首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The focus of this study was to determine which chemokine receptors are present on oral fibroblasts and whether these receptors influence proliferation, migration, and/or the release of wound healing mediators. This information may provide insight into the superior wound healing characteristics of the oral mucosa. The gingiva fibroblasts expressed 12 different chemokine receptors (CCR3, CCR4, CCR6, CCR9, CCR10, CXCR1, CXCR2, CXCR4, CXCR5, CXCR7, CX3CR1, and XCR1), as analyzed by flow cytometry. Fourteen corresponding chemokines (CCL5, CCL15, CCL20, CCL22, CCL25, CCL27, CCL28, CXCL1, CXCL8, CXCL11, CXCL12, CXCL13, CX3CL1, and XCL1) were used to study the activation of these receptors on gingiva fibroblasts. Twelve of these fourteen chemokines stimulated gingiva fibroblast migration (all except for CXCL8 and CXCL12). Five of the chemokines stimulated proliferation (CCL5/CCR3, CCL15/CCR3, CCL22/CCR4, CCL28/CCR3/CCR10, and XCL1/XCR1). Furthermore, CCL28/CCR3/CCR10 and CCL22/CCR4 stimulation increased IL‐6 secretion and CCL28/CCR3/CCR10 together with CCL27/CCR10 upregulated HGF secretion. Moreover, TIMP‐1 secretion was reduced by CCL15/CCR3. In conclusion, this in‐vitro study identifies chemokine receptor‐ligand pairs which may be used in future targeted wound healing strategies. In particular, we identified the chemokine receptors CCR3 and CCR4, and the mucosa specific chemokine CCL28, as having an predominant role in oral wound healing by increasing human gingiva fibroblast proliferation, migration, and the secretion of IL‐6 and HGF and reducing the secretion of TIMP‐1.  相似文献   

2.
3.
Chemokine receptors play a major role in immune system regulation and have consequently been targets for drug development leading to the discovery of several small molecule antagonists. Given the large size and predominantly extracellular receptor interaction of endogenous chemokines, small molecules often act more deeply in an allosteric mode. However, opposed to the well described molecular interaction of allosteric modulators in class C 7-transmembrane helix (7TM) receptors, the interaction in class A, to which the chemokine receptors belong, is more sparsely described. Using the CCR5 chemokine receptor as a model system, we studied the molecular interaction and conformational interchange required for proper action of various orthosteric chemokines and allosteric small molecules, including the well known CCR5 antagonists TAK-779, SCH-C, and aplaviroc, and four novel CCR5 ago-allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5 chemokines (CCL3 and CCL5), with CCR2-like high affinities and potencies throughout the CCR5 signaling unit. Concomitantly, high affinity binding of small molecule CCR5 agonists and antagonists was retained in the transmembrane region. Importantly, whereas the agonistic and antagonistic properties were preserved, the allosteric enhancement of chemokine binding was disrupted. In summary, the Trojan horse chimera revealed that orthosteric and allosteric sites could be structurally separated and still act together with transmission of agonism and antagonism across the different receptor units.  相似文献   

4.
Chemokines play a key role in leukocyte recruitment during inflammation and are implicated in the pathogenesis of a number of autoimmune diseases. As such, inhibiting chemokine signaling has been of keen interest for the development of therapeutic agents. This endeavor, however, has been hampered due to complexities in the chemokine system. Many chemokines have been shown to signal through multiple receptors and, conversely, most chemokine receptors bind to more than one chemokine. One approach to overcoming this complexity is to develop a single therapeutic agent that binds and inactivates multiple chemokines, similar to an immune evasion strategy utilized by a number of viruses. Here, we describe the development and characterization of a novel therapeutic antibody that targets a subset of human CC chemokines, specifically CCL3, CCL4, and CCL5, involved in chronic inflammatory diseases. Using a sequential immunization approach, followed by humanization and phage display affinity maturation, a therapeutic antibody was developed that displays high binding affinity towards the three targeted chemokines. In vitro, this antibody potently inhibits chemotaxis and chemokine-mediated signaling through CCR1 and CCR5, primary chemokine receptors for the targeted chemokines. Furthermore, we have demonstrated in vivo efficacy of the antibody in a SCID-hu mouse model of skin leukocyte migration, thus confirming its potential as a novel therapeutic chemokine antagonist. We anticipate that this antibody will have broad therapeutic utility in the treatment of a number of autoimmune diseases due to its ability to simultaneously neutralize multiple chemokines implicated in disease pathogenesis.  相似文献   

