首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The low-density lipoprotein receptor (LDLR) family of receptors are cell-surface receptors that internalize numerous ligands and play crucial role in various processes, such as lipoprotein metabolism, hemostasis, fetal development, etc. Previously, receptor-associated protein (RAP) was described as a molecular chaperone for LDLR-related protein 1 (LRP1), a prominent member of the LDLR family. We aimed to verify this role of RAP for LRP1 and two other LDLR family receptors, LDLR and vLDLR, and to investigate the mechanisms of respective interactions using a cell culture model system, purified system, and in silico modelling. Upon coexpression of RAP with clusters of the ligand-binding complement repeats (CRs) of the receptors in secreted form in insect cells culture, the isolated proteins had increased yield, enhanced folding, and improved binding properties compared with proteins expressed without RAP, as determined by circular dichroism and surface plasmon resonance. Within LRP1 CR-clusters II and IV, we identified multiple sites comprised of adjacent CR doublets, which provide alternative bivalent binding combinations with specific pairs of lysines on RAP. Mutational analysis of these lysines within each of isolated RAP D1/D2 and D3 domains having high affinity to LRP1 and of conserved tryptophans on selected CR-doublets of LRP1, as well as in silico docking of a model LRP1 CR-triplet with RAP, indicated a universal role for these residues in interaction of RAP and LRP1. Consequently, we propose a new model of RAP interaction with LDLR family receptors based on switching of the bivalent contacts between molecules over time in a dynamic mode.  相似文献   

2.
Proteins of the low-density lipoprotein receptor (LDLR) family are remarkable in their ability to bind an extremely diverse range of protein and lipoprotein ligands, yet the basis for ligand recognition is poorly understood. Here, we report the 1.26 A X-ray structure of a complex between a two-module region of the ligand binding domain of the LDLR and the third domain of RAP, an escort protein for LDLR family members. The RAP domain forms a three-helix bundle with two docking sites, one for each LDLR module. The mode of recognition at each site is virtually identical: three conserved, calcium-coordinating acidic residues from each LDLR module encircle a lysine side chain protruding from the second helix of RAP. This metal-dependent mode of electrostatic recognition, together with avidity effects resulting from the use of multiple sites, represents a general binding strategy likely to apply in the binding of other basic ligands to LDLR family proteins.  相似文献   

3.
The 39 kDa receptor-associated protein (RAP) is a three-domain escort protein in the secretory pathway for several members of the low-density lipoprotein receptor (LDLR) family of endocytic receptors, including the LDLR-related protein (LRP). The minimal functional unit of LRP required for efficient binding to RAP is composed of complement-type repeat (CR)-domain pairs, located in clusters on the extracellular part of LRP. Here we investigate the binding of full-length RAP and isolated RAP domains 1-3 to an ubiquitin-fused CR-domain pair consisting of the fifth and sixth CR domains of LRP (U-CR56). As shown by isothermal titration calorimetric analysis of simple RAP domains as well as adjoined RAP domains, all three RAP domains bind to this CR-domain pair in a noncooperative way. The binding of U-CR56 to RAP domains 1 and 2 is (at room temperature) enthalpically driven with an entropy penalty (K(D) = 2.77 x 10(-6) M and 1.85 x 10(-5) M, respectively), whereas RAP domain 3 binds with a substantially lower enthalpy, but is favored due to a positive entropic contribution (K(D) = 1.71 x 10(-7) M). The heat capacity change for complex formation between RAP domain 1 and the CR-domain pair is -1.65 kJ K(-1) mol(-1). There is an indication of a conformational change in RAP domain 3 upon binding in the surface plasmon resonance analysis of the interaction. The different mechanisms of binding to RAP domains 1 and 3 are further substantiated by the different effects on binding of mutations of the Asp and Trp residues in the LRP CR5 or CR6 domains, which are important for the recognition of several ligands.  相似文献   

