首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Innovative in situ treatment technologies show promise as efficient methods for remediating the nation's waste sites. Unfortunately, due to various barriers, some innovative technologies that have been demonstrated at full scale are never transferred for commercial application. The National Research Council (NRC) has recently presented recommendations on how to overcome these barriers (NRC, 1997). User-friendly screening software, which specifically addresses each of the NRC recommendations, is presented for use by site managers to determine the appropriateness of an innovative remediation technology, in situ aerobic cometabolic bioremediation, to clean up a contaminated site with specified hydrogeologic and contaminant characteristics. The software estimates the performance and cost of the technology at the site. Software, such as the one presented, can be used to aid in the transfer and implementation of innovative remediation technologies.  相似文献   

2.
The relative contributions of abiotic and microbial processes and the role of dissolved species in the reductive dechlorination of carbon tetrachloride (CT) by natural soils and sediments were investigated. Microcosms were constructed using soils or sediments and site water from three locations, and then amended with electron acceptors and/or donors to stimulate the growth of iron- and sulfate-reducing bacteria and to promote the formation of minerals that can react with CT. Before spiking with CT, half the replicate microcosms were sterilized in order to measure the rates of abiotic CT transformation without any direct contribution from microbial dechlorination. Abiotic reaction rates were significantly greater than microbial rates for a range of initial CT concentrations, and for both iron- and sulfate-reducing conditions. In most cases, abiotic reaction rates were indistinguishable from total reaction rates (abiotic plus microbial), indicating a negligible microbial contribution to CT transformation. While in most microcosms the soil/sediment acted as the abiotic reductant, under certain conditions the supernatant was more reactive with CT than was the solid phase. For these conditions, we propose that the reactive species in the supernatant consisted of aqueous natural organic matter that underwent reduction or other transformation by S(-II) generated by sulfate-reducing bacteria.  相似文献   

3.
A field pilot demonstration integrating pneumatic fracturing and in situ bioremediation was carried out in a gasoline-contaminated, low permeability soil formation. A pneumatic fracturing system was used to enhance subsurface air flow and transport rates, as well as to deliver soil amendments directly to the indigenous microbial populations. An in situ bioremediation zone was established and operated for a period of 50 weeks, which included periodic subsurface injections of phosphate, nitrate, and ammonium salts. Off-gas data indicated the formation of a series of aerobic, denitrifying, and methanogenic microbial degradation zones. Based on soil samples recovered from the site, 79% of soil-phase benzene, toluene, and xylenes (BTX) was removed by the integrated technology. From mass balance calculations, accounting for all physical losses, it was estimated that 85% of the total mass of BTX removed (based on mean concentration levels) was attributable to biodegradation.  相似文献   

4.
ABSTRACT An 8-year bioremediation field study was conducted in a trichloroethene (TCE)-contaminated, highly indurated (i.e., hard), recharge-limited (i.e., contains little water) conglomerate where common remediation strategies, such as groundwater recirculation and direct push installation of a large well network, could not be used. A tracer test using isotopically distinct water from the Hetch Hetchy Reservoir indicated that remediation fluids mainly flowed through fractures and sand lenses in the conglomerate. This was confirmed during in situ bioremediation of the site, in which Dehalococcoides (from a bioaugmentation culture) and volatile fatty acids (from injection of lactate) were the most accurate indicators of transport between wells. Some contaminants were also displaced out of the area due to injection of tracer water. Despite these difficulties, dissolved contaminant mass decreased by an estimated 80% by the end of the test, reaching the lowest values ever recorded at this site. Furthermore, the persistence of ethene 4 years after bioaugmentation suggests that the dechlorinating capacity of the remaining microbial community is comparable to the matrix diffusion of TCE into the dissolved phase.  相似文献   

5.
The aquifer below an abandoned chemical plant in Hamburg, Germany, is heavily contaminated with chlorinated aromatic compounds, mainly chlorobenzenes. Preliminary evaluations made evident that pump-and-treat remediation of the site would be inefficient due to adsorption of the contaminants and the possible presence of dense nonaqueous phase liquid (DNAPL) in the aquifer. Other preliminary studies indicated that benzenes with a low degree of chlorination, which account for the bulk of the contamination in the aquifer, were aerobically degradable. Thus, in situ bioremediation using dissolved oxygen as an oxidant was proposed as an alternative to pump-and-treat remediation.

