首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron has been shown to enhance ascorbate-induced damage to both acetylcholine esterase and E. coli B in a manner analogous to previous studies with ascorbate and copper ions. It is suggested that the mechanism of damage entails interaction of iron with biological macromolecules, followed by its reduction by ascorbate. Subsequently, the iron (11) could participate in generating hydroxyl radicals from hydrogen peroxide via the Fenton reaction, which in turn, could damage biomolecules in a site-specific and multiple hit fashion. The high abundance of iron in biological systems, especially in certain storage disorders, may indicate an important toxicological role of the combination of iron and ascorbate.  相似文献   

2.
《Free radical research》2013,47(2):107-115
Iron has been shown to enhance ascorbate-induced damage to both acetylcholine esterase and E. coli B in a manner analogous to previous studies with ascorbate and copper ions. It is suggested that the mechanism of damage entails interaction of iron with biological macromolecules, followed by its reduction by ascorbate. Subsequently, the iron (11) could participate in generating hydroxyl radicals from hydrogen peroxide via the Fenton reaction, which in turn, could damage biomolecules in a site-specific and multiple hit fashion. The high abundance of iron in biological systems, especially in certain storage disorders, may indicate an important toxicological role of the combination of iron and ascorbate.  相似文献   

3.
We reviewed the mechanism of oxidative DNA damage with reference to metal carcinogenesis and metal-mediated chemical carcinogenesis. On the basis of the finding that chromium (VI) induced oxidative DNA damage in the presence of hydrogen peroxide (H2O2), we proposed the hypothesis that endogenous reactive oxygen species play a role in metal carcinogenesis. Since then, we have reported that various metal compounds, such as cobalt, nickel, and ferric nitrilotriacetate, directly cause site-specific DNA damage in the presence of H2O2. We also found that carcinogenic metals could cause DNA damage through indirect mechanisms. Certain nickel compounds induced oxidative DNA damage in rat lungs through inflammation. Endogenous metals, copper and iron, catalyzed ROS generation from various organic carcinogens, resulting in oxidative DNA damage. Polynuclear compounds, such as 4-aminobiphenyl and heterocyclic amines, appear to induce cancer mainly through DNA adduct formation, although their N-hydroxy and nitroso metabolites can also cause oxidative DNA damage. On the other hand, mononuclear compounds, such as benzene metabolites, caffeic acid, and o-toluidine, should express their carcionogenicity through oxidative DNA damage. Metabolites of certain carcinogens efficiently caused oxidative DNA damage by forming NADH-dependent redox cycles. These findings suggest that metal-mediated oxidative DNA damage plays important roles in chemical carcinogenesis.  相似文献   

4.
The metal-mediated site-specific mechanism for free radical-induced biological damage is reviewed. According to this mechanism, cooper- or iron-binding sites on macromolecules serve as centers for repeated production of hydroxyl radicals that are generated via the Fenton reaction. The aberrations induced by superoxide, ascorbate, isouramil, and paraquat are summarized. An illustrative example is the enhancement of double-strand breaks by ascorbate/copper. Prevention of the site-specific free radical damage can be accomplished by using selective chelators for iron and copper, by displacing these redox-active metals with other redox-inactive metals such as zinc, by introducing high concentrations of hydroxyl radicals scavengers and spin trapping agents, and by applying protective enzymes that remove superoxide or hydrogen peroxide. Histidine is a special agent that can intervene in free radical reactions in variety of modes. In biological systems, there are traces of copper and iron that are at high enough levels to catalyze free-radical reactions, and account for such deleterious processes. In the human body Fe/Cu = 80/1 (w/w). Nevertheless, both (free) copper and iron are soluble enough, and the rate constants of their reduced forms with hydrogen peroxide are sufficiently high to suggest that they might be important mediators of free radical toxicity.  相似文献   

