首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
成骨不全(Osteogenesis imperfecta,OI)是一种由于Ⅰ型胶原形成障碍,导致骨脆性增强为主要症状的常染色体显性遗传性疾病。临床上主要表现为骨质脆弱、蓝巩膜、耳聋和中等程度的关节畸形等症状。成骨不全基因分别定位于17q21.31-q22和7q22.1,其致病基因分别为COL1A1和COL1A2。对一常染色体显性遗传的成骨不全家系进行连锁分析,在COL1A1遗传位点发现紧密连锁(LOD=9.31;θ=.00)。突变检测发现在COL1A1基因第26内含子5′端剪接位点处存在一由GT转换为AT的致病突变,该突变引起的异常剪接是导致成骨不全的致病原因之一。  相似文献   

2.
成骨不全作为罕见性遗传性结缔组织疾病,具有临床异质性与遗传异质性,迄今已经分为15个亚型.有常染色体显性遗传与常染色体隐性遗传两种遗传方式.常染色体显性遗传以Ⅰ型胶原蛋白结构基因COL1A1、COL1A2突变为主.非Ⅰ型胶原蛋白突变的常染色体隐性遗传的成骨不全患者数量少,但致病基因种类多,涉及到胶原合成后异常修饰,胶原蛋白分子伴侣及羧基端前肽剪切酶缺陷、成骨细胞与破骨细胞分化及转录因子异常、钙离子通道与Wnt信号通路分子等诸多方面.致病基因及其机制的研究,对于成骨不全的基因确诊及个体化药物治疗意义重大.  相似文献   

3.
对一个中国汉族Gilbert综合征遗传家系致病基因突变位点进行鉴定,以期了解该病的分子遗传学基础。首先提取先证者基因组DNA,PCR扩增尿苷二磷酸葡萄糖醛酸转移酶UGT1A1基因的5个外显子,以琼脂糖电泳鉴定PCR产物,纯化后直接测序鉴定。基因扫描显示,与血清胆红素水平密切相关的UGT1A1基因在第1和第5外显子存在纯合突变,而 UGT1A1基因启动子区域和内含子/外显子剪接边界位点序列未检测到突变。进一步对其他家系成员该基因的相应位点进行突变检测,结果显示他们在第1和第5外显子也存在杂合突变,其中还有两个成员在启动子区域检测到(TA)插入突变。对家系成员未抗凝新鲜血液进行生化检测证实了基因突变分析的结果。综合以上结果发现该家系三种突变并存,致病因素为第1和/或第5外显子突变,为显性遗传,两种突变位点纯合导致先证者出现严重胆红素代谢功能障碍。该家系因此成为Gilbert综合征突变位点及其致病机理研究的一个典型临床病例。  相似文献   

4.
为了揭示成骨不全(Osteogenesis imperfecta,OI)Ⅰ型家系的分子遗传学发生机制,文章采用PCR-DNA直接测序法,对患儿COL1A1和COL1A2基因共103个外显子(E)进行突变检测。结果显示:患儿COL1A1基因未发现任何病理性突变,而在COL1A2基因E19内发现一新的杂合错义突变(p.G316C),该突变来自其父,而其母正常,其他表型正常的6位亲属也均未发现该突变;通过DHPLC(Denaturing high performance uid chromatography)筛检,发现患儿与其父均有异常双峰,而其母和所有正常对照均为正常单峰;通过ASA(Allele specific amplification)筛检,患儿与其父均有391 bp的特异扩增带,而其母和所有正常对照均未见特异扩增带;保守性分析结果显示,该突变位点所在甘氨酸在进化上具有高度保守性;SIFT和Poly Phen-2软件预测结果显示,新突变造成的结果是"有害的"和"很可能有害"。上述结果均说明COL1A2基因c.946GT/p.G316C新突变是导致OI-Ⅰ型的致病性突变,是引起患儿发病的真正内因。患儿父母若再次孕育,可在孕早期进行产前基因诊断或孕前期进行PGD(Preimplantation genetic diagnosis)予以防患。  相似文献   

