首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the experiments described in this paper was to test the potential of antisense RNAs complementary to the internal portion of an intron to inhibit the splicing process and to determine the mechanism of such inhibition. The results obtained indicate that RNA fragments complementary to the internal portion of an intron can effectively inhibit the splicing of pre-mRNA. Inhibition was observed only with antisense RNA complementary to pre-mRNA suggesting that the inhibitory effect was due to the formation of a hybrid with the corresponding portion of the pre-mRNA's intron. The observed inhibition was not due to interference with possible intron elements essential for the splicing process, for the deletion of the sequences complementary to inhibitory antisense RNA from the corresponding pre-mRNA molecule did not affect the efficiency of a splicing reaction, and the addition of antisense RNA to pre-mRNA mutants carrying such deletions did not result in any inhibition. Our results indicate that the observed inhibition is a function of the length of the antisense RNA expressed as a fraction of an intron with which it interacts when antisense RNA is modified by incorporation of a "hinge" element, it loses its inhibitory potential suggesting that the inhibitory effect is probably due to limitation of conformational flexibility of an intron.  相似文献   

2.
Abstract

Modified oligodeoxynucleotides complementary to RNA of human immunodeficiency virus (HIV-1) were tested for their ability to inhibit virally induced syncytium formation and expression of viral p24 protein. The modification of oligomers include replacement of phophodiester backbone with phosphorothioate, methylphosphonate and various phosphoramidates. Cells infected for four days, then treated with the antisense oligomers also showed inhibition of viral expression.  相似文献   

3.
Antisense inhibition is a method of attenuating the target at the gene expression level. There are two main groups of molecular tools for this goal. The first includes the use of short synthetic stretches of DNA-antisense oligodeoxynucleotides. The second tool is the use of vectors (plasmids or viruses) containing the gene of interest subcloned in the antisense orientation, which in the cells produces the antisense RNA. Both antisense DNA and RNA can bind to the complementary sense mRNA and interfere with its translation. Effects are usually short lasting (days) for oligodeoxynucleotides and longer lasting (weeks or months) for vectors. In this article we briefly describe techniques of antisense inhibition in the context of the renin-angiotensin system.  相似文献   

4.
Phosphorothioate-modified antisense oligodeoxynucleotides (ASOs) are used to suppress gene expression by inducing RNase H-mediated cleavage with subsequent degradation of the target mRNA. However, previous observations suggest that ASO/RNase H can also result in the generation of stable mRNA cleavage fragments and expression of truncated proteins. Here, we addressed the underlying translational mechanisms in more detail using hepadnavirus-transfected hepatoma cells as a model system of antisense therapy. Generation of stable mRNA cleavage fragments was restricted to the ASO/RNase H pathway and not observed upon cotransfection of isosequential small interfering RNA or RNase H-incompetent oligonucleotides. Furthermore, direct evidence for translation of mRNA fragments was established by polysome analysis. Polysome-associated RNA contained cleavage fragments devoid of a 5′ cap structure indicating that translation was, at least in part, cap-independent. Further analysis of the uncapped cleavage fragments revealed that their 5′ terminus and initiation codon were only separated by a few nucleotides suggesting a 5′ end-dependent mode of translation, whereas internal initiation could be ruled out. However, the efficiency of translation was moderate compared to uncleaved mRNA and amounted to 13–24% depending on the ASO used. These findings provide a rationale for understanding the translation of mRNA fragments generated by ASO/RNase H mechanistically.  相似文献   

5.
Inhibition of hepatitis C virus (HCV) gene expression by antisense oligonucleotides was investigated using both a rabbit reticulocyte lysate in vitro translation assay and a transformed human hepatocyte cell expression assay. Screening of overlapping oligonucleotides complementary to the HCV 5' noncoding region and the core open reading frame (ORF) identified a region susceptible to translation inhibition between nucleotides 335 and 379. Comparison of 2'-deoxy-, 2'-O-methyl-, 2'-O-methoxyethyl-, 2'-O-propyl-, and 2'-fluoro-modified phosphodiester oligoribonucleotides demonstrated that increased translation inhibition correlated with both increased binding affinity and nuclease stability. In cell culture assays, 2'-O-methoxyethyl-modified oligonucleotides inhibited HCV core protein synthesis with comparable potency to phosphorothioate oligodeoxynucleotides. Inhibition of HCV core protein expression by 2'-modified oligonucleotides occurred by an RNase H-independent translational arrest mechanism.  相似文献   

