首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Detailed linkage and recombination rate maps are necessary to use the full potential of genome sequencing and population genomic analyses. We used a custom collared flycatcher 50 K SNP array to develop a high‐density linkage map with 37 262 markers assigned to 34 linkage groups in 33 autosomes and the Z chromosome. The best‐order map contained 4215 markers, with a total distance of 3132 cM and a mean genetic distance between markers of 0.12 cM . Facilitated by the array being designed to include markers from most scaffolds, we obtained a second‐generation assembly of the flycatcher genome that approaches full chromosome sequences (N50 super‐scaffold size 20.2 Mb and with 1.042 Gb (of 1.116 Gb) anchored to and mostly ordered and oriented along chromosomes). We found that flycatcher and zebra finch chromosomes are entirely syntenic but that inversions at mean rates of 1.5–2.0 event (6.6–7.5 Mb) per My have changed the organization within chromosomes, rates high enough for inversions to potentially have been involved with many speciation events during avian evolution. The mean recombination rate was 3.1 cM /Mb and correlated closely with chromosome size, from 2 cM /Mb for chromosomes >100 Mb to >10 cM /Mb for chromosomes <10 Mb. This size dependence seemed entirely due to an obligate recombination event per chromosome; if 50 cM was subtracted from the genetic lengths of chromosomes, the rate per physical unit DNA was constant across chromosomes. Flycatcher recombination rate showed similar variation along chromosomes as chicken but lacked the large interior recombination deserts characteristic of zebra finch chromosomes.  相似文献   

2.
High density genetic maps are a reliable tool for genetic dissection of complex plant traits. Mapping resolution is often hampered by the variable crossover and non-crossover events occurring across the genome, with pericentromeric regions (pCENR) showing highly suppressed recombination rates. The efficiency of linkage mapping can further be improved by characterizing and understanding the distribution of recombinational activity along individual chromosomes. In order to evaluate the genome wide recombination rate in common beans (Phaseolus vulgaris L.) we developed a SNP-based linkage map using the genotype-by-sequencing approach with a 188 recombinant inbred line family generated from an inter gene pool cross (Andean x Mesoamerican). We identified 1,112 SNPs that were subsequently used to construct a robust linkage map with 11 groups, comprising 513 recombinationally unique marker loci spanning 943 cM (LOD 3.0). Comparative analysis showed that the linkage map spanned >95% of the physical map, indicating that the map is almost saturated. Evaluation of genome-wide recombination rate indicated that at least 45% of the genome is highly recombinationally suppressed, and allowed us to estimate locations of pCENRs. We observed an average recombination rate of 0.25 cM/Mb in pCENRs as compared to the rest of genome that showed 3.72 cM/Mb. However, several hot spots of recombination were also detected with recombination rates reaching as high as 34 cM/Mb. Hotspots were mostly found towards the end of chromosomes, which also happened to be gene-rich regions. Analyzing relationships between linkage and physical map indicated a punctuated distribution of recombinational hot spots across the genome.  相似文献   

3.
A total of 355 simple sequence repeat (SSR) markers were developed, based on expressed sequence tag (EST) and bacterial artificial chromosome (BAC)-end sequence databases, and successfully used to construct an SSR-based genetic linkage map of the apple. The consensus linkage map spanned 1143 cM, with an average density of 2.5 cM per marker. Newly developed SSR markers along with 279 SSR markers previously published by the HiDRAS project were further used to integrate physical and genetic maps of the apple using a PCR-based BAC library screening approach. A total of 470 contigs were unambiguously anchored onto all 17 linkage groups of the apple genome, and 158 contigs contained two or more molecular markers. The genetically mapped contigs spanned ~421 Mb in cumulative physical length, representing 60.0% of the genome. The sizes of anchored contigs ranged from 97 kb to 4.0 Mb, with an average of 995 kb. The average physical length of anchored contigs on each linkage group was ~24.8 Mb, ranging from 17.0 Mb to 37.73 Mb. Using BAC DNA as templates, PCR screening of the BAC library amplified fragments of highly homologous sequences from homoeologous chromosomes. Upon integrating physical and genetic maps of the apple, the presence of not only homoeologous chromosome pairs, but also of multiple locus markers mapped to adjacent sites on the same chromosome was detected. These findings demonstrated the presence of both genome-wide and segmental duplications in the apple genome and provided further insights into the complex polyploid ancestral origin of the apple.  相似文献   