5.
KIF21A基因的p.Arg954Trp突变引起中国人先天性眼外肌纤维化   总被引:1,自引:0,他引:1  
一型先天性眼外肌纤维化(Congenital fibrosis of the extraocular muscles, CFEOM)是一种罕见的常染色体显性遗传的眼肌疾病,临床上主要表现为动眼神经缺陷而引起的斜视。本研究鉴定了具有四代病人的一个呈常染色体显性遗传的CFEOM1家系,连锁分析表明致病基因与染色体12q处的微卫星标记D12S85紧密连锁,最大LOD值为2.1。对D12S85附近的CFEOM1基因K1F21A进行突变检测,在K1F21A基因第21个外显子发现有一C→T的碱基替换,该变化引起K1F21A基因的第954位密码子由精氨酸突变为色氨酸,SSCP结果表明该家系中的所有患者都具有这一突变,而在家系中的所有正常人以及150个正常汉人对照中则不能检测到这一改变。我们的研究表明,K1F21A的p.Arg954Trp突变是引起这一先天性眼外肌纤维化家系病人患病的致病原因。  相似文献   

6.
播散性浅表性光线性汗孔角化症(DSAP)是一种以多个浅表的角化性皮损,边缘轻微嵴状角化性隆起为特征的少见的慢性角化性皮肤病,呈常染色体显性遗传。以往的研究将该病基因定位于12q23.2—24.1区域(DSAP1)和15q25.1-26.1区域(DSAP2)。本研究对2个无关的六代DSAP家系进行了全基因组扫描和连锁分析,结果显示,这2个DSAP家系在D12窝4位点的最高累积LOD值为8.28(θ=0.00)。单倍型分析结果显示,这2个DSAP家系致病基因位于12q24.1-q24.2(D12S330和D12S354)之间8.0cM的区域内。该区域与DSAP1的致病区域部分重叠。对重叠区域内6个候选基因(CRY1,PWP1,ASCL4,PRDM4,KIAA0789和CMKLR1)的编码区进行序列分析,在DSAP病人中未发现突变位点。提示该6个候选基因可能与这2个DSAP家系的发病机理无关。  相似文献   

7.
郭子丹  胡琦  李雪  吴琼  李庆军  康杨 《现代生物医学进展》2011,23(23):4542-4544,4551
目的:对一中国常染色体显性先天性缝性白内障家系进行晶体蛋白基因(CRYAA、CRYAB、CRYBB2、CRYGC、CRYGD)的突变筛查。方法:对一中国先天性白内障家系进行研究,通过直接测序,筛查此家系中全部患者的CRYAA、CRYAB、CRYBB2、CRYGC和CRYGD基因外显子以及临近的内含子的剪接位点。结果:直接测序后发现该缝性白内障家系基因的外显子及其临近的内含子中,均未发现任何突变。结论:CRYAA、CRYAB、CRYBB2、CRYGC和CRYGD为该先天性白内障家系的非致病基因。  相似文献   

8.
耳聋具有高度的遗传异质性, 迄今已定位了51个常染色体显性遗传非综合征型耳聋(autosomal dominant non-syndromic sensorineural hearing loss, DFNA)基因位点, 20个DFNA相关基因被克隆。文章收集了一个DFNA巨大家系, 家系中有血缘关系的家族成员共170人, 对73名家族成员进行了详细的病史调查、全身检查和耳科学检查, 提示39人有不同程度的迟发性感音神经性听力下降, 未见前庭及其他系统的异常。应用ABI公司382个常染色体微卫星多态标记进行全基因组扫描连锁分析, 将该家系致聋基因定位于14q12-13处D14S1021-D14S70之间约7.6 cM (3.18 Mb)的区域, 最大LOD值为6.69 (D14S1040), 与已知DFNA9位点有4.7 cM (2.57 Mb)的重叠区, DFNA9致病基因COCH位于重叠区域内。下一步拟进行COCH基因的突变筛查, 以揭示该家系耳聋的分子致病机制。  相似文献   

