首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types, with targeting frequencies ranging from 10(-5) to 10(-2) per infected cell. These targeting frequencies are 1-4 logs higher than those obtained by conventional transfection or electroporation approaches. A wide variety of different types of mutations can be introduced into chromosomal loci with high fidelity and without genotoxicity. Here we provide a detailed protocol for gene targeting in human cells with AAV vectors. We describe methods for vector design, stock preparation and titration. Optimized transduction protocols are provided for human pluripotent stem cells, mesenchymal stem cells, fibroblasts and transformed cell lines, as well as a method for identifying targeted clones by Southern blots. This protocol (from vector design through a single round of targeting and screening) can be completed in ~10 weeks; each subsequent round of targeting and screening should take an additional 7 weeks.  相似文献   

2.
Combinatorial methods in molecular imprinting   总被引:4,自引:0,他引:4  
Molecular imprinting is a general method for synthesizing robust, network polymers with highly specific binding sites for small molecules. Recently, combinatorial and computational approaches have been employed to select an optimal molecularly imprinted polymer (MIP) formulation for a targeted analyte. The use of MIPs in the combinatorial field, specifically their use for screening libraries of small molecules, has also been developed.  相似文献   

3.
《Cytotherapy》2022,24(3):282-290
Background aimsEfforts to safely and effectively treat acute myeloid leukemia (AML) by targeting a single leukemia-associated antigen with chimeric antigen receptor (CAR) T cells have met with limited success, due in part to heterogeneous expression of myeloid antigens. The authors hypothesized that T cells expressing CARs directed toward two different AML-associated antigens would eradicate tumors and prevent relapse.MethodsFor co-transduction with the authors’ previously optimized CLL-1 CAR currently in clinical study (NCT04219163), the authors generated two CARs targeting either CD123 or CD33. The authors then tested the anti-tumor activity of T cells expressing each of the three CARs either alone or after co-transduction. The authors analyzed CAR T-cell phenotype, expansion and transduction efficacy and assessed function by in vitro and in vivo activity against AML cell lines expressing high (MOLM-13: CD123 high, CD33 high, CLL-1 intermediate), intermediate (HL-60: CD123 low, CD33 intermediate, CLL-1 intermediate/high) or low (KG-1a: CD123 low, CD33 low, CLL-1 low) levels of the target antigens.ResultsThe in vitro benefit of dual expression was most evident when the target cell line expressed low antigen levels (KG-1a). Mechanistically, dual expression was associated with higher pCD3z levels in T cells compared with single CAR T cells on exposure to KG-1a (P < 0.0001). In vivo, combinatorial targeting with CD123 or CD33 and CLL-1 CAR T cells improved tumor control and animal survival for all lines (KG-1a, MOLM-13 and HL-60); no antigen escape was detected in residual tumors.ConclusionsOverall, these findings demonstrate that combinatorial targeting of CD33 or CD123 and CLL-1 with CAR T cells can control growth of heterogeneous AML tumors.  相似文献   

4.
Combinatorial discovery of tumor targeting peptides using phage display   总被引:9,自引:0,他引:9  
Peptides possess appropriate pharmacokinetic properties to serve as cancer imaging or therapeutic targeting agents. Currently, only a small number of rationally-derived, labeled peptide analogues that target only a limited subset of antigens are available. Thus, finding new cancer targeting peptides is a central goal in the field of molecular targeting. Novel tumor-avid peptides can be efficiently identified via affinity selections using complex random peptide libraries containing millions of peptides that are displayed on bacteriophage. In vitro and in situ affinity selections may be used to identify peptides with high affinity for the target antigen in vitro. Unfortunately, it has been found that peptides selected in vitro or in situ may not effectively target tumors in vivo due to poor peptide stability and other problems. To improve in vivo targeting, methodological combinatorial chemistry innovations allow selections to be conducted in the environment of the whole animal. Thus, new targeting peptides with optimal in vivo properties can be selected in vivo in tumor-bearing animals. In vivo selections have been proven successful in identifying peptides that target the vasculature of specific organs. In addition, in vivo selections have identified peptides that bind specifically to the surface of or are internalized into tumor cells. In the future, direct selection of peptides for cancer imaging may be expedited using genetically engineered bacteriophage libraries that encode peptides with intrinsic radiometal-chelation or fluorescent sequences.  相似文献   

5.
6.
Major advances in the use of site-specific recombinases to facilitate sustained gene expression via chromosomal targeting have been made during the past year. New tools for genomic manipulations using this technology include the discovery of epitopes in recombinases that confer nuclear localization, crystal structures that show the precise topology of recombinase-DNA-substrate synaptic complexes, manipulations of the DNA recognition sequences that select for integration over excision of DNA, and manipulations that make changes in gene expression inducible by drug administration. In addition, endogenous eukaryotic and mammalian DNA sequences have been discovered that can support site-specific recombinase-mediated manipulations.  相似文献   

7.
The adeno-associated virus (AAV)-based targeting vector has been one of the tools commonly used for genome modification in human cell lines. It allows for relatively efficient gene targeting associated with 1–4-log higher ratios of homologous-to-random integration of targeting vectors (H/R ratios) than plasmid-based targeting vectors, without actively introducing DNA double-strand breaks. In this study, we sought to improve the efficiency of AAV-mediated gene targeting by introducing a 2A-based promoter-trap system into targeting constructs. We generated three distinct AAV-based targeting vectors carrying 2A for promoter trapping, each targeting a GFP-based reporter module incorporated into the genome, PIGA exon 6 or PIGA intron 5. The absolute gene targeting efficiencies and H/R ratios attained using these vectors were assessed in multiple human cell lines and compared with those attained using targeting vectors carrying internal ribosome entry site (IRES) for promoter trapping. We found that the use of 2A for promoter trapping increased absolute gene targeting efficiencies by 3.4–28-fold and H/R ratios by 2–5-fold compared to values obtained with IRES. In CRISPR-Cas9-assisted gene targeting using plasmid-based targeting vectors, the use of 2A did not enhance the H/R ratios but did upregulate the absolute gene targeting efficiencies compared to the use of IRES.  相似文献   