4.
To construct a genetic linkage map of the heterothallic yeast, Cryptococcus neoformans (Filobasidiella neoformans), we crossed two mating-compatible strains and analyzed 94 progeny for the segregation of 301 polymorphic markers, consisting of 228 restriction site polymorphisms, 63 microsatellites, two indels, and eight mating-type (MAT)-associated markers. All but six markers showed no significant (P < 0.05) segregation distortion. At a minimum LOD score of 6.0 and a maximum recombination frequency of 0.30, 20 linkage groups were resolved, resulting in a map length of approximately 1500 cM. Average marker density is 5.4 cM (range 1-28.7 cM). Hybridization of selected markers to blots of electrophoretic karyotypes unambiguously assigned all linkage groups to chromosomes and led us to conclude that the C. neoformans genome is approximately 20.2 Mb, comprising 14 chromosomes ranging in size from 0.8 to 2.3 Mb, with a ratio of approximately 13.2 kb/cM averaged across the genome. However, only 2 of 12 ungrouped markers hybridized to chromosome 10. The hybridizations revealed at least one possible reciprocal translocation involving chromosomes 8, 9, and 12. This map has been critical to genome sequence assembly and will be essential for future studies of quantitative trait inheritance.  相似文献   

5.
Studies of the variation in recombination rate across the genome provide a better understanding of evolutionary genomics and are also an important step towards mapping and dissecting complex traits in domestic animals. With the recent completion of the porcine genome sequence and the availability of a high‐density porcine single nucleotide polymorphism (SNP) array, it is now possible to construct a high‐density porcine linkage map and estimate recombination rate across the genome. A total of 416 animals were genotyped with the Porcine SNP60BeadChip, and high‐density chromosome linkage maps were constructed using CRI‐MAP, assuming the physical order of the Sscrofa10 assembly. The total linkage map length was 2018.79 cM, using 658 meioses and 14 503 SNPs. The estimated average recombination rate across the porcine autosomes was 0.86 cM/Mb. However, a large variation in recombination rate was observed among chromosomes. The estimated average recombination rates (cM/Mb) per chromosome ranged from 0.48 in SSC1 to 1.48 in SSC10, displaying a significant negative correlation with the chromosome sizes. In addition, the analysis of the variation in the recombination rates taking 1‐Mb sliding windows has allowed us to demonstrate the variation in recombination rates within chromosomes. In general, a larger recombination rate was observed in the extremes than in the centre of the chromosome. Finally, the ratio between female and male recombination rates was also inferred, obtaining a value of 1.38, with the heterogametic sex having the least recombination.  相似文献   

6.
Nineteen linkage groups containing a total of 52 markers have been identified in the sheep genome after typing large paternal half-sib families. The linkage groups range in size from 2 markers showing no recombination to a group containing 6 markers covering approximately 30 cM of the sheep genome. Thirteen of the groups have been assigned to a sheep chromosome. Three groups contain markers from bovine syntenic groups U2, U7 and U29, and one other group contains a marker that has been mapped only in humans. The remaining three groups are unassigned. This information will provide a useful foundation for a genetic linkage map of sheep.  相似文献   

7.
As part of a larger project to sequence the Populus genome and generate genomic resources for this emerging model tree, we constructed a physical map of the Populus genome, representing one of the few such maps of an undomesticated, highly heterozygous plant species. The physical map, consisting of 2802 contigs, was constructed from fingerprinted bacterial artificial chromosome (BAC) clones. The map represents approximately 9.4-fold coverage of the Populus genome, which has been estimated from the genome sequence assembly to be 485 ± 10 Mb in size. BAC ends were sequenced to assist long-range assembly of whole-genome shotgun sequence scaffolds and to anchor the physical map to the genome sequence. Simple sequence repeat-based markers were derived from the end sequences and used to initiate integration of the BAC and genetic maps. A total of 2411 physical map contigs, representing 97% of all clones assigned to contigs, were aligned to the sequence assembly (JGI Populus trichocarpa , version 1.0). These alignments represent a total coverage of 384 Mb (79%) of the entire poplar sequence assembly and 295 Mb (96%) of linkage group sequence assemblies. A striking result of the physical map contig alignments to the sequence assembly was the co-localization of multiple contigs across numerous regions of the 19 linkage groups. Targeted sequencing of BAC clones and genetic analysis in a small number of representative regions showed that these co-aligning contigs represent distinct haplotypes in the heterozygous individual sequenced, and revealed the nature of these haplotype sequence differences.  相似文献   