9.
一先天性并指中国家系的遗传学研究   总被引:3,自引:0,他引:3  
先天性并指(syndactyly)是一种以手脚发育异常为主要症状的常染色体显性遗传性疾病。I临床症状主要为手指间由蹼相连。其中I、Ⅱ、Ⅲ型先天性并指分别定位于2q34~36、2q31~q32和6q21~23.2。并指多指(synpoly-dactyly;SPD)为Ⅱ型并指(syndactyly,typeⅡ),通常情况下多为第3、4手指和第4、5脚趾受累,两指(趾)间由蹼相连接,不能分离。目前认为本病致病基因为HOXD13,定位于2q31~q32。HOXD13位于HOXD基因簇中。HOXD基因簇中的9个同源基因(HOXD1,-D3,-D4,-D8,-D9,-D10,-D11,-D12,-D13)根据其距着丝粒的远近,按由远到近的顺序在染色体上依次排列。HOXD基因簇中不同基因或其上游调控因子的重复或缺失都可能影响手指关节的发育,从而造成指(趾)数目或形态的异常。作者对湖南怀化地区一出生后即发现双手并指,双足并趾畸形患儿的常染色体显性先天性并指多指家系进行了连锁分析。结果显示,在SPD遗传基因座2q31~q32发现紧密连锁(两点间最大LOD:6.78;θ=0.00)。多点连锁分析最大LOD值为7.02。本家系单倍型分析遗传区间从D2s2302到D2s315之间,间距为20.61cM。我们对HOXD13基因的编码区,内含子-外显子交接区,和部分启动子区域进行序列分析未发现突变。结果证明了在中国人群中存在Ⅱ型并指的遗传位点,并表明该家系致病基因有可能为HOXD13基因相临近的其他基因。  相似文献   

10.
眼皮肤白化病Ⅱ型相关的P基因突变与DNA多态性   总被引:3,自引:0,他引:3  
段红蕾  郑辉  李洪义 《遗传》2005,27(6):984-988
眼皮肤白化病Ⅱ型(OCA2)是白化病中最常见的类型,呈常染色体隐性遗传。P基因为其致病基因,定位于15q11.1-q12,由24个外显子和23个内含子构成。P基因编码838个氨基酸残基构成的110 KDa跨膜蛋白,该蛋白含12个跨膜区,其确切功能尚未完全清楚。迄今至少已报道P基因内60种导致OCA2的病理性突变和43种多态性变异。病理突变主要为错义突变、无义突变、移码突变和剪切位点突变,多数位于肽链的C末端,但并不象OCA1的TYR基因突变那样多成簇出现。P基因多态性变异中的大部分位于外显子,这增加了对致病性突变定义的难度,其中一些导致氨基酸替换的多态性变异可能与正常人色素沉着的表型变  相似文献   

11.
Osteogenesis imperfecta (OI, also known as brittle bone disease) is caused mostly by mutations in two type Ⅰ collagen genes, COL1A1 and COL1A2 encoding the pro-α1 (Ⅰ) and pro-α2 (Ⅰ) chains of type Ⅰ collagen, respectively. Two Chinese families with autosomal dominant OI were identified and characterized. Linkage analysis revealed linkage of both families to COL1A2 on chromosome 7q21.3-q22.1. Mutational analysis was carried out using direct DNA sequence analysis. Two novel missense mutations, c.3350A>G and c.3305G>C, were identified in exon 49 of COL1A2 in the two families, respectively. The c.3305G>C mutation resulted in substitution of a glycine residue (G) by an alanine residue (A) at codon 1102 (p.G1102A), which was found to be mutated into serine (S), argine (R), aspartic acid (D), or valine (V) in other families. The c.3350A>G variant may be a de novo mutation resulting in p.Y1117C. Both mutations co-segregated with OI in respective families, and were not found in 100 normal controls. The G1102 and Y1117 residues were evolutionarily highly conserved from zebrafish to humans. Mutational analysis did not identify any mutation in the COX-2 gene (a modifier gene of OI). This study identifies two novel mutations p.G1102A and p.Y1117C that cause OI, significantly expands the spectrum of COL1A2 mutations causing OI, and has a significant implication in prenatal diagnosis of OI.  相似文献   

