首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the immune system, inflammation, and cellular metabolism are linked to diseases associated with dyslipidemias, the mechanism(s) remain unclear. To determine whether there is a mechanistic link between lipid availability and inflammation/immune activation, we evaluated macrophage cell lines incubated under conditions of altered exogenous and endogenous lipid availability. Limiting exogenous lipids results in decreased lysosomal acidity and decreased lysosomal enzymatic activity. Both lysosomal parameters are restored with the addition of oleoyl-CoA, suggesting that fatty acids play a role in the regulation of lysosomal function. Cell surface expression of major histocompatibility complex (MHC)-encoded molecules is also decreased in the absence of exogenous lipids. Additionally, we observe decreased gamma-interferon stimulation of cell surface MHC class II. Using cerulenin to limit the endogenous synthesis of fatty acids results in decreased cell surface expression of MHC class II but does not appear to alter lysosomal acidity, suggesting that lysosomal acidity is dependent on exogenous, but not endogenous, fatty acid availability. Testing these conclusions in an in vivo mouse model, we observed statistically significant, diet-dependent differences in lysosomal acidity and MHC class II cell surface expression. Collectively, these data demonstrate a mechanistic link between lipid availability and early events in the immune response.  相似文献   

2.
3.
The protumorigenic functions for autophagy are largely attributed to its ability to promote cancer cell survival in response to diverse stresses. Here we demonstrate an unexpected connection between autophagy and glucose metabolism that facilitates adhesion-independent transformation driven by a strong oncogenic insult-mutationally active Ras. In cells ectopically expressing oncogenic H-Ras as well as human cancer cell lines harboring endogenous K-Ras mutations, autophagy is induced following extracellular matrix detachment. Inhibiting autophagy due to the genetic deletion or RNA interference-mediated depletion of multiple autophagy regulators attenuates Ras-mediated adhesion-independent transformation and proliferation as well as reduces glycolytic capacity. Furthermore, in contrast to autophagy-competent cells, both proliferation and transformation in autophagy-deficient cells expressing oncogenic Ras are insensitive to reductions in glucose availability. Overall, increased glycolysis in autophagy-competent cells facilitates Ras-mediated adhesion-independent transformation, suggesting a unique mechanism by which autophagy may promote Ras-driven tumor growth in specific metabolic contexts.  相似文献   

4.
Cell-based treatments for insulin-dependent diabetes (IDD) may provide more physiologic regulation of blood glucose levels than daily insulin injections, thereby reducing the occurrence of secondary complications associated with diabetes. An autologous cell source is especially attractive for regulatory and ethical reasons in addition to eliminating the need for immunosuppression. This study uses non-β-cells, genetically modified for physiologic insulin secretion. Enteroendocrine L-cells, exhibit regulated secretion in response to physiologic stimuli and their endogenous products are fully compatible with prandial metabolism. Murine GLUTag L-cells were transfected with a plasmid co-expressing human insulin and neomycin resistance and the stable cell line, GLUTag-INS, was established. Secretion properties of GLUTag-INS cells were investigated in vitro through induced secretion tests using meat hydrolysate or 3-isobutyl-1-methylxanthine and forskolin as secretagogues. GLUTag-INS cells rapidly co-secreted recombinant insulin and endogenous glucagon-like peptide in response to metabolic cues from the surrounding medium and demonstrated efficient processing of proinsulin to insulin.  相似文献   

5.
DNA damage and autophagy   总被引:1,自引:0,他引:1  
Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.  相似文献   

6.
The metabolism of exogenous and endogenous [14C] arachidonc acid was studied in purified human peripheral blood lymphocytes carefully freed of contaminating platelets. Formation of products co-migrating in a number of different solvent systems with 5-hydroxyarachidonic acid (5-HETE), thromboxane B2 (TB2), prostaglandins and probably 12-hydroxyarachidonic acid (12-HETE) was demonstrated. In cells prelabeled with [14C] arachidonic acid, phytohemagglutinin (PHA) produced substantial (3.5- to 12-fold) increases in 5-HETE, 12-HETE, and TB2 radiolabeling. The metabolism of exogenous [14C] arachidonic acid was much less affected by PHA. Since PHA releases cell-bound arachidonic acid, it appears that the response involving endogenous label is due to increased availability of free arachidonic acid rather than induction of arachidonic acid-metabolizing enzymes. Various inhibitors of arachidonic acid metabolism exerted similar effects in lymphocytes to those described previously in other tissues providing a possible basis for interpreting their inhibitory effects on mitogenesis, described in the preceding paper.  相似文献   