4.
Li Y  Lu W  Schwartz AL  Bu G 《Biochemistry》2002,41(15):4921-4928
Familial hypercholesterolemia is the consequence of various mutations in the low-density lipoprotein receptor (LDLR). In the current study, we show that a specialized molecular chaperone, the receptor-associated protein (RAP), promotes proper folding and subsequent exocytic trafficking of the wild-type LDLR and several of its class 2 mutants. Co-immunoprecipitation with anti-RAP antibody demonstrates that RAP interacts with the LDLR. Kinetic analyses of LDLR posttranslational folding and maturation in the absence or presence of RAP coexpression show that RAP prevents aggregation and promotes the maturation of the LDLR. Additionally, depletion of Ca(2+) in intact cells impairs LDLR folding, and coexpression of RAP partially corrects this misfolding. Finally, we show that the increased mature cell surface LDLR in the presence of RAP coexpression is functional in its ability to endocytose and degrade (125)I-LDL. Taken together, our results show that the folding, trafficking, and maturation of the LDLR and its class 2 mutants are promoted by RAP.  相似文献   

5.
Estrada K  Fisher C  Blacklow SC 《Biochemistry》2008,47(6):1532-1539
The receptor-associated protein (RAP) functions as an escort protein for receptors of the low-density lipoprotein receptor (LDLR) family by preventing premature intracellular binding of ligands and assisting with delivery of mature receptors to the cell surface. The modulation of affinity by pH is believed to play an important role in the escort function of RAP, because RAP binds tightly to proteins of the LDLR family at near-neutral pH early in the secretory pathway where its high affinity precludes premature binding of ligands but then dissociates from bound receptors at the lower pH of the Golgi compartment. The third domain of RAP (RAP-D3), which forms a three-helix bundle, is sufficient to reconstitute the escort activity. Here, we test the hypothesis that low-pH induced unfolding of the RAP-D3 helical bundle facilitates dissociation of RAP-receptor complexes. First, variants of RAP-D3 resistant to low pH-induced unfolding were constructed by replacing interior histidine residues with phenylalanines. In contrast to native RAP-D3, which exhibits an unfolding pKa of 6.3 and a Tm of 42 degrees C, the most hyperstable variant of RAP-D3, in which four histidine residues are replaced with phenylalanine, has an unfolding pKa of 4.8, and a Tm of 58 degrees C. The phenylalanine substitutions in RAP-D3 confer increased stability to pH-induced dissociation of complexes formed between RAP-D3 and a two-repeat fragment of the LDLR (LA3-4). When introduced into full-length RAP, the four mutations that confer hyperstability on RAP-D3 interfere with transport of endogenous LRP-1 to the cell surface in a dominant negative fashion under conditions where expression of normal RAP has no effect on LRP-1 transport. Our studies support a model in which low pH-dependent unfolding of RAP-D3 facilitates dissociation of RAP from the LA repeats of LDLR family proteins in the mildly acidic pH of the Golgi.  相似文献   

6.
Low density lipoprotein receptor (LDLR) was shown to mediate clearance of blood coagulation factor VIII (FVIII) from the circulation. To elucidate the mechanism of interaction of LDLR and FVIII, our objective was to identify the region of the receptor necessary for binding FVIII. Using surface plasmon resonance, we found that LDLR exodomain and its cluster of complement-type repeats (CRs) bind FVIII in the same mode. This indicated that the LDLR site for FVIII is located within the LDLR cluster. Similar results were obtained for another ligand of LDLR, α-2-macroglobulin receptor-associated protein (RAP), a common ligand of receptors from the LDLR family. We further generated a set of recombinant fragments of the LDLR cluster and assessed their structural integrity by binding to RAP and by circular dichroism. A number of fragments overlapping CR.2-5 of the cluster were positive for binding RAP and FVIII. The specificity of these interactions was tested by site-directed mutagenesis of conserved tryptophans within the LDLR fragments. For FVIII, the specificity was also tested using a single-chain variable antibody fragment directed against the FVIII light chain as a competitor. Both cases resulted in decreased binding, thus confirming its specificity. The mutagenic study also showed an importance of the conserved tryptophans in LDLR for both ligands, and the competitive binding results showed an involvement of the light chain of FVIII in its interaction with LDLR. In conclusion, the region of CR.2-5 of LDLR was defined as the binding site for FVIII and RAP.  相似文献   