12.
The segregation of COL1A1 and COL1A2, the two genes which encode the chains of type I collagen, was analyzed in 38 dominant osteogenesis imperfecta (OI) pedigrees by using polymorphic markers within or close to the genes. This was done in order to estimate the consistency of linkage of OI genes to these two loci. None of the 38 pedigrees showed evidence of recombination between the OI gene and both collagen loci, suggesting that the frequency of unlinked loci in the population must be low. From these results, approximate 95% confidence limits for the proportion of families linked to the type I collagen genes can be set between .91 and 1.00. This is high enough to base prenatal diagnosis of dominantly inherited OI on linkage to these genes even in families which are too small for the linkage to be independently confirmed to high levels of significance. When phenotypic features were compared with the concordant collagen locus, all eight pedigrees with Sillence OI type IV segregated with COL1A2. On the other hand, Sillence OI type I segregated with both COL1A1 (17 pedigrees) and COL1A2 (7 pedigrees). The concordant locus was uncertain in the remaining six OI type I pedigrees. Of several other features, the presence or absence of presenile hearing loss was the best predictor of the mutant locus in OI type I families, with 13 of the 17 COL1A1 segregants and none of the 7 COL1A2 segregants showing this feature.  相似文献   

13.
14.
Split hand/split foot (SHSF; also known as ectrodactyly) is a human developmental disorder characterized by missing central digits and other distal limb malformations. An association between SHSF and cytogenetically visible rearrangements of chromosome 7 at bands q21-q22 provides compelling evidence for the location of a causative gene at this location, and the locus has been designated SHFD1. In the present study, marker loci were localized to the SHFD1 critical region through the analysis of somatic cell hybrids derived from individuals with SHSF and cytogenetic abnormalities involving the 7q21-q22 region. Combined genetic and physical data suggest that the order of markers in the SHFD1 critical region is cen-D7S492-D7S527-(D7S479-D7S491)-SHFD1-++ +D7S554-D7S518-qter. Dinucleotide repeat polymorphisms at three of these loci were used to test for linkage of SHSF to this region in a large pedigree that demonstrates autosomal dominant SHSF. Evidence against linkage of the SHSF gene to 7q21-q22 was obtained in this pedigree. Therefore, combined molecular and genetic data provide evidence for locus heterogeneity in autosomal dominant SHSF. We propose the name SHSF2 for this second locus.  相似文献   

15.
Summary Most individuals with osteogenesis imperfecta (OI) are heterozygous for dominant mutations in one of the genes that encode the chains of type I collagen. Each of the more than 30 mutations characterized to date has been unique to the affected member (s) of the family. We have determined that two individuals with a progressive deforming variety of OI, OI type III, have the same new dominant mutation [1(I)gly154 to arg] and that two unrelated infants with perinatal lethal OI, OI type II, share a second new dominant muation [1(I)gly1003 to ser]. These mutations occurred at CpG dinucleotides, in a manner consistent with deamination of a methylated cytosine residue, and raise the possibility that CpG dinucleotides are common sites of recurrent mutations in collagen genes. Further, these findings confirm that the OI type-III phenotype, previously thought to be inherited in an autosomal recessive manner, can result from new dominant mutations in the COL1A1 gene of type-I collagen.  相似文献   

16.
Split-hand/foot malformation with long-bone deficiency (SHFLD) is a rare, severe limb deformity characterized by tibia aplasia with or without split-hand/split-foot deformity. Identification of genetic susceptibility loci for SHFLD has been unsuccessful because of its rare incidence, variable phenotypic expression and associated anomalies, and uncertain inheritance pattern. SHFLD is usually inherited as an autosomal dominant trait with reduced penetrance, although recessive inheritance has also been postulated. We conducted a genomewide linkage analysis, using a 10K SNP array in a large consanguineous family (UR078) from the United Arab Emirates (UAE) who had disease transmission consistent with an autosomal dominant inheritance pattern. The study identified two novel SHFLD susceptibility loci at 1q42.2-q43 (nonparametric linkage [NPL] 9.8, P=.000065) and 6q14.1 (NPL 7.12, P=.000897). These results were also supported by multipoint parametric linkage analysis. Maximum multipoint LOD scores of 3.20 and 3.78 were detected for genomic locations 1q42.2-43 and 6q14.1, respectively, with the use of an autosomal dominant mode of inheritance with reduced penetrance. Haplotype analysis with informative crossovers enabled mapping of the SHFLD loci to a region of approximately 18.38 cM (8.4 Mb) between single-nucleotide polymorphisms rs1124110 and rs535043 on 1q42.2-q43 and to a region of approximately 1.96 cM (4.1 Mb) between rs623155 and rs1547251 on 6q14.1. The study identified two novel loci for the SHFLD phenotype in this UAE family.  相似文献   