5.
The most carcinogenic forms of asbestos contain iron to levels as high as 36% by weight and catalyze many of the same biochemical reactions that freshly prepared solutions of iron do, i.e. oxygen consumption, generation of reactive oxygen species, lipid peroxidation and DNA damage. The participation of iron from asbestos in these reactions has been demonstrated using the iron chelator desferrioxamine B which inhibits iron-catalyzed reactions. Iron appears to be redox active on the asbestos fiber, but chelation and subsequent iron mobilization from asbestos by a variety of chelators, e.g. citrate, EDTA or nitrilotriacetate, makes the iron more redox active resulting in greater oxygen consumption and production of oxygen radicals in the presence of reducing agents. Iron also appears to be important for some of the asbestos-dependent biological effects on tissues or cells in culture, such as phagocytosis, cytotoxicity, lipid peroxidation and DNA damage. Therefore, redox cycling of iron to generate oxygen radicals at the surface of the fiber and/or in solution, as mobilized, low molecular weight chelates, may be very important in eliciting some of the biological effects of asbestos in vivo.  相似文献   

6.
7.
Iron and its sensitive balance in the cell   总被引:4,自引:0,他引:4  
Iron is vital in life because it is an important component of molecules that undergoes redox reactions or transport oxygen. However, the existence of two stable and inter-convertible forms of iron, iron(III) and iron(II), makes possible one electron being transferred to or captured from other species to form radicals. In particular, superoxide and hydroxyl radicals may be formed in these reactions, both with capacity of attacking other molecules. DNA is one important target and a vast literature exists showing that attack of hydroxyl radical to DNA leads to cell death cellular necrosis, apoptosis, mutation and malignant transformation. Therefore, a fine balance must exist at various levels of an organism to maintain iron concentration in a narrow range, above and below which deleterious effects of distinct nature occur. This review will deal with the formation of oxygen reactive species in iron participating reactions, defenses in the organism against these species, the different mechanisms of iron homeostasis and iron deficiency and iron overload related diseases.  相似文献   

8.
Reactive Oxygen Species and the Central Nervous System   总被引:76,自引:0,他引:76  
Radicals are species containing one or more unpaired electrons, such as nitric oxide (NO.). The oxygen radical superoxide (O2.-) and the nonradical hydrogen peroxide (H2O2) are produced during normal metabolism and perform several useful functions. Excessive production of O2.- and H2O2 can result in tissue damage, which often involves generation of highly reactive hydroxyl radical (.OH) and other oxidants in the presence of "catalytic" iron or copper ions. An important form of antioxidant defense is the storage and transport of iron and copper ions in forms that will not catalyze formation of reactive radicals. Tissue injury, e.g., by ischemia or trauma, can cause increased metal ion availability and accelerate free radical reactions. This may be especially important in the brain because areas of this organ are rich in iron and CSF cannot bind released iron ions. Oxidative stress on nervous tissue can produce damage by several interacting mechanisms, including increases in intracellular free Ca2+ and, possibly, release of excitatory amino acids. Recent suggestions that free radical reactions are involved in the neurotoxicity of aluminum and in damage to the substantia nigra in patients with Parkinson's disease are reviewed. Finally, the nature of antioxidants is discussed, it being suggested that antioxidant enzymes and chelators of transition metal ions may be more generally useful protective agents than chain-breaking antioxidants. Careful precautions must be used in the design of antioxidants for therapeutic use.  相似文献   

9.
Histochemical and biochemical determinations of total iron, iron (II), and iron (III) contents in brain regions from Parkinson's and Alzheimer's diseases have demonstrated a selective increase of total iron content in parkinsonian substantia nigra zona compacta but not in the zona reticulata. The increase of iron content is mainly in iron (III). The ratio of iron (II):iron (III) in zona compacta changes from almost 2:1 to 1:2. This change is thought to be relevant and may contribute to the selective elevation of basal lipid peroxidation in substantia nigra reported previously. Iron may be available in a free state and thus can participate in autooxidation of dopamine with the resultant generation of H2O2 and oxygen free radicals.  相似文献   