8.
Sequence-specific binding to genomic-size DNA sequences by artificial agents is of major interest for the development of gene-targeting strategies, gene-diagnostic applications, and biotechnical tools. The binding of one such agent, peptide nucleic acid (PNA), to a randomized human genome has been modeled with statistical mass action calculations. With the length of the PNA probe, the average per-base binding constant k(0), and the binding affinity loss of a mismatched base pair as main parameters, the specificity was gauged as a "therapeutic ratio" G = maximum safe [PNA](tot)/minimal efficient [PNA](tot). This general, though simple, model suggests that, above a certain threshold length of the PNA, the microscopic binding constant k(0) is the primary determinant for optimal discrimination, and that only a narrow range of rather low k(0) values gives a high therapeutic ratio G. For diagnostic purposes, the value of k(0) could readily be modulated by changing the temperature, due to the substantial Delta H degrees associated with the binding equilibrium. Applied to gene therapy, our results stress the need for appropriate control of the binding constant and added amount of the gene-targeting agent, to meet the varying conditions (ionic strength, presence of competing DNA-binding molecules) found in the cell.  相似文献   

9.
10.
11.
体细胞基因打靶比较常见的ES细胞打靶是一项新发展的技术。本就如何设计选择打靶载体以及打靶适用的细胞系进行了较为详细的介绍。设计打靶的其他一些相关问题譬如顺序打靶、是否需要纯合DNA、高效的同源重组亦有讨论,从而对体细胞基因打靶特别是ES细胞基因打靶有一比较全面的了解。  相似文献   

12.
13.
14.
Schaefer AM  Hadwiger GD  Nonet ML 《Neuron》2000,26(2):345-356
Little is known of mechanisms regulating presynaptic differentiation. We identified rpm-1 in a screen for mutants with defects in patterning of a presynaptic marker at certain interneuronal synapses. The predicted RPM-1 protein contains zinc binding, RCC1, and other conserved motifs. In rpm-1 mutants, mechanosensory neurons fail to accumulate tagged vesicles, retract synaptic branches, and ectopically extend axons. Some motor neurons branch and overgrow; others show altered synaptic organization. Expression of RPM-1 in the presynaptic mechanosensory neurons is sufficient to rescue phenotypes in these cells. Certain rpm-1 phenotypes are temperature sensitive, revealing that RPM-1 function can be bypassed by maintaining mutants at the permissive temperature at stages commensurate with synapse formation in wild-type animals. These results indicate that RPM-1 functions cell autonomously during synaptogenesis to regulate neuronal morphology.  相似文献   

15.
Gene targeting in mouse embryonic stem (ES) cells is a fundamental methodology for generating mice with precise genetic modifications. Although there are many complex gene targeting strategies for creating a variety of diverse mutations in mice, most investigators initially choose to generate a null allele. Here we provide a guide for the novice to generate a null allele for a protein coding gene using a fundamental gene targeting strategy. Ultimately, a well considered gene targeting strategy saves significant amounts of time, money, and research animal lives. The straightforward strategy presented here bypasses many of the pitfalls associated with gene knockouts generated by novices. This guide also serves as a foundation for subsequently designing more complex gene targeting strategies.  相似文献   

16.
17.
18.
19.
Lu B  Wu DQ  Zheng H  Quan CY  Zhang XZ  Zhuo RX 《Molecular bioSystems》2010,6(12):2529-2538
Through incorporating lactobionic acid (LA) bearing a galactose group to N-succinyl-chitosan-graft-polyethylenimine (NSC-g-PEI), NSC-g-PEI-LA copolymers were synthesized as gene vectors with hepatocyte targeting properties. The molecular weight and composition of NSC-g-PEI-LA copolymers were characterized using gel permeation chromatography (GPC) and (1)H nuclear magnetic resonance spectroscopy ((1)H NMR) respectively. Agarose gel electrophoresis assays showed good DNA binding ability of NSC-g-PEI-LA, and the particle size of the NSC-g-PEI-LA/DNA complexes were between 150 and 400 nm as determined by a Zeta sizer. The NSC-g-PEI-LA/DNA complexes observed by scanning electron microscopy (SEM) exhibited a compact and spherical morphology. The zeta potentials of these complexes were increased with the weight ratio of NSC-g-PEI-LA/DNA. NSC-g-PEI-LA has a lower cytotoxicity than PEI (25 kDa) and the toxicity decreased with increasing substitution of LA. The transfection efficiency of different complexes was evaluated by luciferase assay. Compared with PEI (25 kDa) and NSC-g-PEI/DNA, NSC-g-PEI-LA showed good transfection activity and cell specificity to HepG2 cells. The results suggested that NSC-g-PEI-LA has the potential to be used as a safe and effective targeting gene vector.  相似文献   

20.
Strategies for targeting therapeutic gene delivery.   总被引:5,自引:0,他引:5  
A major goal for gene therapy is to obtain targeted vectors that transfer genes efficiently to specific cell types. In theory, this can be achieved by targeting entry of the vector or by building gene expression cassettes that restrict gene expression to certain cell types. This review summarizes recent strategies to alter vector tropism for targeted gene delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号