5.
The identification of chemokine receptors as HIV-1 coreceptors has focused research on developing strategies to prevent HIV-1 infection. We generated CCR2-01, a CCR2 receptor-specific monoclonal antibody that neither competes with the chemokine CCL2 for binding nor triggers signaling, but nonetheless blocks replication of monotropic (R5) and T-tropic (X4) HIV-1 strains. This effect is explained by the ability of CCR2-01 to induce oligomerization of CCR2 with the CCR5 or CXCR4 viral coreceptors. HIV-1 infection through CCR5 and CXCR4 receptors can thus be prevented in the absence of steric hindrance or receptor downregulation by acting in trans on a receptor that is rarely used by the virus to infect cells.  相似文献   

6.
Feuser K  Thon KP  Bischoff SC  Lorentz A 《Cytokine》2012,58(2):178-185
Mast cells are key effector cells of immediate type allergic reactions. Upon activation they release a broad array of pre-stored and de novo synthesized mediators including immunoregulatory cytokines and chemokines. Here, we analyzed the chemokine profile expressed by mature human mast cells. Human mast cells were isolated from intestinal tissue and cultured with stem cell factor (SCF) in the presence or absence of IL-4 for 10d. Cells were stimulated by cross-linking of the high affinity IgE receptor (FcεRI) and/or by SCF. Chemokine and chemokine receptor mRNA expression was determined by real-time RT-PCR and chemokine release was measured by multiplex bead immunoassay. Out of 43 chemokines and 19 chemokine receptors human intestinal mast cells express 27 chemokines and nine chemokine receptors. Twelve chemokines (CCL1, CCL2, CCL3, CCL4, CCL5, CCL7, CCL18, CCL20, CXCL2, CXCL3, CXCL8, and XCL1) were more than four-fold up-regulated in response to FcεRI cross-linking. Combination of pre-culture with IL-4 and/or stimulation with SCF in addition to FcεRI cross-linking further increased the antigen-dependent expression of mRNA for most chemokines. In contrast, the expression of CCL20, CXCL2, and CXCL3 was strongly inhibited by IL-4 treatment. In conclusion, human intestinal mast cells express a broad spectrum of different chemokines underlining their important role as immunoregulatory cells. Furthermore, combined treatment with IL-4 and SCF increases the antigen-mediated expression and release of multiple chemokines, but IL-4 priming inhibits the expression of CCL20, CXCL2, and CXCL3.  相似文献   

7.
The chemokine-like, secreted protein product of the U83 gene from human herpesvirus 6, here named vCCL4, was chemically synthesized to be characterized in a complete library of the 18 known human chemokine receptors expressed individually in stably transfected cell lines. vCCL4 was found to cause calcium mobilization as efficiently as the endogenous chemokine ligand CCL2 through the CCR2 receptor, whereas the virally encoded chemokine did not affect any of the other 17 human chemokine receptors tested. Mutual cross-desensitization between CCL2 and vCCL4 was demonstrated in the CCR2-transfected cells. The affinity of vCCL4 for the CCR2 receptor was 79 nm as determined in competition binding against radioactively labeled CCL2. In the murine pre-B lymphocyte cell line L1.2 stably transfected with the CCR2 receptor, vCCL4 acted as a relatively low potency but highly efficacious chemoattractant being equally or more efficacious in causing cell migration than CCL2 and CCL7 and considerably more efficacious than CCL8 and CCL13. It is concluded that human herpesvirus 6 encodes a highly selective and efficacious CCR2 agonist, which will attract CCR2 expressing cells, for example macrophages and monocytes, conceivably for the virus to infect and to establish latency in. It is suggested that vCCL4 during reactivation of the virus in for example monocyte-derived microglia could perhaps be involved in the pathogenesis of the CCR2-dependent disease, multiple sclerosis.  相似文献   

