首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We investigated the structure, organization, and developmental regulation of soybean Kunitz trypsin inhibitor genes. The Kunitz trypsin inhibitor gene family contains at least 10 members, many of which are closely linked in tandem pairs. Three Kunitz trypsin inhibitor genes, designated as KTi1, KTi2, and KTi3, do not contain intervening sequences, and are expressed during embryogenesis and in the mature plant. The KTi1 and KTi2 genes have nearly identical nucleotide sequences, are expressed at different levels during embryogenesis, are represented in leaf, root, and stem mRNAs, and probably do not encode proteins with trypsin inhibitor activity. By contrast, the KTi3 gene has diverged 20% from the KTi1 and KTi2 genes, and encodes the prominent Kunitz trypsin inhibitor found in soybean seeds. The KTi3 gene has the highest expression level during embryogenesis, and is also represented in leaf mRNA. All three Kunitz trypsin inhibitor genes are regulated correctly in transformed tobacco plants. Our results suggest that Kunitz trypsin inhibitor genes contain different combinations of cis-control elements that program distinct qualitative and quantitative expression patterns during the soybean life cycle.  相似文献   

2.
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a Kunitz-type serine protease inhibitor identified as a strong inhibitor of hepatocyte growth factor (HGF) activator and matriptase. HAI-1 is first produced in a membrane-integrated form with two Kunitz domains in its extracellular region, and subsequent ectodomain shedding releases two major secreted forms, one with a single Kunitz domain and one with two Kunitz domains. To determine the roles of the Kunitz domains in the inhibitory activity of HAI-1 against serine proteases, we constructed various HAI-1 mutant proteins and examined their inhibitory activity against HGF activator and trypsin. The N-terminal Kunitz domain (Kunitz I) had potent inhibitory activity against both HGF activator and trypsin, whereas the C-terminal Kunitz domain (Kunitz II) had only very weak inhibitory activity against HGF activator, although its potency against trypsin was equivalent to that of Kunitz I. These results indicate that Kunitz I is the functional domain of HAI-1 for inhibiting the HGF-converting activity of HGF activator. Furthermore, the presence of two Kunitz domains affected the inhibitory activity of HAI-1 against HGF activator, and it showed a similar, but not additive, level of inhibitory activity against trypsin when compared with that of the individual Kunitz domains. These results suggest that serine protease binding sites of Kunitz I and Kunitz II are located close to each other and that proteolytic processing to generate HAI-1 with only one Kunitz domain regulates the activity of HAI-1.  相似文献   

3.
本文介绍了珠状交联琼脂糖及以此作为载体,经氯代环氧丙烷活化后与蛋白酶(胰蛋白酶或糜蛋白酶)结合,制成固定化蛋白酶亲和吸附剂,进而用以亲和层析牛肺提取液中的Kunitz抑制剂的方法。纯化出的抑制剂在SDS-聚丙烯酰胺凝胶电泳上呈现单一条带,与参照物Trasytol(商品Kunitz抑制剂)具有相对应的电泳迁移率,其分子量也相符。纯化产品每毫克蛋白的抑制活力相当于16 000胰蛋白酶BAEE单位。纯化效果为90倍,收率约85%。  相似文献   

4.
W E Brown  C A Ryan 《Biochemistry》1984,23(15):3418-3422
A trypsin inhibitor from leaves of field-grown alfalfa plants has been purified and shown to be the same trypsin inhibitor that is wound induced in leaves of young growth chamber grown plants. This inhibitor accounts for the major trypsin inhibitory activity found in both field-grown and wound-induced plants. The inhibitor exhibits a molecular weight of about 7500 and is specific for trypsin with a Ki of 1 X 10(-10) M. Analysis of the purified inhibitor by cation-exchange high-performance liquid chromatography revealed the presence of four isoinhibitor species that have identical immunological and inhibitory properties. The amino acid analysis of the four species indicates small but significant differences. Immunological double diffusion comparisons of the alfalfa inhibitor with the Bowman-Birk and Kunitz soybean inhibitors did not reveal any cross-reactivity although the amino acid content of the alfalfa inhibitor resembles those of Bowman-Birk family members.  相似文献   

