain streams to more species-rich communities dominated by vascular plants in the medium-sized, lowland streams. The macrophyte communities responded to most of the features underlying the typological framework defined in WFD. The present interpretation of the WFD typology may not, however, be adequate for an evaluation of stream quality based on macrophytes. First and most important, by using this typology we may overlook an important community type, which is characteristic of small-sized, relatively steep-gradient streams that are an intermediate type between the small-sized, shallow mountain streams and the medium-sized, lowland streams. Second, the variability in most of the calculated metrics was slightly higher when using the pre-defined typology. The consistency of these results should be investigated by analysing a larger number of sites. Particularly the need of re-defining the typology to improve the ability to detect impacts on streams and rivers from macrophyte assemblage patterns should be investigated. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

20.
溪流鱼类多样性沿着河流纵向梯度的空间分布规律已得到大量报道, 但这些研究大多聚焦基于物种组成的分类α多样性, 而有关分类β多样性和功能多样性的纵向梯度分布规律及其对人类干扰的响应研究较少。本文以青弋江上游3条人为干扰程度不同的河源溪流为研究区域, 比较研究了人为干扰对溪流鱼类功能α和β多样性及其纵向梯度分布格局的影响。结果显示, 人类干扰改变了河源溪流鱼类功能多样性的纵向梯度格局——由线性变化变为二项式分布。此外, 我们发现, 人为干扰导致土著种被本地入侵种取代, 且较强的土地利用和水污染排放可能增大环境的不连续性, 而群落周转和嵌套变化往往取决于环境的变化。尽管功能β多样性由嵌套成分主导, 但周转成分占比相对于人为干扰较小的溪流而言明显增加。人为干扰显著改变了受干扰溪流鱼类的物种组成和功能多样性, 且功能多样性的纵向梯度格局在不同的多样性指标上存在差异。本研究强调, 在评估人为干扰下多样性的变化时, 需要从多方面考虑, 包括空间尺度和多样性指标等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号