8.
《Cytokine》2007,37(5-6):237-244
Airway epithelial inflammation associated with emphysema, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and asthma is regulated in part by alveolar type II cell chemokine signaling. Data suggest that resident lung cells use CCR3, CCR5 and CCR2 chemokine receptor/ligand systems to regulate the profile of leukocytes recruited in disease-associated inflammatory conditions. Thus studies were designed to test whether alveolar type II cells possess a Th1-activated CCR5-ligand system that modulates the Th2-activated CCR3/eotaxin-2 (CCL24), eotaxin-3 (CCL26) chemokine systems. The A549 alveolar type II epithelial-like cell culture model was used to demonstrate that alveolar type II cells constitutively express CCR5 which may be upregulated by MIP-1α (CCL3) whose expression was induced by the Th1 cytokines IL-1β and IFN-γ. Selective down-regulation of CCL26, but not CCL24, was observed in CCL3 and IL-4/CCL3 stimulated cells. Down-regulation was reversed by anti-CCR5 neutralizing antibody treatment. Thus, one mechanism through which Th1-activated CCCR5/ligand pathways modulate Th2-activated CCR3/ligand pathways is the differential down-regulation of CCL26 expression. Results suggest that the CCR3 and CCR5 receptor/ligand signaling pathways may be important targets for development of novel mechanism-based adjunctive therapies designed to abrogate the chronic inflammation associated with airway diseases.  相似文献   

9.
Abonyo BO  Lebby KD  Tonry JH  Ahmad M  Heiman AS 《Cytokine》2006,36(5-6):237-244
Airway epithelial inflammation associated with emphysema, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and asthma is regulated in part by alveolar type II cell chemokine signaling. Data suggest that resident lung cells use CCR3, CCR5 and CCR2 chemokine receptor/ligand systems to regulate the profile of leukocytes recruited in disease-associated inflammatory conditions. Thus studies were designed to test whether alveolar type II cells possess a Th1-activated CCR5-ligand system that modulates the Th2-activated CCR3/eotaxin-2 (CCL24), eotaxin-3 (CCL26) chemokine systems. The A549 alveolar type II epithelial-like cell culture model was used to demonstrate that alveolar type II cells constitutively express CCR5 which may be upregulated by MIP-1alpha (CCL3) whose expression was induced by the Th1 cytokines IL-1beta and IFN-gamma. Selective down-regulation of CCL26, but not CCL24, was observed in CCL3 and IL-4/CCL3 stimulated cells. Down-regulation was reversed by anti-CCR5 neutralizing antibody treatment. Thus, one mechanism through which Th1-activated CCCR5/ligand pathways modulate Th2-activated CCR3/ligand pathways is the differential down-regulation of CCL26 expression. Results suggest that the CCR3 and CCR5 receptor/ligand signaling pathways may be important targets for development of novel mechanism-based adjunctive therapies designed to abrogate the chronic inflammation associated with airway diseases.  相似文献   

10.
Eighteen new genes, adenosine A1 receptor (ADORA1), complement component 4-beta (C4b), complement component 8-beta (C8b), chemokine ligand 19 (CCL19), chemokine ligand 21 (CCL21), chemokine ligand 25 (CCL25), chemokine receptor 2 (CCR2), chemokine receptor 5 (CCR5), chemokine receptor 4 (CCR4), chemokine receptor 7 (CCR7), chemokine receptor 9 (CCR9), interleukin 1-beta (IL1B), integrin II-beta (ITGB2), novel immune type receptor 2 (NITR2), novel immune type receptor 4 (NITR4), natural killer cell lysin (NKLYSIN), nucleotide excision repair (RAD23B) and tumour necrosis factor-alpha (TNF), were assigned to the channel catfish (Ictalurus punctatus) genetic linkage map. Polymorphic microsatellite markers were developed for NITR2, NITR4 and RAD23B from short-tandem repeats in the available sequence. Polymorphic microsatellite markers were developed for the remaining 15 genes by short-tandem repeat-anchored primer sequencing of catfish bacterial artificial chromosomes. Two gene clusters (MYOG-NRAMP-ADORA1) and (CCR4-CCR2-CCR5) displayed conservation of synteny between catfish and mammals. Assignment of 18 new genes to the catfish linkage map will further advance integration of genetic and physical maps and comparative mapping between channel catfish and map rich species.  相似文献   