To assess the feasibility of bioremediation at this site, a pilot study was conducted on a 55 m x 30 m test plot that was equipped with two injection wells, six extraction wells, and 18 observation wells. Water saturated with oxygen using pure oxygen gas was injected for a period of 433 days.

Application of the three-dimensional reactive transport model, Transport, Biochemistry, and Chemistry (TBC), allowed the distinction between transport and reactive processes and the evaluation of oxygen consuming processes. Preliminary mass balance considerations had indicated that a significant portion of the injected oxygen was used for oxidation of inorganic compounds instead of the contaminants. The model calculations allowed quantification of these effects. Simulation results suggested that in situ bioremediation occurred at the site, but with an unacceptably low efficiency. Only 2% of the injected oxygen was used for contaminant degradation, while 63% was consumed by inorganic reductants, presumably mainly pyrite. Approximately 32% of the injected oxygen was extracted by the extraction wells and approximately 3% remained in the aquifer after the pilot study was completed.  相似文献   

6.
Bioremediation has been applied in laboratory-scale testing to simulate field-scale bioremediation applications. The simulations have focused on the development of concentration-time profile data in the laboratory to be modeled and used for predicting field-scale performance, particularly the time of treatment and the treatment concentration endpoints. This review reports on more than a dozen examples of bioremediation where both the laboratory-scale and field-scale data are provided. These data have been analyzed to examine how well the laboratory-scale kinetics predict the kinetics at field scale. In most cases, the laboratory-scale kinetics exceed field-scale kinetics and underpredict the time of treatment to a given endpoint in excess of 100% and by as much as 11,900%. In some cases, the laboratory-scale kinetic rate constants fall between ±100% of the field-scale kinetics, leading to predictions within 50 to 200% of the time of treatment to a given concentration level. Not enough examples nor details within the references exist to permit a detailed explanation of why these differences exist. However, several hypotheses are given in this review as to why scaleup is often problematic, and comments from other investigators on this topic are presented.  相似文献   

7.
The potential for stimulating microbial U(VI) reduction as an in situ bioremediation strategy for uranium-contaminated groundwater was evaluated in uranium-contaminated sediment from the FRC, Oak Ridge, TN. Sediment was at low pH (pH 4) and contained high (55 mM) concentrations of nitrate. The addition of organic electron donors resulted in a slow removal of ca. 20% of the nitrate over 120 days with a concurrent increase in pH. Uranium precipitated during nitrate reduction. This precipitation of U(VI) was not due to its reduction to U(IV) because over 90% of the uranium in the sediments remained as U(VI). Studies in which the pH of the sediments was artificially raised suggested that an increase in pH alone could not account for the precipitation of the U(VI) during nitrate reduction. Metal-reducing bacteria were recovered from the sediments in enrichment cultures, but molecular analysis of the sediment demonstrated that the addition of electron donors did not stimulate the growth of these metal reducers. Thus, although U(VI) was precipitated from the groundwater with the simple addition of electron donors, most of the uranium in the sediments was in the form of U(VI), and thus was not effectively immobilized.  相似文献   

8.
Lithium insertion into sulfur confined within 200 nm cylindrical inner pores of individual carbon nanotubes (CNTs) was monitored in situ in a transmission electron microscope (TEM). This electrochemical reaction was initiated at one end of the S‐filled CNTs. The material expansion during lithiation was accommodated by the expansion into the remaining empty pore volume and no fracture of the CNT walls was detected. A sharp interface between the initial and lithiated S was observed. The reaction front was flat, oriented perpendicular to the confined S cylinder, and propagated along the cylinder length. Lithiation of S in the proximity of conductive carbon proceeded at the same rate as the one in the center of the pore, suggesting the presence of electron pathways at the Li2S/S interface. Density of states calculations further confirmed this hypothesis. In situ electron diffraction showed a direct phase transformation of S into nanocrystalline Li2S without detectable formation of any intermediates, such as polysulfides and LiS. These important insights may elucidate some of the reaction mechanisms and guide the improvements in the design of C–S nanocomposites for high specific energy Li–S batteries. The proposed use of conductive CNTs with tunable pore diameter as cylindrical reaction vessels for in situ TEM studies of electrochemical reactions proved to be highly advantageous and may help to resolve the ongoing problems in battery technology.  相似文献   

