首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some 2,6-diarylpiperidin/tetrahydrothiopyran/tetrahydropyran-4-one oximes were synthesized in dry media under microwave irradiation and were evaluated for their in vitro antibacterial activity against clinically isolated bacterial strains i.e. S.aureus, beta-H.Streptococcus, E.coli, P.aeruginosa, S.typhii and in vitro antifungal activities against fungal strains i.e. C.albicans, Rhizopus, A.niger and A.flavus. Structure-activity relationships for the synthesized compounds showed that compounds 12 and 15 exerted excellent antibacterial activity against all the tested bacterial strains except 15 against S.aureus and beta-H.streptococcus. Against C.albicans and A.flavus, compound 15 exerted potent antifungal activities while against Rhizopus, compound 16 showed promising activity.  相似文献   

2.
A convenient method for the 'one-pot' synthesis of novel target molecule 2,7-diaryl-[1,4]-diazepan-5-ones from the respective 2,6-diaryl-piperidin-4-ones was catalyzed by NaHSO4.Al2O3 heterogeneous catalyst in dry media under microwave irradiation in solvent-free conditions. Moreover, the catalyst could be recovered and re-used up to 4 times after washing with ethyl acetate. They were evaluated for potential antibacterial activity against Staphylococcus aureus, beta-Haemolytic streptococcus, Vibreo cholerae, Salmonella typhii, Escherichia coli, Klebsiella pneumonia, Pseudomonas and antifungal activity against Aspergillus flavus, Aspergillus fumigatus, Mucor, Candida albicans and Rhizopus. Structure-Activity Relationship (SAR) led to the conclusion that, of all the compounds 25-32 tested, compound 30 exerted strong in vitro antibacterial activity against S. aureus, S. typhii, and Pseudomonas and all the compounds 25-32 were less active against E. coli, whereas all the compounds 25-32 displayed potent in vitro antifungal activity against all the fungal strains used, except compound 30, which was more effectual against Mucor.  相似文献   

3.
A series of novel spiro[indole-thiazolidine]spiro[indole-pyran] derivatives were synthesized from N-(bromoalkyl)indol-2,3-diones via monospiro-bisindole intermediates; the two indole nuclei being connected via N-(CH(2))(n)-N linker. Synthesized compounds were evaluated for their antimicrobial activities in vitro against three Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis, and Staphylococcus epidermis), four Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Klebsiella pneumonia) as well as four fungi (Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus, and Candida albicans) using Cup plate method. Bis spiro-indoles exhibited stronger antibacterial and antifungal efficiency than their corresponding mono spiro-indoles. Compound 10e, the most active derivative was shown to inhibit the growth of all bacterial strains and two fungal strains (A. niger and C. albicans).  相似文献   

4.
In an attempt to find a new class of antimicrobial agents, a series of new 1,3,4-thiadiazolines were synthesized from 2,6-diarylpiperidin-4-ones, via the corresponding 4'-phenylthiosemicarbazones. All the synthesized compounds (23-39) were virtually screened against bacterial (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi) and fungal strains (Candida albicans, Rhizopus sp, Aspergillus niger and Aspergillus flavus) by serial dilution method. QSAR study indicated that the increase in weakly polar component of solvent accessible surface area will favour antibacterial activity while increase in polarizability and decrease in ionisation potential and hydrogen bond donor will favour antifungal activity.  相似文献   

5.
A series of ethyl 4-(naphthalen-2-yl)-2-oxo-6-arylcyclohex-3-enecarboxylates 8-14 and 4,5-dihydro-6-(naphthalen-2-yl)-4-aryl-2H-indazol-3-ols 15-21 were synthesised and characterised by their spectroscopic data. In vitro microbiological evaluations were carried out for all the newly synthesised compounds 8-21 against clinically isolated bacterial and fungal strains. Compounds 9, 12 and 20 against Staphylococcus aureus, 10, 12, 20 against β-haemolytic streptococcus, 11, 17 against Bacillus subtilis, 12, 16 and 20 against Vibreo cholerae, 13, 16 against Escherichia coli, 13, 16, 18, 19 against Salmonella typhii, 12, 18 against Shigella flexneri, 10 against Salmonella typhii, 10, 13, 17, 18 against Aspergillus flavus, 12, 17, 21 against Aspergillus niger, 12, 15, 17, 18, 20 against Mucor, Rhizopus and Microsporeum gypsuem exhibit potent antimicrobial activity.  相似文献   