8.
Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the present work, we constructed a high-density and high-resolution genetic map for channel catfish with three large resource families genotyped using the catfish 250K single-nucleotide polymorphism (SNP) array. A total of 54,342 SNPs were placed on the linkage map, which to our knowledge had the highest marker density among aquaculture species. The estimated genetic size was 3,505.4 cM with a resolution of 0.22 cM for sex-averaged genetic map. The sex-specific linkage maps spanned a total of 4,495.1 cM in females and 2,593.7 cM in males, presenting a ratio of 1.7 : 1 between female and male in recombination fraction. After integration with the previously established physical map, over 87% of physical map contigs were anchored to the linkage groups that covered a physical length of 867 Mb, accounting for ∼90% of the catfish genome. The integrated map provides a valuable tool for validating and improving the catfish whole-genome assembly and facilitates fine-scale QTL mapping and positional cloning of genes responsible for economically important traits.  相似文献   

9.
Hevea brasiliensis, or rubber tree, is an important crop species that accounts for the majority of natural latex production. The rubber tree nuclear genome consists of 18 chromosomes and is roughly 2.15 Gb. The current rubber tree reference genome assembly consists of 1,150,326 scaffolds ranging from 200 to 531,465 bp and totalling 1.1 Gb. Only 143 scaffolds, totalling 7.6 Mb, have been placed into linkage groups. We have performed RNA-seq on 6 varieties of rubber tree to identify SNPs and InDels and used this information to perform target sequence enrichment and high throughput sequencing to genotype a set of SNPs in 149 rubber tree offspring from a cross between RRIM 600 and RRII 105 rubber tree varieties. We used this information to generate a linkage map allowing for the anchoring of 24,424 contigs from 3,009 scaffolds, totalling 115 Mb or 10.4% of the published sequence, into 18 linkage groups. Each linkage group contains between 319 and 1367 SNPs, or 60 to 194 non-redundant marker positions, and ranges from 156 to 336 cM in length. This linkage map includes 20,143 of the 69,300 predicted genes from rubber tree and will be useful for mapping studies and improving the reference genome assembly.  相似文献   

10.
An integrated genetic linkage map was developed for the turkey (Meleagris gallopavo) that combines the genetic markers from the three previous mapping efforts. The UMN integrated map includes 613 loci arranged into 41 linkage groups. An additional 105 markers are tentatively placed within linkage groups based on two-point LOD scores and 19 markers remain unlinked. A total of 210 previously unmapped markers has been added to the UMN turkey genetic map. Markers from each of the 20 linkage groups identified in the Roslin map and the 22 linkage groups of the Nte map are incorporated into the new integrated map. Overall map distance contained within the 41 linkage groups is 3,365 cM (sex-averaged) with the largest linkage group (94 loci) measuring 533.1 cM. Average marker interval for the map was 7.86 cM. Sequences of markers included in the new map were compared to the chicken genome sequence by 'BLASTN'. Significant similarity scores were obtained for 95.6% of the turkey sequences encompassing an estimated 91% of the chicken genome. A physical map of the chicken genome based on positions of the turkey sequences was built and 36 of the 41 turkey linkage groups were aligned with the physical map, five linkage groups remain unassigned. Given the close similarities between the turkey and chicken genomes, the chicken genome sequence could serve as a scaffold for a genome sequencing effort in the turkey.  相似文献   