7.
The low-density lipoprotein (LDL) receptor transports two different classes of cholesterol-carrying lipoprotein particles into cells: LDL particles, which contain a single copy of apolipoprotein B-100 (apoB-100), and beta-migrating very low-density lipoprotein (beta-VLDL) particles, which contain multiple copies of apolipoprotein E (apoE). The ligand-binding domain of the receptor lies at its amino-terminal end within seven adjacent LDL-A repeats (LA1-LA7). Although prior work clearly establishes that LA5 is required for high-affinity binding of particles containing apolipoprotein E (apoE), the number of ligand-binding repeats sufficient to bind apoE ligands has not yet been determined. Similarly, uncertainty exists as to whether a single lipid-activated apoE receptor-binding site within a particle is capable of binding to the LDLR with high affinity or whether more than one is required. Here, we establish that the LA4-5 two-repeat pair is sufficient to bind apoE-containing ligands, on the basis of binding studies performed with a series of LDLR-derived "minireceptors" containing up to four repeats. Using single chain multimers of the apoE receptor-binding domain (N-apoE), we also show that more than one receptor-binding site in its lipid-activated conformation is required to bind to the LDLR with high affinity. Thus, in addition to inducing a conformational change in the structure of N-apoE, lipid association enhances the affinity of apoE for the LDLR in part by creating a multivalent ligand.  相似文献   

8.
The low-density lipoprotein (LDL) receptor (LDLR) binds to and internalizes lipoproteins that contain apolipoproteinB100 (apoB100) or apolipoproteinE (apoE). Internalization of the apoB100 lipoprotein ligand, LDL, requires the FDNPVY(807) sequence on the LDLR cytoplasmic domain, which binds to the endocytic machinery of coated pits. We show here that inactivation of the FDNPVY(807) sequence by mutation of Y807 to cysteine prevented the uptake of LDL; however, this mutation did not prevent LDLR-dependent uptake of the apoE lipoprotein ligand, beta-VLDL. Comparison of the surface localization of the LDLR-Y807C using LDLR-immunogold, LDL-gold and beta-VLDL-gold probes revealed enrichment of LDLR-Y807C-bound beta-VLDL in coated pits, suggesting that beta-VLDL binding promoted the internalization of the LDLR-Y807C. Consistent with this possibility, treatment with monensin, which traps internalized LDLR in endosomes, resulted in the loss of surface LDLR-Y807C only when beta-VLDL was present. Reconstitution experiments in which LDLR variants were introduced into LDLR-deficient cells showed that the HIC(818) sequence is involved in beta-VLDL uptake by the LDLR-Y807C. Together, these experiments demonstrate that the LDLR has a very low-density lipoprotein (VLDL)-induced, FDNPVY-independent internalization mechanism.  相似文献   

9.
We have used adenovirus-mediated gene transfer in mice to investigate low density lipoprotein receptor (LDLR) and LDLR-related protein (LRP)-independent mechanisms that control the metabolism of chylomicron and very low density lipoprotein (VLDL) remnants in vivo. Overexpression of receptor-associated protein (RAP) in mice that lack both LRP and LDLR (MX1cre(+)LRP(flox/flox)LDLR(-/-)) in their livers elicited a marked hypertriglyceridemia in addition to the pre-existing hypercholesterolemia in these animals, resulting in a shift in the distribution of plasma lipids from LDL-sized lipoproteins to large VLDL-sized particles. This dramatic increase in plasma lipids was not due to a RAP-mediated inhibition of a unknown hepatic high affinity binding site involved in lipoprotein metabolism, because no RAP binding could be detected in livers of MX1cre(+)LRP(flox/flox)LDLR(-/-) mice using both membrane binding studies and ligand blotting experiments. Remarkably, RAP overexpression also resulted in a 7-fold increase (from 13.6 to 95.6 ng/ml) of circulating, but largely inactive, lipoprotein lipase (LPL). In contrast, plasma hepatic lipase levels and activity were unaffected. In vitro studies showed that RAP binds to LPL with high affinity (K(d) = 5 nM) but does not affect its catalytic activity, in vitro or in vivo. Our findings suggest that an extrahepatic RAP-sensitive process that is independent of the LDLR or LRP is involved in metabolism of triglyceride-rich lipoproteins. There, RAP may affect the functional maturation of LPL, thus causing the accumulation of triglyceride-rich lipoproteins in the circulation.  相似文献   