6.
A series of substituted piperazine derivatives have been synthesized and tested for antimicrobial activity. The antibacterial activity was tested against Staphylococcus aureus (MTCCB 737), Pseudomonas aeruginosa (MTCCB 741), Streptomyces epidermidis (MTCCB 1824) and Escherichia coli (MTCCB 1652), and antifungal activity against Aspergillus fumigatus, Aspergillus flavus and Aspergillus niger. All synthesized compounds showed significant activity against bacterial strains but were found to be less active against tested fungi. In vitro toxicity tests demonstrated that compounds 4d and 6a showed very less toxicity against human erythrocytes.  相似文献   

7.
A series of antibacterial and antifungal sulfonamide (sulfanilamide, sulfaguanidine, sulfamethaxozole, 4-aminoethylbenzene-sulfonamide and 4-amino-6-trifluoromethyl-benzene-1,3-disulfonamide) derived chromones, previously reported as inhibitors of carbonic anhydrase, have been screened for in-vitro antibacterial activity against four Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Shigella flexener) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains, and for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, Candida glaberata. All compounds (1)-(5) showed significant antibacterial activity against all four Gram-negative species and both Gram-positive species. However, three of them, (1), (4) and (5), were found to be comparatively much more active compared to (2) and (3). Of these, (5) was found to be the most active one. For antifungal activity, generally compounds (1) and (2) showed significant activity against more than three strains whereas (3)-(5) also showed significant activity against varied fungal strains. In the brine shrimp bioassay for in-vitro cytotoxic properties, only two compounds, (4) and (5) displayed potent cytotoxic activity, LD50 = 2.732 x 10(-4)M) and LD50 = 2.290 x 10(-4)M) respectively, against Artemia salina.  相似文献   

8.
Novel bis cyclohexenone ester derivatives 14-19 were synthesized and characterized by their spectral data. In vitro microbiological evaluations were carried out for all the novel compounds 14-19 against clinically isolated bacterial and fungal strains. Compounds 15, 16, 18 against Staphylococcus aureus, 14, 15 against β-Haemolytic streptococcus, 15, 19 against Micrococcus luteus, 17, 18 against Salmonella typhii, 14, 17 against Shigella flexneri, 15 against Escherichia coli, 16 against Pseudomonas aeruginosa, 15, 18, 19 against Klebsiella pneumonia exhibited potent antibacterial activity at an minimum inhibitory concentration (MIC) value of 6.25 μg/ml, whereas compound 16 against Aspergillus flavus, 17 against A. niger, 16, 18 against Mucor indicus, 15, 17-19 against Microsporum gypseum revealed excellent antifungal activity at an MIC value of 6.25 μg/ml.  相似文献   

9.
A series of 4-(6-substituted-1,3-benzothiazol-2-yl)amino-2-(4-substitutedphenyl)- amino-1,3-thiazoles, 9-24 have been synthesised from 2-chloro-N-(6-substituted-1,3-benzothiazol-2-yl)acetamides, 5-8. The structures of these compounds have been elucidated by spectral (IR, (1)H NMR, Mass) and elemental (C, H, N) analysis data. All the newly synthesised compounds (9-24) were screened for their antibacterial, antifungal and anthelmintic activities. Almost all of these compounds showed moderate to good antimicrobial activity against two gram negative bacteria (E. coli, P. aeruginosa), two gram positive bacteria (S. aureus, B. subtilis), pathogenic fungal strains (C. albicans, A. niger) and good anthelmintic activity against earthworm species (P. corethruses). Compounds 18 and 20 exhibited good antibacterial and antifungal activities, while compound 22 displayed the most significant anthelmintic activity.  相似文献   