9.
An anaerobic microcosm set up with aquifer material from a 1,1,2,2-tetrachloroethane (TeCA) contaminated site and amended with butyrate showed a complete TeCA dechlorination to ethene. A structure analysis of the microbial community was performed by fluorescence in situ hybridization (FISH) with already available and on purpose designed probes from sequences retrieved through 16S rDNA clone library construction. FISH was chosen as identification tool to evaluate in situ whether the retrieved sequences belong to primary bacteria responsible for the biodegradative reactions. FISH probes identified up to 80% of total bacteria and revealed the absence or the marginal presence of known TeCA degraders and the abundance of two well-known H(2)-utilizing halorespiring bacteria, Sulfurospirillum (32.4 +/- 8.6% of total bacteria) and Dehalococcoides spp. (14.8 +/- 2.8), thereby providing a strong indication of their involvement in the dechlorination processes. These results were supported by the kinetic and thermodynamic analysis which provided indications that hydrogen was the actual electron donor for TeCA dechlorination. The specific probes, developed in this study, for known dechlorinators (i.e., Geobacter, Dehalobacter, and Sulfurospirillum species) represent a valuable tool for any future in situ bioremediation study as well as a quick and specific investigation tool for tracking their distribution in the field.  相似文献   

10.
A denitrifying consortium capable of transforming carbon tetrachloride (CCl(4)) was cultured from aquifer sediment from the U.S. Department of Energy's Hanford Site in southeastern Washington State. To understand the kinetics of the biological destruction of CCl(4) by these microbes, a set of experiments, the conditions of which were chosen according to a fractional factorial experimental design, were completed. This article reports on the experimental design along with the results for CCl(4), biomass, acetate, nitrate, and nitrite concentrations. These data indicate that growth is inhibited by high nitrite concentrations, whereas CCl(4) degradation is slowed by the presence of nitrate and/or nitrite. (c) 1994 John Wiley & Sons, Inc.  相似文献   

11.
Although lithium sulfur batteries (LSBs) have attracted much interest owing to their high energy densities, synthesis of high‐rate cathodes and understanding their volume expansion behavior still remain challenging. Herein, electrospinning is used to prepare porous carbon nanofiber (PCNF) hosts, where both the pore volume and surface area are tailored by optimizing the sacrificial agent content and the activation temperature. Benefiting from the ameliorating functional features of high electrical conductivity, large pore volume, and Li ion permselective micropores, the PCNF/A550/S electrode activated at 550 °C exhibits a high sulfur loading of 71 wt%, a high capacity of 945 mA h g?1 at 1 C, and excellent high‐rate capability. The in situ transmission electron microscope examination reveals that the lithiation product, Li2S, is contained within the electrode with only ≈35% volume expansion and the carbon host remains intact without fracture. In contrast, the PCNF/A750/S electrode with damaged carbon spheres exhibits sulfur sublimation, a larger volume expansion of over 61%, and overflowing of Li2S, a testament to its poor cyclic stability. These findings provide, for the first time, a new insight into the correlation between volume expansion and electrochemical performance of the electrode, offering a potential design strategy to synthesize high‐rate and stable LSB cathodes.  相似文献   