10.
The low-density lipoprotein receptor-related protein (LRP) binds a range of proteins including receptor associated protein (RAP), activated alpha2-macroglobulin (alpha2M*), factor IXa (FIXa), and factor VIII (FVIII) light chain. The binding is mediated by the complement-type repeats, which are clustered in four distinct regions within LRP. Cluster II of 8 repeats (CR3-10) and cluster IV of 11 repeats (CR21-31) have been implicated in ligand-binding. Previous studies have aimed to identify the cluster II repeats involved in binding alpha2M* and RAP. We now evaluated the binding to RAP, alpha2M*, FIXa and FVIII light chain of triplicate repeat-fragments of not only clusters II but also of cluster IV. Employing surface plasmon resonance analysis, we found that most efficient ligand-binding was displayed by the repeats within region CR4-8 of cluster II and within region CR24-28 of cluster IV. Whereas the binding to RAP could be attributed to two consecutive repeats (CR5-6, CR26-27), combinations of three repeats showed most efficient binding to FIXa (CR6-8, CR26-28), FVIII light chain (CR5-7, CR6-8, CR24-26), and alpha2M* (CR4-6, CR24-26). The results imply that there is an internal functional duplication of complement-type repeats within LRP resulting in two clusters that bind the same ligands.  相似文献   

11.
We have determined the X-ray crystal structure to 1.8 A resolution of the Ca(2+) complex of complement-like repeat 7 (CR7) from the low-density lipoprotein receptor-related protein (LRP) and characterized its calcium binding properties at pH 7.4 and 5. CR7 occurs in a region of the LRP that binds to the receptor-associated protein, RAP, and other protein ligands in a Ca(2+)-dependent manner. The calcium coordination is identical to that found in LB5 and consists of carboxyls from three conserved aspartates and one conserved glutamate, and the backbone carbonyls of a tryptophan and another aspartate. The overall fold of CR7 is similar to those of CR3 and CR8 from the LRP and LB5 from the LDL receptor, though the low degree of sequence homology of residues not involved in calcium coordination or in disulfide formation results in a distinct pattern of surface residues for each domain, including CR7. The thermodynamic parameters for Ca(2+) binding at both extracellular and endosomal pHs were determined by isothermal titration calorimetry for CR7 and for related complement-like repeats CR3, CR8, and LB5. Although the drop in pH resulted in a reduction in calcium affinity in each case, the changes were very variable in magnitude, being as low as a 2-fold reduction for CR3. This suggests that a pH-dependent change in calcium affinity alone cannot be responsible for the release of bound protein ligands from the LRP at the pH prevailing in the endosome, which in turn requires one or more other pH-dependent effects for regulating protein ligand release.  相似文献   

12.
The LRP (low-density lipoprotein receptor-related protein) can bind a wide range of structurally diverse ligands to regions composed of clusters of ~40 residue Ca2+-dependent, disulfide-rich, CRs (complement-like repeats). Whereas lysine residues from the ligands have been implicated in binding, there has been no quantification of the energetic contributions of such interactions and hence of their relative importance in overall affinity, or of the ability of arginine or histidine residues to bind. We have used four representative CR domains from the principal ligand-binding cluster of LRP to determine the energetics of interaction with well-defined small ligands that include methyl esters of lysine, arginine, histidine and aspartate, as well as N-terminally blocked lysine methyl ester. We found that not only lysine but also arginine and histidine bound well, and when present with an additional proximal positive charge, accounted for about half of the total binding energy of a protein ligand such as PAI-1 (plasminogen activator inhibitor-1). Two such sets of interactions, one to each of two CR domains could thus account for almost all of the necessary binding energy of a real ligand such as PAI-1. For the CR domains, a central aspartate residue in the sequence DxDxD tightens the Kd by ~20-fold, whereas DxDDD is no more effective. Together these findings establish the rules for determining the binding specificity of protein ligands to LRP and to other LDLR (low-density lipoprotein receptor) family members.  相似文献   