11.
High-resolution genetic maps are essential for fine mapping of complex traits, genome assembly, and comparative genomic analysis. Single-nucleotide polymorphisms (SNPs) are the primary molecular markers used for genetic map construction. In this study, we identified 13,362 SNPs evenly distributed across the Japanese flounder (Paralichthys olivaceus) genome. Of these SNPs, 12,712 high-confidence SNPs were subjected to high-throughput genotyping and assigned to 24 consensus linkage groups (LGs). The total length of the genetic linkage map was 3,497.29 cM with an average distance of 0.47 cM between loci, thereby representing the densest genetic map currently reported for Japanese flounder. Nine positive quantitative trait loci (QTLs) forming two main clusters for Vibrio anguillarum disease resistance were detected. All QTLs could explain 5.1–8.38% of the total phenotypic variation. Synteny analysis of the QTL regions on the genome assembly revealed 12 immune-related genes, among them 4 genes strongly associated with V. anguillarum disease resistance. In addition, 246 genome assembly scaffolds with an average size of 21.79 Mb were anchored onto the LGs; these scaffolds, comprising 522.99 Mb, represented 95.78% of assembled genomic sequences. The mapped assembly scaffolds in Japanese flounder were used for genome synteny analyses against zebrafish (Danio rerio) and medaka (Oryzias latipes). Flounder and medaka were found to possess almost one-to-one synteny, whereas flounder and zebrafish exhibited a multi-syntenic correspondence. The newly developed high-resolution genetic map, which will facilitate QTL mapping, scaffold assembly, and genome synteny analysis of Japanese flounder, marks a milestone in the ongoing genome project for this species.  相似文献   

12.
Genome structure has been found to be highly conserved between distantly related birds and recent data for a limited part of the genome suggest that this is true also for the gene order (synteny) within chromosomes. Here, we confirm that synteny is maintained for large chromosomal regions in chicken and a passerine bird, the great reed warbler Acrocephalus arundinaceus, with few rearrangements, but in contrast show that the recombination-based linkage map distances differ substantially between these species. We assigned a chromosomal location based on sequence similarity to the chicken genome sequence to a set of microsatellite loci mapped in a pedigree of great reed warblers. We detected homologous loci on 14 different chromosomes corresponding to chicken chromosomes Gga1-5, 7-9, 13, 19, 20, 24, 25, and Z. It is known that 2 passerine macrochromosomes correspond to the chicken chromosome Gga1. Homology of 2 different great reed warbler linkage groups (LG13 and LG5) to Gga1 allowed us to locate the split to a position between 20.8 and 84.8 Mb on Gga1. Data from the 5 chromosomal regions (on Gga1, 2, 3, 5, and Z) with 3 or more homologous loci showed that synteny was conserved with the exception of 2 large previously unreported inversions on Gga1/LG5 and Gga2/LG3, respectively. Recombination data from the 9 chromosomal regions in which we identified 2 or more homologous loci (accounting for the inversions) showed that the linkage map distances in great reed warblers were only 6.3% and 13.3% of those in chickens for males and females, respectively. This is likely to reflect the true interspecific difference in recombination rate because our markers were not located in potentially low-recombining regions: several linkage groups covered a substantial part of their corresponding chicken chromosomes and were not restricted to centromeres. We conclude that recombination rates may differ strongly between bird species with highly conserved genome structure and synteny and that the chicken linkage map may not be suitable, in terms of genetic distances, as a model for all bird species.  相似文献   

13.
The house sparrow is an important model species for studying physiological, ecological and evolutionary processes in wild populations. Here, we present a medium density, genome wide linkage map for house sparrow (Passer domesticus) that has aided the assembly of the house sparrow reference genome, and that will provide an important resource for ongoing mapping of genes controlling important traits in the ecology and evolution of this species. Using a custom house sparrow 10 K iSelect Illumina SNP chip we have assigned 6,498 SNPs to 29 autosomal linkage groups, based on a mean of 430 informative meioses per SNP. The map was constructed by combining the information from linkage with that of the physical position of SNPs within scaffold sequences in an iterative process. Averaged between the sexes; the linkage map had a total length of 2,004 cM, with a longer map for females (2,240 cM) than males (1,801 cM). Additionally, recombination rates also varied along the chromosomes. Comparison of the linkage map to the reference genomes of zebra finch, collared flycatcher and chicken, showed a chromosome fusion of the two avian chromosomes 8 and 4A in house sparrow. Lastly, information from the linkage map was utilized to conduct analysis of linkage disequilibrium (LD) in eight populations with different effective population sizes (Ne) in order to quantify the background level LD. Together, these results aid the design of future association studies, facilitate the development of new genomic tools and support the body of research that describes the evolution of the avian genome.  相似文献   