11.
ACKR4 also called CCX-CKR, CCRL1 as a member of atypical chemokine receptors, regulates the biological responses by clearance or transporting homeostatic chemokines such as CCL19, CCL21, CCL25, and CXCL13. Since these chemokines are involved in cancer development and metastasis, ACKR4 could have inhibition roles in cancer cell proliferation and invasion. Forming complexes with chemokine receptors by ACKR4 as in the case of hCXCR3 which lead to chemotaxis prevention is the other function of this protein is. However, as an atypical chemokine receptor, ACKR4 is less well-characterized compared to other members. Here, as the first step in understanding the molecular mechanisms of ACKR4 action, transfectants in HEK293T cell, was generated. In this study, ACKR4 coding sequence was cloned and human embryonic kidney 293T cells were used for recombinant production of ACKR4 protein. The liposome-mediated transfection with ACKR4 CDs, were detected in ACKR4 positive cells as early as 48 h post-transfection. The production of ACKR4 protein was confirmed using RT-PCR, dot blot, western blot, and flow cytometry. ACKR4 may represent a novel molecular target in cancer therapy, which might provide a chance for new therapeutic strategy. Therefore, the first step in the understanding of the molecular mechanisms of ACKR4 action is generation ACKR4-HEK293T recombinant cells.  相似文献   

12.
Sanglifehrin A (SFA) is a cyclophilin-binding immunosuppressant but the immunobiology of action is poorly understood. We and others have reported that SFA inhibits IL-12 production and antigen uptake in dendritic cells (DC) and exhibits lower activity against lymphocytes. Here we show that SFA suppresses DC chemokine production and migration. Gene expression analysis and subsequent protein level confirmation revealed that SFA suppressed CCL5, CCL17, CCL19, CXCL9 and CXCL10 expression in human monocyte-derived DC (moDC). A systems biology analysis, Onto Express, confirmed that SFA interferes with chemokine-chemokine receptor gene expression with the highest impact. Direct comparison with the related agent cyclosporine A (CsA) and dexamethasone indicated that SFA uniquely suppresses moDC chemokine expression. Competitive experiments with a 100-fold molar excess of CsA and with N-Methyl-Val-4-cyclosporin, representing a nonimmunosuppressive derivative of CsA indicated chemokine suppression through a cyclophilin-A independent pathway. Functional assays confirmed reduced migration of CD4+ Tcells and moDCs to supernatant of SFA-exposed moDCs. Vice versa, SFA-exposed moDC exhibited reduced migration against CCL19. Moreover, SFA suppressed expression of the ectoenzyme CD38 that was reported to regulate DC migration and cytokine production. These results identify SFA as a DC chemokine and migration inhibitor and provide novel insight into the immunobiology of SFA.  相似文献   

13.
14.
CC chemokine ligand (CCL)17 and CCL27 produced by epidermal keratinocytes (KCs) recruit CC chemokine receptor (CCR)4 and CCR10 expressing T cells into the skin, respectively, resulting in enhanced skin inflammation. However, CCR4/CCL17 and CCR10/CCL27 interactions in epidermal KCs have not been investigated. The purpose of this study was to evaluate the role of the CCR4/CCL17 and CCR10/CCL27 loops in cutaneous immune reaction. Normal human KCs (NHKs) and HaCaT KCs expressed both CCR4 and CCR10 at mRNA and protein levels. CCR4 ligand CCL17 but not CCR10 ligand CCL27 induced production of IL-12 p40, granulocyte/monocyte colony-stimulating factor (GM-CSF) and nerve growth factor (NGF) by KCs. Both CCL17 and CCL27 induced migration of KCs in Boyden chamber assay and wound scratch assay. This study revealed that CCR4 and CCR10 are expressed on epidermal KCs and that both are functional in terms of skin cytokine production and/or migration to their ligand CCL17 and CCL27, respectively. Thus this study provided new insight into chemokine/chemokine receptors of KCs.  相似文献   