13.
Mice deficient in receptor-associated protein (RAP) were phenotypically normal, but in contrast to results previously reported in RAP(-/-) mice, nearly 50% of the offspring died at or shortly after birth. To attempt to determine the reason for this, we analyzed the regulation of expression of genes involved in apolipoprotein E (apoE)-based mechanisms in RAP-deficient mice and compared this to results in mice deficient in low density lipoprotein receptor (LDLR) or apoE. The major finding concerned a large increase in hepatic lipoprotein receptor-related protein (LRP) mRNA and LDLR mRNA levels in pregnant RAP knockout mice. This is in contrast to the down-regulation of LRP mRNA and LDLR mRNA, which is normally seen in wild-type mice. Also in LDLR knockout mice, a significant up-regulation in expression of LRP mRNA was demonstrated. In apoE knockout mice, hepatic LRP mRNA did not change significantly, while hepatic LDLR mRNA expression was increased. In placenta and uterus, the deficiency of RAP did not markedly affect the expression of LRP and LDLR. Lipoprotein lipase mRNA and apoE mRNA increased during pregnancy in all mice, independent of their genetic status. The current study does not directly explain the increased mortality of RAP(-/-) pups. The data demonstrate, however, important relative changes in expression of the genes analyzed, an indication that LRP and LDLR play an important role in lipid metabolism during pregnancy.  相似文献   

14.
The LDL receptor (LDLR) is an endocytic receptor that plays a major role in the clearance of atherogenic lipoproteins from the circulation. During the endocytic process, the LDLR first binds lipoprotein at the cell surface and then traffics to endosomes, where the receptor releases bound lipoprotein. Release is acid-dependent and correlates with the formation of an intramolecular contact within the receptor. Human mutations at residues that form the contact are associated with familial hypercholesterolemia (FH) and the goal of the present study was to determine the role of contact residues on LDLR function. We show that mutations at nine contact residues reduce the ability of the LDLR to support lipoprotein uptake. Unexpectedly, only four of the mutations (W515A, W541A, H562Y and H586Y) impaired acid-dependent lipoprotein release. The remaining mutations decreased the lipoprotein-binding capacity of the LDLR through either reduction in the number of surface receptors (H190Y, K560W, H562Y and K582W) or reduction in the fraction of surface receptors that were competent to bind lipoprotein (W144A and W193A). We also examined three residues, distal to the contact, which were predicted to be necessary for the LDLR to adopt the acidic conformation. Of the three mutations we tested (G293S, F362A and G375S), one mutation (F362A) reduced lipoprotein uptake. Together, these data suggest that the intramolecular interface plays multiple roles in LDLR function.  相似文献   

15.
The low density lipoprotein receptor-related protein (LRP), a member of the low density lipoprotein receptor family, mediates the internalization of a diverse set of ligands. The ligand binding sites are located in different regions of clusters consisting of approximately 40 residues, cysteine-rich complement-type repeats (CRs). The 39-40-kDa receptor-associated protein, a folding chaperone/escort protein required for efficient transport of functional LRP to the cell surface, is an antagonist of all identified ligands. To analyze the multisite inhibition by RAP in ligand binding of LRP, we have used an Escherichia coli expression system to produce fragments of the entire second ligand binding cluster of LRP (CR3-10). By ligand affinity chromatography and surface plasmon resonance analysis, we show that RAP binds to all two-repeat modules except CR910. CR10 differs from other repeats in cluster II by not containing a surface-exposed conserved acidic residue between Cys(IV) and Cys(V). By site-directed mutagenesis and ligand competition analysis, we provide evidence for a crucial importance of this conserved residue for RAP binding. We provide experimental evidence showing that two adjacent complement-type repeats, both containing a conserved acidic residue, represent a minimal unit required for efficient binding to RAP.  相似文献   

16.
The N-terminal domain of human apolipoprotein E (apoE-NT) harbors residues critical for interaction with members of the low-density lipoprotein receptor (LDLR) family. Whereas lipid free apoE-NT adopts a stable four-helix bundle conformation, a lipid binding induced conformational adaptation is required for manifestation of LDLR binding ability. To investigate the structural basis for this conformational change, the short helix connecting helix 1 and 2 in the four-helix bundle was replaced by the sequence NPNG, introducing a beta-turn. Recombinant helix-to-turn (HT) variant apoE3-NT was produced in Escherichia coli, isolated and characterized. Stability studies revealed a denaturation transition midpoint of 1.9 m guanidine hydrochloride for HT apoE3-NT vs. 2.5 M for wild-type apoE3-NT. Wild-type and HT apoE3-NT form dimers in solution via an intermolecular disulfide bond. Native PAGE showed that reconstituted high-density lipoprotein prepared with HT apoE3-NT have a diameter in the range of 9 nm and possess binding activity for the LDLR on cultured human skin fibroblasts. In phospholipid vesicle solubilization assays, HT apoE3-NT was more effective than wild-type apoE3-NT at inducing a time dependent decrease in dimyristoylphosphatidylglycerol vesicle light scattering intensity. In lipoprotein binding assays, HT apoE3-NT protected human low-density lipoprotein from phospholipase C induced aggregation to a greater extent that wild-type apoE3-NT. The results indicate that a mutation at one end of the apoE3-NT four-helix bundle markedly enhances the lipid binding activity of this protein. In the context of lipoprotein associated full-length apoE, increased lipid binding affinity of the N-terminal domain may alter the balance between receptor-active and -inactive conformational states.  相似文献   