5.
We used in situ hybridization to investigate Kunitz trypsin inhibitor gene expression programs at the cell level in soybean embryos and in transformed tobacco seeds. The major Kunitz trypsin inhibitor mRNA, designated as KTi3, is first detectable in a specific globular stage embryo region, and then becomes localized within the axis of heart, cotyledon, and maturation stage embryos. By contrast, a related Kunitz trypsin inhibitor mRNA class, designated as KTi1/2, is not detectable during early embryogenesis. Nor is the KTi1/2 mRNA detectable in the axis at later developmental stages. Outer perimeter cells of each cotyledon accumulate both KTi1/2 and KTi3 mRNAs early in maturation. These mRNAs accumulate progressively from the outside to inside of each cotyledon in a "wave-like" pattern as embryogenesis proceeds. A similar KTi3 mRNA localization pattern is observed in soybean somatic embryos and in transformed tobacco seeds. An unrelated mRNA, encoding [beta]-conglycinin storage protein, also accumulates in a wave-like pattern during soybean embryogenesis. Our results indicate that cell-specific differences in seed protein gene expression programs are established early in development, and that seed protein mRNAs accumulate in a precise cellular pattern during seed maturation. We also show that seed protein gene expression patterns are conserved at the cell level in embryos of distantly related plants, and that these patterns are established in the absence of non-embryonic tissues.  相似文献   

6.
Normally trypsin has negligible activity after being dissolved in sodium dodecyl sulfate (SDS), and so it has had little utility for proteolytic fingerprinting during gel electrophoresis. Here it is demonstrated that trypsin retained activity in SDS if it was first complexed to either of two soybean-derived protease inhibitors: trypsin inhibitor (Kunitz) or trypsin-chymotrypsin inhibitor (Bowman-Birk). The inhibitors alone did not cause proteolysis. Heating or acidification in SDS inactivated the inhibitor-dependent tryptic activity, as did prior treatment with tosyl lysine chloromethyl ketone, a covalent affinity reagent for trypsin. Quenching of samples with acid at intervals prior to gel electrophoresis revealed that proteolysis did not occur in sample buffer (pH 6.8), but only at higher pH and during gel electrophoresis. Exposure of trypsin to SDS prior to addition of trypsin inhibitor resulted in an irreversible loss of activity with a half-life of about 10 s. It is proposed that the trypsin inhibitors stabilize trypsin by retarding its denaturation in SDS. The substrate for these experiments was the alpha subunit of the Na,K-ATPase. The same pattern of Na,K-ATPase fragments was obtained with bovine and porcine trypsin and with rat and porcine Na,K-ATPases. Different fragments resulted when chymotrypsin or elastase were substituted for trypsin; these proteases were active in the absence of an inhibitor, and were not markedly stabilized by interaction with soybean trypsin-chymotrypsin inhibitor (Bowman-Birk).  相似文献   

7.
Digestive endoprotease activities of the coconut palm weevil, Homalinotus coriaceus (Coleoptera: Curculionidae), were characterized based on the ability of gut extracts to hydrolyze specific synthetic substrates, optimal pH, and hydrolysis sensitivity to protease inhibitors. Trypsin-like proteinases were major enzymes for H. coriaceus, with minor activity by chymotrypsin proteinases. More importantly, gut proteinases of H. coriaceus were inhibited by trypsin inhibitor from Inga laurina seeds. In addition, a serine proteinase inhibitor from I. laurina seeds demonstrated significant reduction of growth of H. coriaceus larvae after feeding on inhibitor incorporated artificial diets. Dietary utilization experiments show that 0.05% I. laurina trypsin inhibitor, incorporated into an artificial diet, decreases the consumption rate and fecal production of H. coriaceus larvae. Dietary utilization experiments show that 0.05% I. laurina trypsin inhibitor, incorporated into an artificial diet, decreases the consumption rate and fecal production of H. coriaceus larvae. We have constructed a three-dimensional model of the trypsin inhibitor complexed with trypsin. The model was built based on its comparative homology with soybean trypsin inhibitor. Trypsin inhibitor of I. laurina shows structural features characteristic of the Kunitz type trypsin inhibitor. In summary, these findings contribute to the development of biotechnological tools such as transgenic plants with enhanced resistance to insect pests.  相似文献   

