首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In-stent restenosis is a process that occurs in 10-50% of cases currently treated with stent and it is caused by an abnormal smooth muscle cell (SMC) proliferation and migration in the vascular lumen. One of the most promising strategy to reduce restenosis is stent coating with biodegradable polymers to deliver in situ anti-proliferative drugs. Poly(D,L)lactic acid (P(D,L)LA), one of the most interesting candidate for stent coating, has been observed to induce inflammation and neointimal proliferation. In our laboratory, we developed P(D,L)LA enriched with Vitamin E (Vit.E), an anti-oxidative and anti-inflammatory agent that reduces also SMC proliferation. In order to evaluate the in vitro cellular behaviour of neointima cells onto Vitamin E-enriched P(D,L)LA, cell adhesion and proliferation along with the expression of two SMC migration markers (MMP-9 and hyaluronic acid receptor CD44) were measured in rat vascular SMC A10 cells seeded onto control P(D,L)LA (PLA) and P(D,L)LA films containing 10-30% (w/w) Vit.E (PLA10-30). Cell adhesion, proliferation and MMP-9 production were unaffected by the Vit.E presence in the PLA films after 24 h, while proliferation was slowed or blocked after 48 and 72 h onto PLA10, 20 and 30. MMP-9 production was almost blocked and CD44 density decreased significantly after 72 h for cells grew onto PLA30 compare to cells seeded onto PLA. These data indicate that Vit.E-enriched P(D,L)LA could be an interesting polymer for stent coating.  相似文献   

2.
Human neutrophils adherent to a polystyrene plastic surface are vigorously activated, whereas those adherent to fibronectin manifest only a priming response. The basis of these metabolic differences was further characterized; polystyrene-adherent cells, which were shown to spread quickly upon adhesion, exhibited an increase of cytoskeleton-associated actin (F-actin) (measured by a nitrobenzoxadiazole-phallacidin fluorescent staining assay) and a decrease of monomeric G-actin concentration (measured by a DNase inhibition assay); in contrast, fibronectin-adherent cells exhibited little spreading and decreased their F-actin, after 1.5 min of adhesion, to 33.49 +/- 6.9% (mean +/- SD, n = 5) of initial levels found in suspended cells before plating. Actin depolymerization in fibronectin-adherent cells was confirmed by measuring G-actin, which sharply increased during the first minute of adhesion, rising from 0.065 +/- 0.007 to 0.20 +/- 0.035 microgram/microgram of protein (mean +/- SEM, p less than 0.05), and then remained elevated during 5 min of observation. In contrast, soluble fibronectin induced a decrease of G-actin in suspended cells. Cells pretreated with 1 microM cytochalasin D and allowed to adhere to a plastic surface did not spread, failed to generate O2-, and exhibited elevated concentrations of G-actin (0.1 to 0.2 microgram/microgram of protein) during the 5 min of observation. Actin changes, as well as respiratory burst, in adherent cells were shown to proceed through a pertussis toxin-insensitive pathway. Fluo-3 measurements of intracellular Ca2+ concentrations ([Ca2+]i) showed a fourfold and twofold [Ca2+]i increase in polystyrene- and fibronectin-adherent cells, respectively, after 2 min. The small rise in [Ca2+]i in fibronectin-adherent cells corresponds to a primed response of these cells to subsequent activation with FMLP. Ionomycin (1 microM) added to neutrophils just before adhesion on fibronectin induced full activation, i.e., O2- production and actin polymerization. The metabolic events controlling metabolic priming and actin depolymerization are as yet uncharacterized, but fibronectin receptor-linked responses beyond the mediation of cell adhesion have now been identified, suggesting complex metabolic functions of integrin receptors.  相似文献   