17.
We detected linkage in baboons between loci for the third component of complement (C3) and the low-density lipoprotein receptor (LDLR), lod score = 5.53, and loci for apolipoprotein A1 (APOA1) and apolipoprotein AIV (APOA4), lod score = 14.59. We also found evidence for linkage heterogeneity among the baboon pedigrees between LDLR and C3 (P = 0.04) and between APOA1 and APOA4 (P = 0.01).  相似文献   

18.
Ligand binding of the low-density lipoprotein (LDL) receptor family is mediated by complement-type repeats (CR) each comprising a binding pocket for a single basic amino acid residue. It has been proposed that at least two CRs are required for high-affinity interaction by utilising two spatially distinct lysine residues on the ligand surface. LDL receptor-related protein (LRP) mediates the cellular uptake of a multitude of ligands, some of which bind LRP with a relatively low affinity suggesting a suboptimal positioning of the two critical lysines. We now addressed the role of the two critical lysines not only in LRP binding but also in LRP-dependent endocytosis. Variants of the third domain (D3) of receptor-associated protein (RAP) were created carrying lysine to alanine or arginine replacements at the putative contact residues K253, K256 and K270. Surface plasmon resonance revealed that replacement of K253 did not affect high-affinity LRP binding at all, whereas replacement of either K256 or K270 markedly reduced the affinity by approximately 10-fold. Binding was abolished when both lysines were replaced. Substitution by either alanine or arginine exerted an almost identical effect on LRP binding. This suggests that despite their positive charge, arginine residues do not support receptor binding at all. Confocal microscopy and flow cytometry studies surprisingly revealed that the single mutants were still taken up and still competed for the uptake of full length RAP despite their receptor binding defect. We therefore propose that the presence of only one of the two critical lysines is sufficient to drive endocytosis.  相似文献   

19.
The receptor associated protein (RAP) is a three domain 38kDa ER-resident chaperone that helps folding of LRP and other LDL receptor family members and prevents premature binding of protein ligands. It competes strongly with all known LRP ligands. To further understanding of the specificity of RAP-LRP interactions, the binding of RAP and RAP fragments to two domains (CR7-CR8) from one of the main ligand-binding regions of LRP has been examined by 2D HSQC NMR spectroscopy and isothermal titration calorimetry. We found that RAP contains two binding sites for CR7-CR8, with the higher affinity site (K(d) approximately 1microM) located in the C-terminal two-thirds and the weaker site (K(d) approximately 5microM) in the N-terminal third of RAP. Residues from both CR7 and CR8 are involved in binding at each RAP site. The presence of more than one binding site on RAP for CR domains from LRP, together with the previous demonstration by others that RAP can bind to CR5-CR6 with comparably low affinities suggest an explanation for the dual roles of RAP as a folding chaperone and a tight competitive inhibitor of ligand binding.  相似文献   

20.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a novel therapeutic target for the development of cholesterol-lowering drugs. In the discovery of PCSK9/LDLR (low-density lipoprotein receptor) protein-protein interaction (PPI) impairing small molecules, a total of 47 phenylbenzo[d][1,3] dioxole-based compounds were designed and synthesised. The result revealed that the 4-chlorobenzyl substitution in the amino group is important for the PPI disrupting activity. In the hepatocyte-based functional tests, active compounds such as A12, B1, B3, B4 and B14, restored the LDLR levels on the surface of hepatic HepG2 cells and increased extracellular LDL uptake in the presence of PCSK9. It is notable that molecule B14 exhibited good performance in all the evaluations. Collectively, novel structures targeting PCSK9/LDLR PPI have been developed with hypolipidemic potential. Further structural modification of derived active compounds is promising in the discovery of lead compounds with improved activity for the treatment of hyperlipidaemia-related disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号