7.
植物热激蛋白的功能及其基因表达的调控   总被引:23,自引:0,他引:23  
本文介绍了植物热激蛋白的产生、分布和分类。着重论述了热激反应的特点、植物热激蛋白的功能、热激基因表达与调控的研究进展  相似文献   

8.
本文介绍了植物热激蛋白的产:生、分布和分类。着重论述了热激反应的特点、植物热激蛋白的功能、热激基因表达与调控的研究进展。  相似文献   

9.
10.
11.
Nitrogen metabolism genes of Bacillus subtilis are regulated by the availability of rapidly metabolizable nitrogen sources, but not by any mechanism analogous to the two-component Ntr regulatory system found in enteric bacteria. Instead, at least three regulatory proteins independently control the expression of gene products involved in nitrogen metabolism in response to nutrient availability. Genes expressed at high levels during nitrogen-limited growth are controlled by two related proteins, GlnR and TnrA, which bind to similar DNA sequences under different nutritional conditions. The TnrA protein is active only during nitrogen limitation, whereas GlnR-dependent repression occurs in cells growing with excess nitrogen. Although the nitrogen signal regulating the activity of the GlnR and TnrA proteins is not known, the wild-type glutamine synthetase protein is required for the transduction of this signal to the GlnR and TnrA proteins. Examination of GlnR- and TnrA-regulated gene expression suggests that these proteins allow the cell to adapt to growth during nitrogen-limited conditions. A third regulatory protein, CodY, controls the expression of several genes involved in nitrogen metabolism, competence and acetate metabolism in response to growth rate. The highest levels of CodY-dependent repression occur in cells growing rapidly in a medium rich in amino acids, and this regulation is relieved during the transition to nutrient-limited growth. While the synthesis of amino acid degradative enzymes in B. subtilis is substrate inducible, their expression is generally not regulated in response to nitrogen availability by GlnR and TnrA. This pattern of regulation may reflect the fact that the catabolism of amino acids produced by proteolysis during sporulation and germination provides the cell with substrates for energy production and macromolecular synthesis. As a result, expression of amino acid degradative enzymes may be regulated to ensure that high levels of these enzymes are present in sporulating cells and in dormant spores.  相似文献   

12.
In the natural environment, bacterial cells have to adjust their metabolism to alterations in the availability of food sources. The order and timing of gene expression are crucial in these situations to produce an appropriate response. We used the galactose regulation in Escherichia coli as a model system for understanding how cells integrate information about food availability and cAMP levels to adjust the timing and intensity of gene expression. We simulated the feast-famine cycle of bacterial growth by diluting stationary phase cells in fresh medium containing galactose as the sole carbon source. We followed the activities of six promoters of the galactose system as cells grew on and ran out of galactose. We found that the cell responds to a decreasing external galactose level by increasing the internal galactose level, which is achieved by limiting galactose metabolism and increasing the expression of transporters. We show that the cell alters gene expression based primarily on the current state of the cell and not on monitoring the level of extracellular galactose in real time. Some decisions have longer term effects; therefore, the current state does subtly encode the history of food availability. In summary, our measurements of timing of gene expression in the galactose system suggest that the system has evolved to respond to environments where future galactose levels are unpredictable rather than regular feast and famine cycles.  相似文献   

13.
Heat stress proteins (hsp) are induced by a variety of stimuli including elevated temperature, ischaemia, hypoxia, pressure overload and some chemicals. They help to maintain the metabolic and structural integrity of the cell, as a protective response to external stresses. They are known to protect the myocardium from the damaging effects of ischaemia and reperfusion. The heat stress response results in accumulation of heat stress proteins. The beneficial effects associated with their expression include improved endothelial and mechanical recovery of the ischaemic heart. In addition, preservation of high energy phosphates and reduction in infarct size. It has also been shown that critical amounts of hsp70 are necessary to ensure protection of the myocardium. However, questions remain regarding the biochemical mechanisms underlying this protective effect. Alterations in the cell metabolism and chaperone function of cells expressing heat shock proteins, are thought to be responsible. Despite the obvious clinical benefits related to the heat stress response in a clinical setting, the application of this phenomena remains limited. Heat, both quantitatively and qualitatively is one of the best inducers of heat stress proteins. However, the effects of heat stress are nonspecific and intracellular damage is a common occurrence. The search for alternative stimuli, particularly within the fields of pharmacotherapy or genetic manipulation may offer more viable options, if the heat stress response is take its place as an established strategy for myocardial protection.  相似文献   