10.
A series of nine 3-arylamino-1-chloropropan-2-ols 2a-2i were synthesized and their anti-fungal activity against pathogenic strains of Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger and Candida albicans, and antibacterial activity against four pathogenic bacterial strains of Salmonella typhi, Pseudomonas aeruginosa, Streptococcus pneumonae and Staphylococcus aureus were evaluated using different assay systems. 1-Chloro-3-(4'-chlorophenylamino)-propan-2-ol was found to be the most active anti-fungal compound against three pathogenic strains under study, i.e., A. fumigatus, A. flavus and A. niger; the compound showed more than 90% inhibition of growth of A. fumigatus at a concentration of 5.85 microg/ml in disc diffusion assay. Interestingly, 1-chloro-3-(4'-chlorophenylamino)-propan-2-ol did not show any toxicity up to a concentration of 4000 microg/ml. Although 1-chloro-3-(4'-chlorophenylamino)-propan-2-ol was about 8 times less active than the standard compound amphotericin B, its toxicity was many more fold less than the toxicity of amphotericin B. Further, 1-chloro-3-(2',6'-dichlorophenylamino)-propan-2-ol and 1-chloro-3-(3',5'-dichlorophenylamino)-propan-2-ol were found to be the most active compounds against C. albicans. In the anti-microbial assay, 1-chloro-3-(2',4'-dichlorophenylamino)-propan-2-ol and 1-chloro-3-(3',5'-dichlorophenylamino)-propan-2-ol were found to be the most active compounds against Salmonella typhi and 1-chloro-3-(3',4'-dichlorophenylamino)-propan-2-ol was found to be the most active compound against P. aeruginosa. Although, the activities of 1-chloro-3-(2',4'-dichlorophenylamino)-propan-2-ol and 1-chloro-3-(3',5'-dichlorophenylamino)-propan-2-ol are about half the activity of the standard anti-bacterial compound tetracycline, these compounds also were many fold less toxic than the standard drug.  相似文献   

11.
Synthesis, characterization and biological studies of Schiff base-derived sulfonamides and their Co (II), Cu (II), Ni (II) and Zn (II) complexes have been reported and screened for in-vitro antibacterial activity against six Gram-negative; E. coli, K. pneumoniae, P. aeruginosa, P. mirabilis, S. typhi and S. dysenteriae and four Gram-positive; B. cereus, C. diphtheriae, S. aureus and S. pyogenes bacterial strains and for in-vitro antifungal activity against T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glaberata. All compounds showed moderate to significant antibacterial activity, however, the zinc (II) complexes were found to be more active. Some of the compounds also showed significant antifungal activity against various fungal strains. Only compounds (6) and (10) displayed potent cytotoxic activity with LD(50) = 4.644 x 10(- 4) and 4.106 x 10(- 4) moles/mL respectively, against Artemia salina. The X-ray structure of 4-[(2-hydroxybenzylidene)amino]benzenesulfonamide is also reported.  相似文献   

12.
Eichhornia crassipes (Mart) Solms is an invasive weed known to out-compete native plants and negatively affect microbes including phytoplankton. The spread and population density of E. crassipes will be favored by global warming. The aim here was to identify compounds that underlie the effects on microbes. The entire plant of E. crassipes was collected from El Zomor canal, River Nile (Egypt), washed clean, then air dried. Plant tissue was extracted three times with methanol and fractionated by thin layer chromatography (TLC). The crude methanolic extract and five fractions from TLC (A-E) were tested for antimicrobial (bacteria and fungal) and anti-algal activities (green microalgae and cyanobacteria) using paper disc diffusion bioassay. The crude extract as well as all five TLC fractions exhibited antibacterial activities against both the gram positive bacteria; Bacillus subtilis and Streptococcus faecalis; and the gram negative bacteria; Escherichia coli and Staphylococcus aureus. Growth of Aspergillus flavus and Aspergillus niger were not inhibited by either E. crassipes crude extract nor its five fractions. In contrast, Candida albicans (yeast) was inhibited by all. Some antialgal activity of the crude extract and its fractions was manifest against the green microalgae; Chlorella vulgaris and Dictyochloropsis splendida as well as the cyanobacteria; Spirulina platensis and Nostoc piscinale. High antialgal activity was only recorded against Chlorella vulgaris. Identifications of the active antimicrobial and antialgal compounds of the crude extract as well as the five TLC fractions were carried out using gas chromatography combined with mass spectroscopy. The analyses showed the presence of an alkaloid (fraction A) and four phthalate derivatives (Fractions B-E) that exhibited the antimicrobial and antialgal activities.  相似文献   