14.
Genetic markers (microsatellites and SNPs) were used to create and compare maps of the turkey and chicken genomes. A physical map of the chicken genome was built by comparing sequences of turkey markers with the chicken whole-genome sequence by BLAST analysis. A genetic linkage map of the turkey genome (Meleagris gallopavo) was developed by segregation analysis of genetic markers within the University of Minnesota/Nicholas Turkey Breeding Farms (UMN/NTBF) resource population. This linkage map of the turkey genome includes 314 loci arranged into 29 linkage groups. An additional 40 markers are tentatively placed within linkage groups based on two-point LOD scores and 16 markers remain unlinked. Total map distance contained within linkage groups is 2,011 cM with the longest linkage group (47 loci) measuring 413.3 cM. Average marker interval over the 29 linkage groups was 6.4 cM. All but one turkey linkage group could be aligned with the physical map of the chicken genome. The present genetic map of the turkey provides a comparative framework for future genomic studies.  相似文献   

15.
Recent advances in technologies for high-throughout single-nucleotide polymorphism (SNP)-based genotyping have improved efficiency and cost so that it is now becoming reasonable to consider the use of SNPs for genomewide linkage analysis. However, a suitable screening set of SNPs and a corresponding linkage map have yet to be described. The SNP maps described here fill this void and provide a resource for fast genome scanning for disease genes. We have evaluated 6,297 SNPs in a diversity panel composed of European Americans, African Americans, and Asians. The markers were assessed for assay robustness, suitable allele frequencies, and informativeness of multi-SNP clusters. Individuals from 56 Centre d'Etude du Polymorphisme Humain pedigrees, with >770 potentially informative meioses altogether, were genotyped with a subset of 2,988 SNPs, for map construction. Extensive genotyping-error analysis was performed, and the resulting SNP linkage map has an average map resolution of 3.9 cM, with map positions containing either a single SNP or several tightly linked SNPs. The order of markers on this map compares favorably with several other linkage and physical maps. We compared map distances between the SNP linkage map and the interpolated SNP linkage map constructed by the deCode Genetics group. We also evaluated cM/Mb distance ratios in females and males, along each chromosome, showing broadly defined regions of increased and decreased rates of recombination. Evaluations indicate that this SNP screening set is more informative than the Marshfield Clinic's commonly used microsatellite-based screening set.  相似文献   

16.
Koo DH  Jo SH  Bang JW  Park HM  Lee S  Choi D 《Genetics》2008,179(3):1211-1220
We report the integration of the linkage map of tomato chromosome 2 with a high-density bacterial artificial chromosome fluorescence in situ hybridization (BAC-FISH)-based cytogenetic map. The euchromatic block of chromosome 2 resides between 13 and 142 cM and has a physical length of 48.12 microm, with 1 microm equivalent to 540 kb. BAC-FISH resolved a pair of loci that were 3.7-3.9 Mb apart and were not resolved on the linkage map. Most of the regions had crossover densities close to the mean of approximately 200 kb/cM. Relatively hot and cold spots of recombination were unevenly distributed along the chromosome. The distribution of centimorgan/micrometer values was similar to the previously reported recombination nodule distribution along the pachytene chromosome. FISH-based physical maps will play an important role in advanced genomics research for tomato, including map-based cloning of agronomically important traits and whole-genome sequencing.  相似文献   