10.
The contribution of iron dysregulation to the etiology of a variety of neuronal diseases comes as no surprise given its necessity in numerous general cellular and neuron‐specific functions, its abundance, and its highly reactive nature. Homeostatic mechanisms such as the iron regulatory protein and hypoxia‐inducible factor pathways are firmly evolutionarily set in place to prevent ‘free’ iron from participating in chemical Fenton and Haber‐Weiss reactions which can result in subsequent generation of toxic hydroxyl radicals. However, given the multiple layers of complexity in cellular iron regulation, disruption of any number of genetic and environmental components can disturb the delicate balance between the various molecular players involved in maintaining an appropriate metabolic iron homeostasis. In this review, we will primarily focus on: (i) the impact of aging and gender on iron dysfunction as these are important criteria in the determination of iron‐related disorders such as Parkinson’s disease (PD), (ii) how iron mismanagement via disruption of cellular entry and exit pathways may contribute to these disorders, and (iii) how the availability of non‐invasive measurement of brain iron may aid in PD diagnosis.  相似文献   

11.
Hydroxyl radicals (OH.) can be formed in aqueous solution by a superoxide (O2.-)-generating system in the presence of a ferric salt or in a reaction independent of O2.- by the direct addition of a ferrous salt. OH. damage was detected in the present work by the release of thiobarbituric acid-reactive material from deoxy sugars, nucleosides and benzoate. The carbohydrates deoxyribose, deoxygalactose and deoxyglucose were substantially degraded by the iron(II) salt and the iron(III) salt in the presence of an O2.- -generating system, whereas deoxyinosine, deoxyadenosine and benzoate were not. Addition of EDTA to the reaction systems producing radicals greatly enhanced damage to deoxyribose, deoxyinosine, deoxyadenosine and benzoate, but decreased damage to deoxygalactose and deoxyglucose. Further, OH. scavengers were effective inhibitors only when EDTA was present. Inhibition by catalase and desferrioxamine confirmed that H2O2 and iron salts were essential for these reactions. The results suggest that, in the absence of EDTA, iron ions bind to the carbohydrate detector molecules and bring about a site-specific reaction on the molecule. This reaction is poorly inhibited by most OH. scavengers, but is strongly inhibited by scavengers such as mannitol, glucose and thiourea, which can themselves bind iron ions, albeit weakly. In the presence of EDTA, however, iron is removed from these binding sites to produce OH. in 'free' solution. These can be readily intercepted by the addition of OH. scavengers.  相似文献   

12.
Iron is an essential metal for most biological organisms. However, if not tightly controlled, iron can mediate the deleterious oxidation of biomolecules. This review focuses on the current understanding of the role of iron in the deleterious oxidation of various biomolecules, including DNA, protein, lipid, and small molecules, e.g., ascorbate and biogenic amines. The effect of chelation on the reactivity of iron is also addressed, in addition to iron-associated toxicities. The roles of the iron storage protein ferritin as both a source of iron for iron-mediated oxidations and as a mechanism to safely store iron in cells is also addressed.  相似文献   

13.
Oxidative DNA damage is involved in mutagenesis, carcinogenesis, aging, radiation effects, and the action of several anticancer drugs. Accumulated evidence indicates that iron may play an important role in those processes. We studied the in vitro effect of low concentrations of Fe(II) alone or Fe(III) in the presence of reducing agents on supercoiled plasmid DNA. The assay, based on the relaxation and linearization of supercoiled DNA, is simple yet sensitive and quantitative. Iron mediated the production of single and double strand breaks in supercoiled DNA. Iron chelators, free radical scavengers, and enzymes of the oxygen reduction pathways modulated the DNA damage. Fe(III)-nitrilotriacetate (NTA) plus either H2O2, L-ascorbate, or L-cysteine produced single and double strand breaks as a function of reductant concentration. A combination of 0.1 microM Fe(III)-NTA and 100 microM L-ascorbate induced detectable DNA strand breaks after 30 min at 24 degrees C. Whereas superoxide dismutase was inhibitory only in systems containing H2O2 as reductant, catalase inhibited DNA breakage in all the iron-mediated systems studied. The effect of scavengers and enzymes indicates that H2O2 and .OH are involved in the DNA damaging process. These reactions may account for the toxicity and carcinogenicity associated with iron overload.  相似文献   