8.
The trypsin inhibitor SOTI was isolated from Spinacia oleracea L. seeds through ammonium sulfate precipitation, Sepharose 4B-trypsin affinity chromatography, and Sephadex G-75 chromatography. This typical Kunitz inhibitor showed remarkable stability to heat, pH, and denaturant. It retained 80% of its activity against trypsin after boiling for 20 min, and more than 90% activity when treated with 6 M guanidine hydrochloride. The formation of stable SOTI-trypsin complex (K i = 2.3·10−6 M) is consistent with significant inhibitory activity of SOTI against trypsin-like proteinases present in the larval midgut of Pieris rapae. Sequences of SOTI fragments showed homology with other inhibitors. Published in Russian in Biokhimiya, 2009, Vol. 74, No. 1, pp. 131–140.  相似文献   

9.
The primary sequence of trypsin inhibitor-2 (WBTI-2) fromPsophocarpus tetragonolobus (L.) DC seeds was determined. This inhibitor consists of a single polypeptide chain of 182 amino acids, including four half-cystine residues, and an N-terminal residue of pyroglutamic acid. The sequence of WBTI-2 showed 57% identity to the basic trypsin inhibitor (WBTI-3) and 50% identity to the chymotrypsin inhibitor (WBCI) of winged bean, and 54% identity to the trypsin inhibitor DE-3 fromErythrina latissima seed. The similarity to the soybean Kunitz trypsin inhibitor (40%) and the other Kunitz-type inhibitors fromAdenanthera pavonina (30%) and wheat (26%) was much lower. Sequence comparisons indicate that thePsophocarpus andErythrina inhibitors are more closely related to each other than to other members of the Kunitz inhibitor family.  相似文献   

10.
D Kowalski  M Laskowski 《Biochemistry》1976,15(6):1300-1309
All the reactive amino groups in soybean trypsin inhibitor (Kunitz) were protected by guanidination of 9 out of 10 lysyl residues with O-methylisourea and by carbamoylation of the NH2 terminal Asp with potassium cyanate. This derivative was converted to modified inhibitor (Arg63-Ile64 reactive site peptide bond hydrolyzed) by incubation with trypsin at pH 3. The NH2 terminal of Ile64 was allowed to react with phenyl isothiocyanate to produce inactive phenylthiocarbamoyl-modified inhibitor. Treatment with trifluoroacetic acid formed the anilinothiazolinone of Ile64 yielding des-Ile64-modified inhibitor. After renaturation and purification, this material coelectrophoresed with modified inhibitor but did not form a stable complex with trypsin. Incubation with tert-butyloxycarbonyl-(amino acid)-N-hydroxysuccinimide esters yielded [tert-butyloxycarbonyl-(amino acid64)]-modified inhibitor. The tert-butyloxycarbonyl protective group was removed in trifluoroacetic acid. After renaturation, active [amino acid64]-modified inhibitors were obtained for Ile64, Ala64, Leu64, and Gly64 replacements. The resynthesis of the reactive-site peptide bound by kinetic control dissociation of the trypsin-inhibitor complex yielded fully active [Ala64]-virgin inhibitor. Thus, soybean trypsin inhibitor (Kunitz) has been shown to tolerate the replacement of the P1' residue with retention of activity. The importance of P1' residues in the function of protein proteinase inhibitors is discussed.  相似文献   

11.
Earlier, the purification of a 21.4 kDa protein with trypsin inhibitory activity from seeds of Murraya koenigii has been reported. The present study, based on the amino acid sequence deduced from both cDNA and genomic DNA, establishes it to be a miraculin-like protein and provides crystal structure at 2.9 Å resolution. The mature protein consists of 190 amino acid residues with seven cysteines arranged in three disulfide bridges. The amino acid sequence showed maximum homology and formed a distinct cluster with miraculin-like proteins, a soybean Kunitz super family member, in phylogenetic analyses. The major differences in sequence were observed at primary and secondary specificity sites in the reactive loop when compared to classical Kunitz family members. The crystal structure analysis showed that the protein is made of twelve antiparallel β-strands, loops connecting β-strands and two short helices. Despite similar overall fold, it showed significant differences from classical Kunitz trypsin inhibitors.  相似文献   