13.
New 3-chloro-1-hydroxy-2,6-diarylpiperidin-4-ones 18-22 were synthesized, characterized by melting point, elemental analysis, MS, FT-IR, one-dimensional NMR ((1)H & (13)C) spectroscopic data and evaluated for their in vitro antibacterial and antifungal activities. All the newly synthesized compounds exerted a wide range of antibacterial activities against the entire tested gram-positive and gram-negative bacterial strains except Escherichia coli. Compounds 21 and 22 exerted strong antifungal activities against Aspergillus flavus, mucor and Microsporum gypsuem. In addition, compound 20 was more potent against Rhizopus.  相似文献   

14.
A series of benzimidazole-5-carboxylic acid alkyl ester derivatives carrying amide or amidine substituted methyl or phenyl groups at the position C-2 were synthesised and evaluated for antibacterial and antifungal activities against S. aureus, methicillin resistant S. aureus (MRSA), S. faecalis, methicillin resistant S. epidermidis (MRSE), E. coli and C. albicans. The results showed that while all simple acetamides are essentially inactive, aromatic amides and amidines have potent antibacterial activities. Aromatic amidine derivatives 13 f-h exhibited the best inhibitory activity with 1.56-0.39 microg/mL MIC values against MRSA and MRSE.  相似文献   

15.
A series of metal complexes of cobalt(II), nickel(II) and copper(II) have been synthesized with newly derived biologically active ligands. These ligands were synthesized by the condensation of 3-substituted-4-amino-5-hydrazino-1,2,4-triazole and 8-formyl-7-hydroxy-4-methylcoumarin. The probable structure of the complexes has been proposed on the basis of elemental analyses and spectral (IR, Uv-Vis, magnetic, ESR, FAB-mass and thermal studies) data. Electro chemical study of the complexes is also reported. All these complexes are non-electrolytes in DMF and DMSO. All the ligands and their Co(II), Ni(II) and Cu(II) complexes were screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Staphylococcus pyogenes and Pseudomonas aeruginosa) and antifungal (Aspergillus niger, Aspergillus flavus and cladosporium) activities by MIC method. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties.  相似文献   

16.
A series of metal complexes of cobalt(II), nickel(II) and copper(II) have been synthesized with newly derived biologically active ligands. These ligands were synthesized by the condensation of 3-substituted-4-amino-5-hydrazino-1,2,4-triazole and 8-formyl-7-hydroxy-4-methylcoumarin. The probable structure of the complexes has been proposed on the basis of elemental analyses and spectral (IR, Uv-Vis, magnetic, ESR, FAB-mass and thermal studies) data. Electro chemical study of the complexes is also reported. All these complexes are non-electrolytes in DMF and DMSO. All the ligands and their Co(II), Ni(II) and Cu(II) complexes were screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Staphylococcus pyogenes and Pseudomonas aeruginosa) and antifungal (Aspergillus niger, Aspergillus flavus and cladosporium) activities by MIC method. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties.  相似文献   