14.
铁是血红素、线粒体呼吸链复合体和各种生物酶的重要辅助因子,参与氧气运输、氧化还原反应和代谢物合成等生物过程。铁蛋白(ferritin)是一种铁存储蛋白质,通过储存和释放铁来维持机体内铁平衡。铁自噬(ferritinophagy)作为一种选择性自噬方式,介导铁蛋白降解释放游离铁,参与细胞内铁含量的调控。适度铁自噬维持细胞内铁含量稳定,但铁自噬过度会释放出大量游离铁。通过芬顿 (Fenton)反应催化产生大量的活性氧(reactive oxygen species, ROS),发生脂质过氧化造成细胞受损。因此,铁自噬在维持细胞生理性铁稳态中发挥至关重要的作用。核受体共激活因子4 (nuclear receptor co-activator 4, NCOA4)被认为是铁自噬的关键调节因子,与铁蛋白靶向结合,并传递至溶酶体中降解释放游离铁,其介导的铁自噬构成了铁代谢的重要组成部分。最新研究表明,NCOA4受体内铁含量、自噬、溶酶体和低氧等因素的调控。NCOA4介导的铁蛋白降解与铁死亡(ferroptosis)有关。铁死亡是自噬性细胞死亡过程。铁自噬通过调节细胞铁稳态和细胞ROS生成,成为诱导铁死亡的上游机制,与贫血、神经退行性疾病、癌症、缺血/再灌注损伤与疾病的发生发展密切相关。本文针对NCOA4介导的铁自噬通路在铁死亡中的功能特征,探讨NCOA4在这些疾病中的作用,可能为相关疾病的治疗提供启示。  相似文献   

15.
Iron is an essential trace nutrient required for the active sites of many enzymes, electron transfer and oxygen transport proteins. In contrast, to its important biological roles, iron is a catalyst for reactive oxygen species (ROS). Organisms must acquire iron but must protect against oxidative damage. Biology has evolved siderophores, hormones, membrane transporters, and iron transport and storage proteins to acquire sufficient iron but maintain iron levels at safe concentrations that prevent iron from catalyzing the formation of ROS. Ferritin is an important hub for iron metabolism because it sequesters iron during times of iron excess and releases iron during iron paucity. Ferritin is expressed in response to oxidative stress and is secreted into the extracellular matrix and into the serum. The iron sequestering ability of ferritin is believed to be the source of the anti-oxidant properties of ferritin. In fact, ferritin has been used as a biomarker for disease because it is synthesized in response to oxidative damage and inflammation. The function of serum ferritin is poorly understood, however serum ferritin concentrations seem to correlate with total iron stores. Under certain conditions, ferritin is also associated with pro-oxidant activity. The source of this switch from anti-oxidant to pro-oxidant has not been established but may be associated with unregulated iron release from ferritin. Recent reports demonstrate that ferritin is involved in other aspects of biology such as cell activation, development, immunity and angiogenesis. This review examines ferritin expression and secretion in correlation with anti-oxidant activity and with respect to these new functions. In addition, conditions that lead to pro-oxidant conditions are considered.  相似文献   

16.
The ability of Copper(II)-bleomycin to inhibit oxygen-free-radical damage to biomolecules has been assessed. This copper complex showed inhibitory properties towards iron-catalysed damage to phospholipid membranes and cell-free DNA. It was also able to prevent superoxide-dependent reduction of nitroblue tetrazolium (NBT). Unlike iron, copper-bleomycin does not damage DNA in vitro. This may result from a site-specific dismutation of superoxide radicals on the DNA molecule.  相似文献   