3.
Bioluminescence ATP analysis has been used to assess bacterial adhesion with hydrophobic polystyrene tubes as the attachment surface. The assay was performed at 37 degrees C and pH 6.8 with a 10 min incubation period. A variation of more than 200-fold was observed in the adherence capacity of 34 urinary isolates of Escherichia coli, and organisms could be classified as strongly or weakly adherent. All strains capable of strong adhesion possessed both type 1 fimbriae and flagella, and maximum adhesion was expressed during the exponential growth phase. Attachment was in all cases virtually eliminated by addition of 2.5% (w/v) D-mannose to the incubation buffer. Conversely, strains which were deficient in type 1 fimbriae or flagella, or both, were weakly adherent during all phases of growth. There was no correlation between adherence of E. coli to polystyrene and adherence to buccal or uroepithelial cells, but there was a significant association with adherence to uromucoid (P less than 0.002).  相似文献   

4.
On inflamed endothelium selectins support neutrophil capture and rolling that leads to firm adhesion through the activation and binding of beta 2 integrin. The primary mechanism of cell activation involves ligation of chemotactic agonists presented on the endothelium. We have pursued a second mechanism involving signal transduction through binding of selectins while neutrophils tether in shear flow. We assessed whether neutrophil rolling on E-selectin led to cell activation and arrest via beta 2integrins. Neutrophils were introduced into a parallel plate flow chamber having as a substrate an L cell monolayer coexpressing E-selectin and ICAM-1 (E/I). At shears >/=0.1 dyne/cm2, neutrophils rolled on the E/I. A step increase to 4.0 dynes/cm2 revealed that approximately 60% of the interacting cells remained firmly adherent, as compared with approximately 10% on L cells expressing E-selectin or ICAM-1 alone. Cell arrest was dependent on application of shear and activation of Mac-1 and LFA-1 to bind ICAM-1. Firm adhesion was inhibited by blocking E-selectin, L-selectin, or PSGL-1 with Abs and by inhibitors to the mitogen-activated protein kinases. A chimeric soluble E-selectin-IgG molecule specifically bound sialylated ligands on neutrophils and activated adhesion that was also inhibited by blocking the mitogen-activated protein kinases. We conclude that neutrophils rolling on E-selectin undergo signal transduction leading to activation of cell arrest through beta 2 integrins binding to ICAM-1.  相似文献   

5.
Because of its relative inaccessibility, inflammatory cell extravasation within the airway circulation in vivo has been difficult to investigate in real time. A new method has been established using intravital microscopy in the anesthetized rat to visualize leukocytes in superficial postcapillary venules of the trachea. This technique has been validated using local superfusion of lipopolysaccharide (LPS) and N-formyl-methionyl-leucyl-phenylalanine (FMLP). Basal leukocyte rolling velocity (55.4 +/- 9.3 microm/s) and adhesion (1.4 +/- 0.3 cells/100 microm) were monitored in postcapillary venules (33.9 +/- 1.3 microm diameter). At all time points up to 90 min, these parameters were unaltered in control rats (n = 7). In contrast, vessels exposed to 1 microg/ml of LPS (n = 6) exhibited a 57% reduction in leukocyte rolling velocity and an increase in the number of adherent cells (4.7 +/- 1 cells/100 microm, P < 0.05). Superfusion with 0.1 microM of FMLP (n = 6) also resulted in a 45% reduction in rolling velocity and an increase in adherent cells (4 +/- 0.7 cells/100 microm, P < 0.05). Histological evaluation confirmed local stimulus-induced leukocyte extravasation. These results demonstrate leukocyte recruitment in the airway microvasculature and provide an important new method to study airway inflammation in real time.  相似文献   

6.
Human peripheral blood monocytes can be separated into two subpopulations which differ in the efficiency of their adherence to glass after 16 hours of incubation. The adherent subpopulation was found to be about twice as effective in binding mannose-resistant E. coli 0-124, mannose-sensitive E. coli 0-128 and opsonised E. coli than the nonadherent one. In addition, reduction of cytochrome C in response to E. coli binding or 12-myristate 13-acetate (PMA) stimulation was two fold higher in adherent cells. The binding of E. coli O-124 and the superoxide generation stimulated by E. coli were inhibited by the addition of mannose only in the adherent monocytes, indicating the presence of mannose receptors on the cell surface in the adherent subpopulation. The treatment of the nonadherent cells with 0.1-1000 U/ml of Interferon (IFN-gamma) for 24 hours resulted in a dose dependent increase in superoxide generation. After 72 hours of incubation with IFN-gamma (1000 U/ml) the amount of superoxide generated by the nonadherent cells was elevated to 20.5 +/- 1.4 nmoles/10(6) cells/15 min, similar to that of the adherent cells (24.5 +/- 1.2 nmoles/10(6) cells/15 min untreated adherent monocytes). The generation of superoxide in the IFN-gamma treated nonadherent monocytes stimulated by E. coli 0-128 was significantly reduced by addition of mannose.  相似文献   