6.
We report the inhibition of encephalomyocarditis virus (EMCV) RNA translation in cell-free rabbit reticulocyte lysates by antisense oligonucleotides (13-17-base oligomers) complementary to (a) the viral 5' non-translated region, (b) the AUG start codon and (c) the coding sequence. Our results demonstrate that the extent of translation inhibition is dependent on the region where the complementary oligonucleotides bind. Non-complementary and 3'-non-translated-region-specific oligonucleotides had no effect on translation. A significant degree of translation inhibition was obtained with oligonucleotides complementary to the viral 5' non-translated region and AUG initiation codon. Digestion of the oligonucleotide:RNA hybrid by RNase H did not significantly increase translation inhibition in the case of 5'-non-translated-region-specific and initiator-AUG-specific oligonucleotides; in contrast, RNase H digestion was necessary for inhibition by the coding-region-specific oligonucleotide. We propose that (a) 5'-non-translated-region-specific oligonucleotides inhibit translation by affecting the 40S ribosome binding and/or passage to the AUG start codon, (b) AUG-specific oligonucleotides inhibit translation initiation by inhibiting the formation of an active 80S ribosome and (c) the coding-region-specific oligonucleotide does not prevent protein synthesis because the translating 80S ribosome can dislodge the oligonucleotide from the EMCV RNA template.  相似文献   

7.
A new synthesis route for long phosphate-methylated oligodeoxynucleotides is described, which were used as antisense inhibitors of the DNA replication. Phosphate-methylated oligomers hybridize more strongly with natural DNA than their natural analogues, due to the absence of electrostatic interstrand repulsions. Compared with phosphate-ethylated and methyl phosphonate systems, phosphate-methylated systems are preferable as antisense DNA, which was concluded from the high Tm values and sharp melting transitions of duplexes of phosphate-methylated and natural DNA. By using the Sanger dideoxy technique, it was shown that a complementary phosphate-methylated 18-mer can effectively and site-specifically block the DNA replication process at room temperature.  相似文献   

8.
Liu Y  Braasch DA  Nulf CJ  Corey DR 《Biochemistry》2004,43(7):1921-1927
Peptide nucleic acids (PNAs) are a potentially powerful approach for the recognition of cellular mRNA and the inhibition of gene expression. Despite their promise, the rules for using antisense PNAs have remained obscure, and antisense PNAs have been used sparingly in research. Here we investigate the ability of PNAs to be effective antisense agents inside mammalian cells, to inhibit expression of human caveolin-1 (hCav-1), and to discriminate between its alpha and beta isoforms. Many human genes are expressed as isoforms. Isoforms may play different roles within a cell or within different tissues, and defining these roles is a challenge for functional genomics and drug discovery. PNAs targeted to the translation start codons for the alpha and beta isoforms inhibit expression of hCav-1. Inhibition is dependent on PNA length. The potency and duration of inhibition by PNAs are similar to inhibition of gene expression by short interferring RNA (siRNA). Expression of the alpha isoform can be blocked selectively by a PNA. Cell proliferation is halted by inhibition of expression of both hCav-1 isoforms, but not by inhibition of the alpha hCav-1 isoform alone. Efficient antisense inhibition and selective modulation of isoform expression suggest that PNAs are versatile tools for controlling gene expression and dissecting the roles of closely related protein variants. Potent inhibition by PNAs may supply a "knock down" technology that can complement and "cross-check" siRNA and other approaches to antisense gene inhibition that rely on oligomers with phosphate or phosphorothioate backbone linkages.  相似文献   

9.
Antisense oligonucleotides complementary to the translation initiation site of the herpes simplex virus type 2 (HSV-2) large subunit of ribonucleotide reductase (RR1) were studied for their ability to inhibit RR1 expression, HSV-2 growth, and its reactivation from latently infected ganglia. The oligomers caused a significant decrease (90%-97% inhibition) in HSV-2 RR1 expression and inhibited HSV-2 growth, with IC50 and IC90 values of 0.11 and 1.0 microM, respectively. The titers of HSV-2 mutants that are respectively deleted in the PK (ICP10deltaPK) or RR (ICP10deltaRR) domains of RR1 were also significantly (500-20,000-fold) decreased, indicating that the antisense oligomers interfere with the independent contributions of the two RR1 functions (PK and RR) toward virus growth. Inhibition was sequence specific, as evidenced by the failure of a two-base mutant (RR1TImu) to inhibit protein expression and HSV-2 growth. Furthermore, the antisense oligomers inhibited HSV-2 reactivation by cocultivation of latently infected ganglia (0/8). Virus was reactivated from ganglia cultured without oligomers, in the presence of unrelated oligomers (6/8), or in the presence of the two-base mutant RR1TImu (5/8) (p < 0.007 by two-tailed Fisher exact test). HSV-2 growth was not inhibited by antisense oligonucleotides complementary to the splice junction of HSV-2 immediate-early (IE) pre-mRNA 4 and 5 (IE4,5SA) or the translation initiation site of IE mRNA 4 (IE4TI), although the respective HSV-1-specific oligomers inhibit HSV-1 growth.  相似文献   