15.
The release of chemokines by intrinsic renal cells is an important mechanism for the regulation of leukocyte trafficking during renal inflammation. The expression of chemokine receptors by intrinsic renal cells such as mesangial cells (MC) suggests an expanded role for chemokine-chemokine receptor biology in local immunomodulation and potentially glomerular homeostasis. By immunohistochemistry we found the chemokine receptor CCR7 expressed in a mesangial pattern while the CCR7 ligand SLC/CCL21 showed a podocyte-specific expression. CCR7 expression was further characterized by RT-PCR, RNase protection assays, and FACS analysis of cultured human MC, and was found to be constitutively present. Real-time PCR of microdissected glomeruli confirmed the expression of SLC/CCL21. A functional role for CCR7 was demonstrated for human MC migration and proliferation. A protective effect of SLC/CCL21 was shown for MC survival in Fas Ab-induced apoptosis. Finally, "wound healing" was enhanced in the presence of SLC/CCL21 in an in vitro injury model. The constitutive glomerular expression of CCR7 and its ligand SLC/CCL21 in adjacent cell types of the human kidney suggests novel biological functions of this chemokine/chemokine receptor pair and a potential role in processes involved in glomerular homeostasis and regeneration.  相似文献   

16.
Expression of chemokine receptors by tumors, specifically CCR4 on cutaneous T cell lymphomas, is often associated with a poor disease outcome. To test the hypothesis that chemokine receptor-expressing tumors can be successfully controlled by delivering toxins through their chemokine receptors, we have generated fusion proteins designated chemotoxins: chemokines fused with toxic moieties that are nontoxic unless delivered into the cell cytosol. We demonstrate that chemokines fused with human RNase eosinophil-derived neurotoxin or with a truncated fragment of Pseudomonas exotoxin 38 are able to specifically kill tumors in vitro upon internalization through their respective chemokine receptors. Moreover, treatment with the thymus and activation-regulated chemokine (CCL17)-expressing chemotoxin efficiently eradicated CCR4-expressing cutaneous T cell lymphoma/leukemia established in NOD-SCID mice. Taken together, this work represents a novel concept that may allow control of growth and dissemination of tumors that use chemokine receptors to metastasize and circumvent immunosurveillance.  相似文献   

17.
CC chemokine receptor 5 (CCR5) is a pro-inflammatory chemokine receptor that is expressed on cells of the immune system, and specializes in cell migration in response to inflammation and tissue damage. Due to its key role in cell communication and migration, this receptor is involved in various inflammatory and autoimmune diseases, in addition to HIV infection. Met-RANTES is a modified CCR5 ligand that has previously been shown to antagonize CCR5 activation and function in response to its natural ligands in vitro. In vivo, Met-RANTES is able to reduce inflammation in models of induced inflammatory and autoimmune diseases. However, due to the fact that Met-RANTES is also capable of partial agonist activity regarding receptor signaling and internalization, it is clear that Met-RANTES does not function as a conventional receptor antagonist. To further elucidate the effect of Met-RANTES on CCR5, receptor trafficking was investigated in a CHO-CCR5-GFP cell line using the Opera confocal plate reader. The internalization response of CCR5 was quantified, and showed that Met-RANTES internalized CCR5 in a slower, less potent manner than the agonists CCL3 and CCL5. Fluorescent organelle labeling and live cell imaging showed CCL3 and CCL5 caused CCR5 to traffic through sorting endosomes, recycling endosomes and the Golgi apparatus. In contrast, Met-RANTES caused CCR5 to traffic through sorting endosomes and the Golgi apparatus in a manner that was independent of recycling endosomes. As receptor trafficking impacts on cell surface expression and the ability of the receptor to respond to more ligand, this information may indicate an alternative regulation of CCR5 by Met-RANTES that allows the modified ligand to reduce inflammation through stimulation of a pro-inflammatory receptor.  相似文献   