14.
The regulation of oxidative metabolism in hepatocytes of lampreys (Lampetra fluviatilis) during the freshwater pre-spawning period of their life cycle was studied. The energy metabolism in these cells is characterized by a simplified scheme, where glycolytic ATP production is insignificant and fatty acids are the major respiratory substrates. Seasonal changes in aerobic cell metabolism include a considerable reversible depression of metabolic rate in lamprey hepatocytes during the winter months of the pre-spawning period. The depression is characterized by a more than twofold decrease in hepatocyte endogenous respiration rate, a reduction of oxidative phosphorylation and drop in cellular ATP content. The addition of fatty acids to the hepatocyte incubation medium prevents the decrease in the metabolic rate. In spring, before spawning, a marked activation of energy metabolism in lamprey hepatocytes is found. These observations support the conclusion that the regulation of lamprey hepatocyte energy metabolism is realized through the availability of fatty acids for oxidation.  相似文献   

15.
The regulation of the narK gene in Escherichia coli was studied by constructing narK-lacZ gene and operon fusions and analyzing their expression in various mutant strains in response to changes in cell growth conditions. Expression of narK-lacZ was induced 110-fold by a shift to anaerobic growth and a further 8-fold by the presence of nitrate. The fnr gene product mediates this anaerobic response, while nitrate control is mediated by the narL, narX, and narQ gene products. The narX and narQ gene products were shown to sense nitrate independently of one another and could each activate narK expression in a NarL-dependent manner. We provide the first evidence that NarL and FNR interact to ensure optimal expression of narK. IHF and Fis proteins are also required for full activation of narK expression, and their roles in DNA bending are discussed. Finally, the availability of molybdate and iron ions is necessary for optimal narK expression, whereas the availability of nitrite is not. Although the role of the narK gene product in cell metabolism remains uncertain, the pattern of narK gene expression is consistent with a proposed role of NarK in nitrate uptake by the cell for nitrate-linked electron transport.  相似文献   

16.
The acutephase response (APR) is a systemic response to severe trauma, infection, and cancer, although many of the numerous cytokine-mediated components of the APR are incompletely understood. Some of these components, such as fever, reduced availability of iron and zinc, and nutritional restriction due to anorexia, appear to be stressors capable of causing harm to both the pathogen and the host. We review how the host benefits from differences in susceptibility to stress between pathogens and the host. Pathogens, infected host cells, and neoplastic cells are generally more stressed or vulnerable to additional stress than the host because: (a) targeted local inflammation works in synergy with APR stressors; (b) proliferation/growth increases vulnerability to stress; (c) altered pathogen physiology results in pathogen stress or vulnerability; and (d) protective heat shock responses are partially abrogated in pathogens since their responses are utilized by the host to enhance immune responses. Therefore, the host utilizes a coordinated system of endogenous stressors to provide additional levels of defense against pathogens. This model of immune brinksmanship can explain the evolutionary basis for the mutually stressful components of the APR.  相似文献   

17.
18.
It has been convincingly demonstrated that genotoxic stresses cause the accumulation of the tumor suppressor gene p53. One important consequence of increased p53 protein levels in response to DNA damage is the activation of a G1-phase cell cycle checkpoint. It has also been shown that G1-phase cell cycle checkpoints are activated in response to other stresses, such as lack of oxygen. Here we show that hypoxia and heat, agents that induce cellular stress primarily by inhibiting oxygen-dependent metabolism and denaturing proteins, respectively, also cause an increase in p53 protein levels. The p53 protein induced by heat is localized in the cytoplasm and forms a complex with the heat shock protein hsc70. The increase in nuclear p53 protein levels and DNA-binding activity and the induction of reporter gene constructs containing p53 binding sites following hypoxia occur in cells that are wild type for p53 but not in cells that possess mutant p53. However, unlike ionizing radiation, the accumulation of cells in G1 phase by hypoxia is not strictly dependent on wild-type p53 function. In addition, cells expressing the human papillomavirus E6 gene, which show increased degradation of p53 by ubiquitination and fail to accumulate p53 in response to DNA-damaging agents, do increase their p53 levels following heat and hypoxia. These results suggest that hypoxia is an example of a "nongenotoxic" stress which induces p53 activity by a different pathway than DNA-damaging agents.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号