10.
Abstract

We investigated the binding and the translation inhibitory properties of hexadecamers complementary to the mini-exon sequence of the protozoan parasite Leishmania amazonensis. This targeted RNA region folds into a hairpin. Large differences were observed in the antisense properties of the different oligomers although their binding to RNA always requires the disruption of the stem region.  相似文献   

11.
Every messenger RNA from leishmanias and trypanosomes has at its 5' end a conserved region termed the mini-exon sequence which, however, varies from species to species. In a systematic study mRNAs from Trypanosoma brucei, Trypanosoma vivax, and Leishmania enriettii were translated in cell-free extracts in the presence of oligodeoxynucleotides complementary to part of the mini-exon sequence. The affinity of the same oligonucleotides for target and non-target mRNAs was determined by thermal elution of filter-bound complexes showing that the critical temperature of half-dissociation of the complexes was linearly related to log (l + x), where l is the length of the oligomer and x its G + C content. A few oligomers exhibited a lower Tc value than expected which was ascribed to the presence of modified RNA bases or to the existence of a hairpin structure in the L. enriettii mini-exon. In most cases the efficiency of translation inhibition by the oligonucleotides was clearly correlated to their affinity for the target RNA. The modified bases weakened the inhibition of protein synthesis by oligonucleotides complementary to these regions.  相似文献   

12.
Single-stranded cDNA clones complementary to the 5' end of TMV RNA have been used to explore the conditions necessary for efficient 'hybrid arrest of translation' in the reticulocyte lysate. It is shown that incubations of 20 minutes at 60 degrees in 0.1 M KCl are sufficient to give almost complete arrest of translation using a clone complementary to the 5'-non-coding region and first 171 coding nucleotides of TMV RNA. However, hybrids with DNA complementary to regions of the mRNA downstream of the first AUG gave variable and in some cases almost no arrest of translation in the reticulocyte lysate unless they were first digested with RNase H. A simple and rapid method for giving complete and highly specific arrest of translation of particular mRNAs in complex mixtures has been developed using both cDNA clones and synthetic oligodeoxynucleotides in conjunction with RNase H digestion. Evidence is presented that suggests that 'hybrid arrest of translation' in the wheat-germ cell-free system is primarily due to the action of RNase H. When a reticulocyte lysate was doped with 20 U/ml of RNase H, its ability to translate unannealed mRNA was unaffected but it translated DNA/RNA hybrids extremely poorly.  相似文献   

13.
We report the use of oligodeoxynucleotides to block the nucleolytic hydrolysis of single-stranded regions of RNA. Using complementary oligomers, the hydrolysis of the CCA terminus of methionine initiator tRNA could be prevented. This method can be useful in the production of specific single-stranded fragments of RNA, which are necessary in recombinant RNA technology.  相似文献   

14.
Nulf CJ  Corey D 《Nucleic acids research》2004,32(13):3792-3798
Hepatitis C virus (HCV) is the major etiological agent of non-A, non-B hepatitis. Current therapies are not effective in all patients and can result in the generation of resistant mutants, leading to a need for new therapeutic options. HCV has an RNA genome that contains a well-defined and highly conserved secondary structure within the 5′-untranslated region. This structure is known as the internal ribosomal entry site (IRES) and is necessary for translation and viral replication. Here, we test the hypothesis that antisense peptide nucleic acid (PNA) and locked nucleic acid (LNA) oligomers can bind key IRES sequences and block translation. We used lipid-mediated transfections to introduce PNAs and LNAs into cells. Our data suggest that PNAs and LNAs can invade critical sequences within the HCV IRES and inhibit translation. Seventeen base PNA or LNA oligomers targeting different regions of the HCV IRES demonstrated a sequence-specific dose–response inhibition of translation with EC50 values of 50–150 nM. Inhibition was also achieved by PNAs ranging in length from 15 to 21 bases. IRES-directed inhibition of gene expression widens the range of mechanisms for antisense inhibition by PNAs and LNAs and may provide further therapeutic lead compounds for the treatment of HCV.  相似文献   