17.
6-Hydroxydopamine (6-OHDA) is a neurotoxin to produce an animal model of Parkinson's disease. 6-OHDA increased the formation of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG), a biomarker of oxidatively damaged DNA, and induced apoptosis in human neuroblastoma SH-SY5Y cells. Iron or copper chelators inhibited 6-OHDA-induced 8-oxodG formation and apoptosis. Thus, iron and copper are involved in the intracellular oxidatively generated damage to DNA, a stimulus for initiating apoptosis. This study examined DNA damage caused by 6-OHDA plus metal ions using (32)P-5'-end-labelled DNA fragments. 6-OHDA increased levels of oxidatively damaged DNA in the presence of Fe(III)EDTA or Cu(II). Cu(II)-mediated DNA damage was stronger than Fe(III)-mediated DNA damage. The spectrophotometric detection of p-quinone and the scopoletin method showed that Cu(II) more effectively accelerated the 6-OHDA auto-oxidation and H(2)O(2) generation than Fe(III)EDTA. This study suggests that copper, as well as iron, may play an important role in 6-OHDA-induced neuronal cell death.  相似文献   

18.
Cellular metabolism of dopamine (DA) generates H2O2, which is further reduced to hydroxyl radicals in the presence of iron. Cellular damage inflicted by DA-derived hydroxyl radicals is thought to contribute to Parkinson's disease. We have previously developed procedures for detecting proteins that contain H2O2-sensitive cysteine (or selenocysteine) residues. Using these procedures, we identified ERP72 and ERP60, two members of the protein disulfide isomerase family, creatine kinase, glyceraldehyde-3-phosphate dehydrogenase, phospholipase C-gamma1, and thioredoxin reductase as the targets of DA-derived H2O2. Experiments with purified enzymes identified the essential Cys residues of creatine kinase and glyceraldehyde-3-phosphate dehydrogenase, that are specifically oxidized by H2O2. Although the identified proteins represent only a fraction of the targets of DA-derived H2O2, functional impairment of these proteins has previously been associated with cell death. The oxidation of proteins that contain reactive Cys residues by DA-derived H2O2 is therefore proposed both to be largely responsible for DA-induced apoptosis in neuronal cells and to play an important role in the pathogenesis of Parkinson's disease.  相似文献   

19.
Iron regulatory proteins (IRP1 and 2) function as translational regulators that coordinate the cellular iron metabolism of eukaryotes by binding to the mRNA of target genes such as the transferrin receptor or ferritin. In addition to IRP2, IRP1 serves as sensor of reactive oxygen species (ROS). As iron and oxygen are essential but potentially toxic constituents of most organisms, ROS-mediated modulation of IRP1 activity may be an important regulatory element in dissecting iron homeostasis and oxidative stress. The responses of IRP1 towards reactive oxygen species are compartment-specific and rather complex: H2O2 activates IRP1 via a signaling cascade that leads to upregulation of the transferrin receptor and cellular iron accumulation. Contrary, superoxide inactivates IRP1 by a direct chemical attack being limited to the intracellular compartment. In particular, activation of IRP1 by H2O2 has established a new regulatory link between inflammation and iron metabolism with new clinical implications. This mechanism seems to contribute to the anemia of chronic disease and inflammation-mediated iron accumulation in tissues. In addition, the cytotoxic side effects of redox-cycling anticancer drugs such as doxorubicin may involve H2O2-mediated IRP1 activation. These molecular insights open up new therapeutic strategies for the clinical management of chronic inflammation and drug-mediated cardiotoxicity.  相似文献   

20.
Transition metal ions, especially iron, appear to be important mediators of oxidative damage in vivo. Iron(II) reacts with H2O2 to give more-reactive radicals. On the basis of ESR spin-trapping data with DMPO, supported by aromatic hydroxylation studies and patterns of DNA base modification, it is concluded that hydroxyl radical (OH.) is likely to be the major damaging species formed in Fenton Systems under biologically-relevant conditions (which include iron concentrations no higher than the micromolar range). Although reactive oxo-iron species (such as ferryl and perferryl) may also be important, direct chemical evidence for their formation and identity in biologically relevant Fenton systems is currently lacking. Studies at alkaline pH values show that iron(IV) and iron(V) species are highly oxidizing under those reaction conditions, with a pattern of reactivity different from that of OH..  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号