12.
Nine proteinase inhibitors, I-VIIa, VIIb, and VIII, were isolated from wild soja seeds by ammonium sulfate fractionation and successive chromatographies on SP-Toyopearl 650M, Sephacryl S-200SF, and DEAE-Toyopearl 650S columns. Reverse-phase HPLC finally gave pure inhibitors. All of the inhibitors inhibited trypsin with dissociation constants of 3.2-6.2 x 10(-9) M. Some of the inhibitors inhibited chymotrypsin and elastase as well. Two inhibitors (VIIb and VIII) with a molecular weight of 20,000 were classified as a soybean Kunitz inhibitor family. Others (I-VIla) had a molecular weight of about 8,000, and were stable to heat and extreme pH, suggesting that these belonged to the Bowman-Birk inhibitor family. Partial amino acid sequences of four inhibitors were also analyzed. The complete sequence of inhibitor IV was ascertained from the nucleotide sequences of cDNA clones encoding isoinhibitors homologous to soybean C-II.  相似文献   

13.
H Hirano  H Kagawa  K Okubo 《Phytochemistry》1992,31(3):731-735
When immersed in water at 50-60 degrees, mature soybean seeds release a large amount of protein. The major protein released was basic 7S globulin (Bg), which is present in the cotyledons of soybean seeds. The released Bg consisted of the 27,000 and 16,000 subunits which were linked by disulphide bonding and glycosylated. The released Bg exhibited an identical structure with the mature Bg which was synthesized in the normal developing seeds. Proteins like Bg were also found to be released into hot water from the seeds of legume species such as azuki-bean, cowpea, mung-bean and winged-bean. Besides Bg and Bg-like proteins, a few proteins including the 9,000 hydrophobic protein in soybean, ubiquitin in cowpea and mung-bean, and Kunitz trypsin inhibitor in winged-bean, were released from the seeds in hot water.  相似文献   

14.
The trypsin inhibitor (WTI-1) purified from winged bean seeds is a Kunitz type protease inhibitor having a molecular weight of 19,200. WTI-1 inhibits bovine trypsin stoichiometrically, but not bovine alpha-chymotrypsin. The approximate Ki value for the trypsin-inhibitor complex is 2.5 X 10(-9) M. The complete amino acid sequence of WTI-1 was determined by conventional methods. Comparison of the sequence with that of soybean trypsin inhibitor (STI) indicated that the sequence of WTI-1 had 50% homology with that of STI. WTI-1 was separated into 2 homologous inhibitors, WTI-1A and WTI-1B, by isoelectric focusing. The isoelectric points of WTI-1A and WTI-1B were 8.5 and 9.4, respectively, and their sequences were presumed from their amino acid compositions.  相似文献   

15.
A trypsin inhibitor (ACTI) was isolated and purified from the seeds of Acacia confusa by gel filtration, and trypsin-Sepharose 4B column affinity chromatography. The molecular weight of ACTI was found to be 21,000 +/- 1,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and amino acid composition analysis. ACTI contained four half-cystine and no methionine residues, and was rich in aspartic acid, glutamic acid, glycine, leucine, and lysine residues. The native trypsin inhibitor was composed of two polypeptide chains, and it inhibited trypsin and alpha-chymotrypsin stoichiometrically at the molar ratio of 1:1 and 2:1, respectively. The amino-terminal sequence analysis of the A. confusa trypsin inhibitor A and B chains revealed a more extensive homology with Acacia elata and silk tree trypsin inhibitors, and a less extensive homology with Kunitz soybean trypsin inhibitor.  相似文献   

16.
Purification and some properties of bovine liver cytosol thioltransferase   总被引:1,自引:0,他引:1  
A cytosol thioltransferase was purified 37,000-fold from bovine liver by essentially the same procedure as reported for rat liver enzyme by Axelsson et al. [1978) Biochemistry 17, 2978-2984). The purified enzyme appears to be homogeneous on sodium dodecyl sulfate (SDS)-gel electrophoresis and has a molecular weight (Mr) of 11,000, an isoelectric point (pI) of 8.1, and an optimum pH with S-sulfocysteine and GSH as substrates of 8.5. It is specific for disulfides including L-cystine, S-sulfocysteine, ribonuclease A, trypsin, soybean kunitz trypsin inhibitor, soybean Bowman Birk trypsin inhibitor and insulin, and converts Bowman Birk trypsin inhibitor to an inactive form. The enzyme does not act as a protein : disulfide isomerase, as measured by reactivation of "scramble" ribonuclease and Kunitz soybean trypsin inhibitor. Thioltransferase activity was found in cytosol of various bovine tissues.  相似文献   