12.
经1×10-6mol/L视黄酸诱导的P19细胞体外可向神经方向分化,接种于多聚赖氨酸(polyDlysine)和纤连蛋白(fibronectin)包被的玻片后,细胞逐渐聚集成团,此时细胞的贴壁性较差,进行原位分子杂交时容易脱落。我们尝试在细胞表面覆盖一层明胶,减少了细胞的脱落,又比较了蛋白酶K和胃蛋白酶对细胞蛋白质的消化作用,确定胃蛋白酶可较温和地消化细胞蛋白质,使探针有效地透入结合,杂交后细胞亦能较完整地保留于玻片上。  相似文献   

13.
新疆灰漠土区不同肥料配比土壤氨挥发原位监测   总被引:3,自引:0,他引:3  
在17a的新疆国家灰漠土土壤肥力与肥料效益长期定位试验区,采用通气法对春小麦种植体系8种处理,即(1)对照(种植、不施肥,CK)、(2)施氮肥(N)、(3)施氮磷肥(NP)、(4)施氮钾肥(NK)、(5)施氮磷钾肥(NPK)、(6)施氮磷钾肥+有机肥增量(NPKM1)、(7)施氮磷钾化肥+有机肥常量(NPKM2)、(8)施氮磷钾化肥+秸秆还田(NPKS)的氨挥发损失与不同肥料配比、长期不同施肥土壤特性变化之间关系进行研究.结果表明:(1)在当地春小麦种植典型施肥模式,即"基肥撒施后机械翻耕,追肥撒施后灌水"下,在施氮量为84.97~241.5 kg · hm-2的条件下,不同处理基肥氨挥发累积量为0.194~2.236 kg N · hm-2之间;追肥氨挥发累积量在0.078~0.210 kg N · hm-2之间,远低于基肥氨挥发量;基肥和追肥氨挥发损失氮素之和占总施氮量的0.39%~1.23%.(2)相同施氮量241.5 kg · hm-2的N、NP、NK、NPK 4个处理,氨挥发累积量分别为1.017、0.944、1.988、2.437 kg N · hm-2,氨挥发量与不同处理土壤速效钾含量相关性达显著水平(r=0.951, P<0.05,n=4).(3)施氮量分别为151.8、84.9、216.7 kg · hm-2有机肥处理NPKM1、NPKM2、NPKS的氨挥发累积量分别为1.404、1.041、1.583 kg N · hm-2,氨挥发量与氮肥使用量呈显著正相关(r=0.581,P<0.05,n=18).以上结果表明,氨挥发不是新疆灰漠土长期定位试验春小麦体系氮肥损失的主要途径;不同肥料配比和长期不同肥料配比造成土壤特性的变化是7种施氮肥处理氨挥发差异的主要原因.  相似文献   

14.
RNA原位杂交技术的一些应用技巧   总被引:3,自引:0,他引:3  
目的:检测基因在动物组织或细胞中的时空表达模式。方法:转录反义RNA探针;利用RNA原位杂交技术检测人和小鼠牙原基中若干基因的表达。结果与结论:通过优化条件,转录出完整的反义RNA探针,并成功地利用RNA原位杂交技术在组织中检测到基因的表达;分析了一些在RNA原位杂交的过程中可能碰到的问题及其解决方法。  相似文献   

15.
Whole mount meiotic preparations of the synaptonemal complex complement of Lilium have been used for in situ hybridization experiments. A probe of the maize ribosomal DNA gene cluster has been successfully hybridized to the lily preparations. Three strong signals, corresponding to the three known lily nucleolus organizer regions, have been seen in most of the chromosome preparations. In situ hybridization experiments using meiotic preparations should be useful for identifying specific chromosomes, and for investigating the role of particular DNA molecules important to meiotic function.  相似文献   