17.
Sequencing of the rice genome has provided a platform for functional genomics research of rice and other cereal species. However, multiple approaches are needed to determine the functions of its genes and sequences and to use the genome sequencing results for genetic improvement of cereal crops. Here, we report a plant-transformation-competent, binary bacterial artificial chromosome (BIBAC) and bacterial artificial chromosome (BAC) based map of rice to facilitate these studies. The map was constructed from 20 835 BIBAC and BAC clones, and consisted of 579 overlapping BIBAC/BAC contigs. To facilitate functional analysis of chromosome 8 genomic sequence and cloning of the genes and QTLs mapped to the chromosome, we anchored the chromosomal contigs to the existing rice genetic maps. The chromosomal map consists of 11 contigs, 59 genetic markers, and 36 sequence tagged sites, spanning a total of ca. 38 Mb in physical length. Comparative analysis between the genetic and physical maps of chromosome 8 showed that there are 3 "hot" and 2 "cold" spots of genetic recombination along the chromosomal arms in addition to the "cold spot" in the centromeric region, suggesting that the sequence component contents of a chromosome may affect its local genetic recombination frequencies. Because of its plant transformability, the BIBAC/BAC map could provide a platform for functional analysis of the rice genome sequence and effective use of the sequencing results for gene and QTL cloning and molecular breeding.  相似文献   

18.
A chicken linkage map, constructed with the Kobe University (KU) resource family, was used to locate the genetic locus for muscular dystrophy of abnormal muscle type (AM). The KU resource family is a backcross pedigree with 55 offspring produced from the mating of a White Leghorn F-line (WL-F) male and a hybrid female produced from a cross between the WL-F male and a female of the Fayoumi OPN line who was homozygous for the AM gene. In total, 872 loci were genotyped on the pedigree; 749 (86%) were informative and mapped to 38 linkage groups. These informative loci included 649 AFLPs, 93 MS, three functional genes, the AM locus, sex phenotype, and two red blood cell loci. The remaining 123 markers were unlinked. Nineteen of the 38 KU linkage groups were assigned to macrochromosomes 1-8 and 11 microchromosomes including chromosome W, while 19 linkage groups were unassigned. The total map was 3569 cM in length, with an average marker interval of 4.8 cM. The AM locus was mapped 130 cM from the distal end of chromosome 2q.  相似文献   

19.
The major QTL for submergence tolerance was locate in the 5.9 cM interval between flanking RFLP markers. To narrow down this region, a physical map was constructed using YAC and BAC clones. A 400-kb YAC was identified in this region and later its end fragments were used to screen a rice BAC library. Through chromosome walking, 24 positive BAC clones formed two contigs around linked-RFLP markers, R1164 and RZ698. Using one YAC end, six BAC ends and three RFLP markers, a fine-scale map was constructed of the 6.8-cM interval of S10709-RZ698 on rice chromosome 9. The submergence tolerance and related trait were located in a small, well-defined region around BAC-end marker 180D1R and RFLP marker R1164. The physical-to-map distance ratio in this region is as small as 172.5 kb/cM, showing that this region is a hot spot for recombination in the rice genome.  相似文献   

20.
A restriction fragment length polymorphism (RFLP) map has been constructed of the nuclear genome of the plant pathogenic ascomycete Cochliobolus heterostrophus. The segregation of 128 RFLP and 4 phenotypic markers was analyzed among 91 random progeny of a single cross; linkages were detected among 126 of the markers. The intact chromosomal DNAs of the parents and certain progeny were separated using pulsed field gel electrophoresis and hybridized with probes used to detect the RFLPs. In this way, 125 markers were assigned to specific chromosomes and linkages among 120 of the markers were confirmed. These linkages totalled 941 centimorgans (cM). Several RFLPs and a reciprocal translocation were identified tightly linked to Tox1, a locus controlling host-specific virulence. Other differences in chromosome arrangement between the parents were also detected. Fourteen gaps of at least 40 cM were identified between linkage groups on the same chromosomes; the total map length was therefore estimated to be, at a minimum, 1501 cM. Fifteen A chromosomes ranging from about 1.3 megabases (Mb) to about 3.7 Mb were identified; one of the strains also has an apparent B chromosome. This chromosome appears to be completely dispensable; in some progeny, all of 15 markers that mapped to this chromosome were absent. The total genome size was estimated to be roughly 35 Mb. Based on these estimates of map length and physical genome size, the average kb/cM ratio in this cross was calculated to be approximately 23. This low ratio of physical length to map distance should make this RFLP map a useful tool for cloning genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号