17.
The kallikrein inhibitor found in Bauhinia bauhinioides seeds (BbKI) differs from classical Kunitz plant inhibitors in the lack of disulfide bridges in its structure [Biochim. Biophys. Acta 1477 (2000) 64-74]. In this study, we examined whether structural properties may be involved in inhibitory specificity and, if so, whether those properties might be useful tools in designing compounds that interfere with enzyme activity. Peptides structurally related to the BbKI (RPGLPVRFESPLRINIIKE-NH(2)) reactive site were synthesized by solid-phase method and assayed for serine proteinase activity. The peptides RPGLPVRFESPLRINIIKE-NH(2), RPGLPVRFESPL-NH(2), and GLPVRFES-NH(2) were efficient tissue kallikrein inhibitors, with I(50) values of 0.54 microM, 0.87 microM, and 0.5mM, respectively. The lasting inhibitory effect was observed in incubation periods of up to 120 min. None of the studied peptides interfere with the activity of thrombin, factor Xa or trypsin, although the native protein BbKI is a potent trypsin inhibitor.  相似文献   

18.
Two proteinase inhibitors, DE-1 and DE-3, were purified from Erythrina latissima seeds. Whereas DE-1 inhibits bovine chymotrypsin and not bovine trypsin, DE-3 inhibits trypsin but not chymotrypsin. The molecular weights and the amino acid compositions of the two inhibitors resemble the corresponding properties of the Kunitz-type proteinase inhibitors. The N-terminal primary structure of DE-3 showed homology with soybean trypsin inhibitor (Kunitz) and also with the proteinase inhibitors (A-II and B-II) from Albizzia julibrissin seed.  相似文献   

19.
Trypsin inhibitor was purified to homogeneity from seeds of the mung bean (Vigna radiata [L.] Wilczek). The protease inhibitor has the following properties: inhibitory activity toward trypsin, but not toward chymotrypsin; isoelectric point at pH 5.05; molecular weight of 11,000 to 12,000 (sodium dodecyl sulfate gel electrophoresis) or 14,000 (gel filtration); immunological cross-reactivity against extracts of black gram and black-eyed pea, but not against soybean; no inhibitory activity against vicilin peptidohydrolase, the principal endopeptidase in the cotyledons of mung bean seedlings.

The trypsin inhibitor content of the cotyledons declines in the course of seedling growth and the presence of an inactivating factor can be demonstrated by incubating crude extracts in the presence of β-mercaptoethanol. This inactivating factor may be a protease as vicilin peptidohydrolase rapidly inactivates the trypsin inhibitor. Removal of trypsin inhibitory activity from crude extracts by means of a trypsin affinity column does not result in an enhancement of protease activity in the extracts.

The intracellular localization of trypsin inhibitor was determined by fractionation of crude extracts on isopycnic sucrose gradients and by cytochemistry with fluorescent antibodies. Both methods indicate that trypsin inhibitor is associated with the cytoplasm and not with the protein bodies where reserve protein hydrolysis occurs. No convincing evidence was obtained which indicates that the catabolism of trypsin inhibitor during germination and seedling growth is causally related to the onset of reserve protein breakdown.

  相似文献   

20.
A mutant Bowman-Birk gene was created that encoded an inactive high-sulfur product. It was used to transform soybean line Asgrow 3237. Transformants bearing the mutant gene were identified by GUS expression, PCR analysis, and Southern analysis. The amount of steady state mRNA from the mutant gene in the transformed plants showed that the gene was highly expressed, but the amount of message from the unmodified Bowman-Birk gene did not change detectably. Proteins synthesized at the direction of the mutant Bowman-Birk gene accumulated in seeds of the transformed plants, and there was a marked decrease in the ability of extracts prepared from these seeds to inhibit trypsin and chymotrypsin despite the presence of Kunitz trypsin inhibitor. The more prevalent mRNA from the mutant gene was considered to out-compete message from the native genes to decrease the amount of active Bowman-Birk inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号