17.
The in vitro antibacterial and antifungal activities of demethoxyviridin and some synthetic analogues were evaluated by the agar diffusion method. The minimum inhibitory concentrations (MIC) of the active compounds were also determined by the agar dilution method. Demethoxyviridin (1) showed moderate antibacterial activity against most of the strains tested. 1alpha-Hydroxydemethoxyviridin (3) showed antibacterial activity and the most potent in vitro antifungal activity with MIC of 20 microg/ml (0.062 mM) against Aspergillus niger, A. fumigatus, A. flavus, A. parasiticus, Fusarium solani, F. graminarum, Geotrichum candidum whereas 5'-methylfuro-(4',3',2'-4,5,6)androst-5-ene-3,17-dione (7) exhibited very weak antifungal activity against Candida albicans only.  相似文献   

18.
In search for a new antibacterial agent with improved antimicrobial spectrum and potency, we designed and synthesized a series of novel 3-((Z)-2-(4-nitrophenyl)-2-(1H-tetrazol-5-yl) vinyl)-4H-chromen-4-ones 7a-h by convergent synthesis approach. All the synthesized compounds were assayed for their in-vitro antibacterial activities against gram-negative and gram-positive bacteria. The preliminary structure-activity relationship, to elucidate the essential structure requirements for the antimicrobial activity that results into anti-MRSA (methicillin-resistant S. aureus) potential, has been described. Amongst the synthesized compounds 7d, 7e, 7f and 7h were found to possess activity against methicillin-resistant S. aureus in addition to the activity against other bacterial strains such as E. faecalis, S. pneumoniae, and E. coli.  相似文献   

19.
Iron(III) have been combined to well known quinolones (ciprofloxacin) and some Schiff bases with the help of coordination approach. Characterization of these compounds have been done using elemental analysis, magnetic measurements, thermogravimetric analysis, IR, UV-VIS, (1)H NMR and (13)C NMR spectral investigation. Analytical studies suggest that the iron(III)-quinolone complexes assume a six-coordinated dimeric distorted octahedral geometry. All the compounds show a good antibacterial activity against broad range of bacteria like Bacillus cereus, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Salmonella typhi and Serratia marcescens, whereas no significant inhibition towards growth of fungal strains like Aspergillus Niger, Aspergillus flavus and Lasiodiplodia theobromae. Analyses of all these compounds show effective sperm herring DNA inhibition.  相似文献   

20.
Horn BW 《Mycologia》2005,97(1):202-217
Soil is a source of primary inoculum for Aspergillus flavus and A. parasiticus, fungi that produce highly carcinogenic aflatoxins in peanuts. Aflatoxigenic fungi commonly invade peanut seeds during maturation, and the highest concentrations of aflatoxins are found in damaged seeds. A laboratory procedure was developed in which viable peanut seeds were wounded and inoculated with field soil containing natural populations of fungi, then incubated under different conditions of seed water activity and temperature. Densities of Aspergillus section Flavi in soil used for inoculating seeds were low relative to the total numbers of filamentous fungi (<1%). Aspergillus species from section Flavi present in soil included A. flavus morphotypes L and S strains, A. parasiticus, A. caelatus, A. tamarii and A. alliaceus. Wounding was required for high incidences of fungal colonization; viability of wounded seeds had little effect on colonization by Aspergillus species. Peanut seeds were colonized by section Flavi species as well as A. niger over broad ranges of water activity (0.82-0.98) and temperature (15-37 C), and the highest incidences of seed colonization occurred at water activities of 0.92-0.96 at 22-37 C. A. parasiticus colonized peanut seeds at lower temperatures than A. flavus, and cool soil temperatures relative to temperatures of aerial crop fruits might explain why A. parasiticus is found mostly in peanuts. Other fungi, dominated by the genera Penicillium, Fusarium and Clonostachys, colonized seeds primarily at water activities and temperatures suboptimal for section Flavi species and A. niger. Eupenicillium ochrosalmoneum frequently sporulated on the conidial heads of section Flavi species and showed specificity for these fungi. The inoculation of wounded viable peanut seeds with soil containing natural populations of fungi provides a model system for studying the infection process, the interactions among fungi and those factors important in aflatoxin formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号