17.
Congenital microphthalmia is a common developmental ocular disorder characterized by shortened axial length. Isolated microphthalmia is clinically and genetically heterogeneous and may be inherited in an autosomal dominant, autosomal recessive, or X-linked manner. Here, we studied a five-generation family of Sephardic Jewish origin that included 38 members, of whom 7 have either unilateral or bilateral microphthalmia of variable severity inherited as an autosomal dominant trait with incomplete penetrance. After exclusion of several candidate loci, we performed a genome-scan study and demonstrated linkage to chromosome 15q12-q15. Positive LOD scores were obtained with a maximum at the D15S1007 locus (maximum LOD score 3.77, at recombination fraction 0.00). Haplotype analyses supported the location of the disease-causing gene in a 13.8-cM interval between loci D15S1002 and D15S1040.  相似文献   

18.
CYP3, the gene which encodes the hepatic cytochrome P450pcn1, the isozyme responsible for the metabolic oxidation of the calcium channel-blocking drug nifedipine, has recently been mapped to human chromosome 7 using somatic cell hybrids. Using multilocus linkage analysis in CEPH families, we examined the linkage of a cDNA probe (hPCN1) for CYP3 to the oncogene MET, the pro-alpha 2(1) collagen gene COL1A2, and the T-cell receptor beta-chain gene TCRB, together with three arbitrary loci D7S8, D7S13, and D7S16, defined by the anonymous DNA probes pJ3.11, pB79a, and p7C22, respectively. From 70 CEPH parents screened with a StyI RFLP for hPCN1, four informative families were found each with both parental and maternal grandparents and 6-11 children per family. Tight linkage emerged between CYP3 and COL1A2, with a maximum combined lod score of 5.72 at theta = 0, suggesting the most likely subchromosomal localization of CYP3 is 7q21.3-q22.1.  相似文献   

19.
Nemaline myopathy (NEM) is a neuromuscular disorder characterized by the presence, in skeletal muscle, of nemaline rods composed at least in part of alpha-actinin. A candidate gene and linkage approach was used to localize the gene (NEM1) for an autosomal dominant form (MIM 161800) in one large kindred with 10 living affected family members. Markers on chromosome 19 that were linked to the central core disease gene, a marker at the complement 3 locus, and a marker on chromosome 1 at the alpha-actinin locus exclude these three candidate genes. The family was fully informative for APOA2, which is localized to 1q21-q23. NEM1 was assigned to chromosome 1 by close linkage for APOA2, which is localized to 1q21-q23. NEM1 was assigned to chromosome 1 by close linkage to APOA2, with a lod score of 3.8 at a recombination fraction of 0. Recombinants with NGFB (1p13) and AT3 (1q23-25.1) indicate that NEM1 lies between 1p13 and 1q25.1. In total, 47 loci were investigated on chromosomes 1, 2, 4, 5, 7-11, 14, 16, 17, and 19, with no indications of significant linkage other than to markers on chromosome 1.  相似文献   

20.
Osteogenesis imperfecta (OI) is a generalised disorder of connective tissue characterised by an increased fragility of bones and also manifested in other tissues containing collagen type I, by blue sclera, hearing loss, dentinogenesis imperfecta, hyperextensible joints, hernias and easy bruising. OI is dominantly inherited and results in >90% OI cases, caused by mutations in one of the two genes COL1A1 or COL1A2 coding for type I procollagen. The Lithuanian OI database comprises 147 case records covering the period of 1980 - 2001. Clinical and genealogical analysis of OI cases/families from Lithuania available for examination revealed 18 familial cases of OI type I and 22 sporadic cases: OI type II (3 cases), OI type III (11 cases) and OI type I (8 cases). As a result of their molecular genetic investigation, 11 mutations were identified in the COL1A1 gene in 13 unrelated patients. Of them, nine mutations (E500X, G481A, c.2046insCTCTCTAG, c.1668delT, c.1667insC, c.4337insC, IVS19+1G > A, IVS20-2A > G, IVS22-1G > T) appeared to be novel, i.e. not yet registered in the Human Type I and Type III Collagen Mutations Database (http://www.le.ac.uk/genetics/collagen).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号