18.
According to the current model for tissue-specific homing, specificity is conferred by the selective recruitment of lymphocyte populations from peripheral blood, based on their expression of chemokine and adhesion receptors (endothelial selection). In this study, we provide evidence for an alternative stromal induction mechanism that operates in chronic inflammation. We show that the human rheumatoid synovial microenvironment directly induces functional inflammatory (CCR5 and CXCR3) and constitutive (CCR7 and CXCR4) chemokine receptors on infiltrating CD4(+) T cells. Expression of the corresponding inflammatory chemokine ligands (CCL5 and CXCL11) was confined to stromal areas in the synovium. However, expression of the constitutive ligands (CCL19 and CXCL12) was inappropriately high on both vascular and lymphatic endothelium, suggesting that the vascular to lymphatic chemokine gradient involved in lymphatic recirculation becomes subverted in the rheumatoid synovium. These results challenge the view that leukocyte trafficking is regulated solely by selective recruitment of pre-existing chemokine receptor-positive cells from peripheral blood, by providing an alternative explanation based on aberrant lymphocyte retention and compromised lymphatic return.  相似文献   

19.
Liver-expressed chemokine (LEC)/CCL16 is a human CC chemokine that is constitutively expressed by the liver parenchymal cells and present in the normal plasma at high concentrations. Previous studies have shown that CCL16 is a low-affinity ligand for CCR1, CCR2, CCR5, and CCR8 and attracts monocytes and T cells. Recently, a novel histamine receptor termed type 4 (H4) has been identified and shown to be selectively expressed by eosinophils and mast cells. In this study, we demonstrated that CCL16 induced pertussis toxin-sensitive calcium mobilization and chemotaxis in murine L1.2 cells expressing H4 but not those expressing histamine receptor type 1 (H1) or type 2 (H2). CCL16 bound to H4 with a K(d) of 17 nM. By RT-PCR, human and mouse eosinophils express H4 but not H3. Accordingly, CCL16 induced efficient migratory responses in human and mouse eosinophils. Furthermore, the responses of human and mouse eosinophils to CCL16 were effectively suppressed by thioperamide, an antagonist for H3 and H4. Intravenous injection of CCL16 into mice induced a rapid mobilization of eosinophils from bone marrow to peripheral blood, which was also suppressed by thioperamide. Collectively, CCL16 is a novel functional ligand for H4 and may have a role in trafficking of eosinophils.  相似文献   

20.
Platelet activating factor (PAF) interacts with cell surface G protein-coupled receptors on leukocytes to induce degranulation, leukotriene C(4) (LTC(4)) generation, and chemokine CCL2 production. Using a basophilic leukemia RBL-2H3 cell line expressing wild-type PAF receptor (PAFR) and a phosphorylation-deficient mutant (mPAFR), we have previously demonstrated that receptor phosphorylation mediates desensitization of PAF-induced degranulation. Here, we sought to determine the role of receptor phosphorylation on PAF-induced LTC(4) generation and CCL2 production. We found that PAF caused a significantly enhanced LTC(4) generation in cells expressing mPAFR when compared with PAFR cells. In contrast, PAF-induced CCL2 production was greatly reduced in mPAFR cells. Pertussis toxin and U0126, which inhibit G(i) and p44/42 mitogen-activated protein kinase (ERK) activation, respectively, caused very little inhibition of PAF-induced CCL2 production (approximately 20% inhibition). In contrast, these inhibitors almost completely blocked both PAF-induced ERK phosphorylation and LTC(4) generation in PAFR cells. However, in mPAFR cells pertussis toxin only partially inhibited PAF-induced ERK phosphorylation. A Ca(2+)/calmodulin inhibitor had no effect on PAF-induced ERK phosphorylation in PAFR cells but completely blocked the response in mPAFR cells. These data demonstrate that receptor phosphorylation, which serves to desensitize PAF-induced LTC(4) generation, is required for chemokine CCL2 production. They also indicate a previously unrecognized selectivity in G protein usage and ERK activation for PAF-induced responses. Whereas PAF-induced CCL2 production is, in large part, mediated independently of G(i) activation or ERK phosphorylation, LTC(4) generation requires ERK phosphorylation, which is mediated by different G proteins depending on the phosphorylation status of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号