15.
Therapeutic small interfering RNAs (siRNAs) have attracted a lot of interest both in basic biomedical sciences as well as in translational medicine. Apart from their therapeutic efficacy adverse effects of siRNAs must be addressed. The generation of stable mRNA cleavage fragments and the translation of N-truncated proteins induced by antisense oligodeoxynucleotides (ASOs) have been reported. Similar to ASOs, siRNAs are considered to function via an antisense mechanism that promotes the cleavage of the target mRNA. To further investigate whether the stable mRNA cleavage fragments also occur in siRNA we constructed a short hairpin RNA (shRNA) expression plasmid, pshRNA794, containing the same sequence reported in experiments using ASOs which directly targeted the overlapping region of the pre-genomic mRNA (pgmRNA) and sub-genomic mRNA (sgmRNA) of duck hepatitis B virus (DHBV). The shRNA resulted in a 70.9% and 69.9% reduction of the DHBV mRNAs in LMH and HuH-7 cells, respectively. In addition a 70% inhibition of the DHBV DNA level was observed. Interestingly, 3′-mRNA cleavage fragments were detected in LMH but not in HuH-7 cells. Taken together, our findings demonstrate that the ASO sequence was also effective in siRNA. Importantly, our results provide direct evidence that stable 3′-mRNA fragments were generated by siRNA in cells with high levels of DHBV replication. Whether these can cause adverse RNAi effects needs to be explored further.  相似文献   

16.
17.
18.
合成了与TMV-RNA病毒装配起始位点互补的、长度为二十个核苷酸的DNA片段。该片段用~(32)P标记后,代替反义RNA(antisense RNA)与TMV-RNA进行硝基纤维素膜点杂交和溶液杂交。结果表明,该cDNA片段在两种条件下均能与TMV-RNA进行杂交。将溶液杂交的RNA-cDNA复合体经酒精沉淀,再与TMV衣壳蛋白的20S聚合体制剂进行体外装配,用测定310nm吸收光谱变化和电子显微镜观察的方法鉴定装配结果。实验证明,该cDNA片段与TMV-RNA杂交后抑制了装配起始位点的活力,从而使TMV病毒颗粒的装配不能完成。这一结果提示,TMV基因装配起始位点顺宁的cDNA和反义RNA能够在体外抑制TMV病毒颗粒的装配。  相似文献   

19.
Traditionally, methods designed to impair translation through direct interactions with target messenger RNA (mRNA) have been designated as "antisense" strategies because of their reliance on the formation of reverse complementary (antisense) Watson-Crick base pairs between the targeting oligodeoxynucleotide (ODN) and the mRNA whose function is to be disrupted. Proof of putative "antisense effects," and other mechanistic studies, would be greatly facilitated by the ability to directly demonstrate hybridization between an antisense (AS) ODN and its mRNA target in vivo. In addition, evidence of AS activity by demonstrating reduced levels of RNA or protein or by showing cleaved target molecules would lend proof of the concept. In this article we discuss how AS ODN may be used to down-regulate target gene expression with an emphasis on those targets chosen for our investigations, and we summarize the methods employed for this type of study.  相似文献   

20.
In eubacteria, base pairing between the 3' end of 16S rRNA and the ribosome-binding site of mRNA is required for efficient initiation of translation. An interaction between the 18S rRNA and the mRNA was also proposed for translation initiation in eukaryotes. Here, we used an antisense RNA approach in vivo to identify the regions of 18S rRNA that might interact with the mRNA 5' untranslated region (5' UTR). Various fragments covering the entire mouse 18S rRNA gene were cloned 5' of a cat reporter gene in a eukaryotic vector, and translation products were analyzed after transient expression in human cells. For the largest part of 18S rRNA, we show that the insertion of complementary fragments in the mRNA 5' UTR do not impair translation of the downstream open reading frame (ORF). When translation inhibition is observed, reduction of the size of the complementary sequence to less than 200 nt alleviates the inhibitory effect. A single fragment complementary to the 18S rRNA 3' domain retains its inhibitory potential when reduced to 100 nt. Deletion analyses show that two distinct sequences of approximately 25 nt separated by a spacer sequence of 50 nt are required for the inhibitory effect. Sucrose gradient fractionation of polysomes reveals that mRNAs containing the inhibitory sequences accumulate in the fractions with 40S ribosomal subunits, suggesting that translation is blocked due to stalling of initiation complexes. Our results support an mRNA-rRNA base pairing to explain the translation inhibition observed and suggest that this region of 18S rRNA is properly located for interacting with mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号