16.
The capacitive performance of carbon materials could be enhanced by means of increasing the number of active sites, the surface area, and the porosity as well as through incorporating heteroatoms into the carbon framework. However, the charge storage through electric double‐layer mechanism results in limited increase in capacitance of modified carbon materials. Herein, a simple and straightforward strategy is introduced for in situ synthesizing iron complex (FeX, which X includes O, C, and P) nanoparticles encapsulated into biomass‐derived N, P‐codoped carbon nanotubes (NPCNTs), using a natural resource, egg yolk, as heteroatom‐enriched carbon sources and potassium ferricyanide as the precursor for iron complex. Compared with heteroatom‐enriched carbon nanomaterials derived from the carbonization of egg yolk, the synergetic function of the heteroatom doping, the incorporation of FeX nanoparticles, and the unique structural characteristics endows the as‐prepared sample with largely improved electrochemical performance. As expected, FeX@NPCNTs hybrid nanomaterials exhibit superior capacitive performance, including high specific capacitance, impressive rate performance, and excellent cycle stability. Using the as‐prepared FeX@NPCNTs hybrid nanomaterials as electroactive materials, a symmetric supercapacitor with high capacity and a long‐term cyclability is finally demonstrated (more than 99% capacitance retention after 50 000 cycles at a current density of 10 A g?1).  相似文献   

17.
为了研究铁棍山药(D.oppositacv.Tiegun)多糖对四氯化碳诱导的小鼠急性肝损伤的保护作用,取72只昆明小鼠随机分为对照组,四氯化碳(CCl4)模型组,阳性对照(联苯双酯)组,铁棍山药多糖低、中、高剂量组,每组12只,灌胃处理后使用CCl4制备急性肝损伤小鼠模型,观察各组形态学变化,同时测定生化指标。实验结果显示,经铁棍山药多糖处理的小鼠的肝损伤程度明显轻于模型组,铁棍山药多糖能降低小鼠血清中谷丙转氨酶(ALT)和谷草转氨酶(AST)含量,提高超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)的活性,降低丙二醛(MDA)、一氧化氮(NO)、肿瘤坏死因子-α(TNF-α)的含量。本研究结果表明,铁棍山药多糖对CCl4所诱导的小鼠肝损伤起到一定的保护作用。  相似文献   

18.
北方冬小麦/夏玉米轮作体系土壤氨挥发的原位测定   总被引:40,自引:4,他引:40  
采用通气法测定了北方冬小麦/夏玉米轮作体系田间土壤的原位氨挥发。结果表明,与冬小麦施用基肥相比,夏玉米追肥后土壤的氨挥发速率很快升高,但军发高峰期持续时间较短,最大氨挥发速率亦低于冬小麦,冬小麦拨节期追肥,氨挥发速率低且呈波动变化,未出现高峰值,从整个生长季节来看,冬小麦不施氮和每公顷施氮120、240、360kg时的累计挥发量分别为4.4、6.9、13.0、38.4kgN/hm^2,夏玉米为8.4、15.1、20.0、26.1kgN/hm^2。按我国北方冬小麦/夏玉米播种面积1864.4万hm^2计,每年由氨挥发向大气排放的氨素达23.8-120.2万t,其中17.2-96.4万t来自氮肥,相当于氮肥投入的2.1%-9.5%。  相似文献   

19.
20.
The development of a simple laboratory methodology allows theimplementation of in situbioremediation of polluted soils with diesel fuel. In thisinvestigation microbiological and chemical analyses and a suitable bioreactor design, were veryuseful for suggesting the best ways to improve biodegradation extents in a diesel-enrichedsoil. Biostimulation with inorganic nitrogen and phosphorus produced the best resultsin a simple bioreactor, with biodegradation extents higher than 90% after 45 days. Also,the addition of activated sludge from a domestic wastewater plant increased the degradationrate to a great extent. In both cases, microbiological studies showed the presence ofAcinetobacter sp. degrading most of thehydrocarbons. Simultaneously, a diesel fuel release(approximately 400,000 l) was studied. Samples taken in polluted soil and water revealed thatbacteria from the genus Acinetobacterwere predominant. In plate studies, Acinetobacter coloniesproduced a whitish substance with the characteristics of a biosurfactant. Remarkably, thepresence of this product was evident at the field site, both in the riverbanks and in the physicalrecovery plant. The study of the similarities between laboratory results and the diesel spillsite strongly suggested that natural conditions at the field site allowed the implementationof in situ bioremediation after physical removal of LNAPL (light nonaqueous-phase liquids).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号