7.
As T cells actively extravasate from blood, they adhere to endothelium and then migrate out of the vessel with a locomotive activity. Although both adhesion and locomotion are properties associated with activated T cells, the two processes are not necessarily associated with identical activation states. Using human endothelial cells (EC) cultured to confluence on collagen gel, we examined the activation state of human peripheral blood T cells that adhere to and migrate through EC monolayers with three different methods: flow cytometric analysis of cell surface activation-related molecules, incorporation of tritiated nucleotide, and cell cycle analysis. The results were as follows. 1) Although expression of very late activation Ag integrins VLA-2 and VLA-3 by the initial blood T cell population (unseparated cells) and of adherent T cells was minimal, 40 to 45% of migrating cells were positive for VLA-2 and VLA-3. 2) The percentage of IL-2R+ cells in both unseparated and adherent cells was below 5% whereas the percentage of IL-2R+ cells among the migrating cells was 22 +/- 9% (range, 12 to 31%, n = 6). 3) Migrating cells expressed the highest CD26, whereas CD26 of adherent (nonmigrating) cells was divided into negative and high expression; in contrast, leukocyte adhesion molecule-1 (L-selectin) of both adherent and migrating cells was mostly low or negative. 4) [3H]Uridine incorporation of migrating and adherent cells was 2.1- to 2.5-fold and 1.4- to 1.7-fold higher, respectively, than that of unseparated cells, indicating that RNA synthesis of migrating cells as well as adherent cells was enhanced. 5) Cell cycle analysis showed that 23.5% of migrating cells appeared to enter the G1 phase but not S or G2 + M phases whereas 2.2% of unseparated cells and 8.0% of adherent cells that did not migrate had an RNA content consistent with entry into G1. These results suggest that cells migrating from normal human blood through unactivated EC have been activated recently as well as showing evidence of long term activation. The activation state of migrating cells is consistent with the hypothesis that previous in vivo activation is required for cells to migrate through EC in this system.  相似文献   

8.
The aim of presented study was to estimates the number of human granulocytes and T lymphocytes adhering to 1 mm2 of vascular endothelial cell culture stimulated by Bacteroides fragilis endotoxins (LPS) and enterotoxin (BFT). HMEC-1 cells were activated with bacterial preparations at the concentration of 10 (micrograms/ml for 4 and 24 hours. Granulocytes and T lymphocytes were isolated from peripheral blood of healthy blood donors. The adhesion tests of granulocytes and adhesion tests of resting and activated with PMA (at the concentration of 10 ng/ml) T lymphocytes to the non-stimulated and stimulated by B. fragilis compounds (LPS and BFT) vascular endothelium were performed. The number of viable leukocytes, which adhered to the endothelium, was determined using inverted microscope (magnification 200x). The results were presented as the number of viable cells adhering to 1 mm2 of the endothelial cell culture. The results of experiments indicate that granulocytes and T lymphocytes (resting and after activation with PMA even in greater number) adhere to the endothelial cells stimulated by B. fragilis endotoxins and enterotoxin. B. fragilis toxins are weaker stimulants of human leukocyte adhesion to the HMEC-1 cells than E. coli O55:B5 LPS. B. fragilis LPS and BFT preparations stimulate endothelial cells to the adhesion of granulocytes in similar manner, whereas the activation of vascular endothelium to the adhesion of T lymphocytes is differentiated.  相似文献   

9.
Nutritional muscular dystrophy (NMD) of chicks is induced by dietary selenium (Se)/vitamin E (Vit. E) deficiencies and may be associated with oxidative cell damage. To reveal the underlying mechanisms related to the presumed oxidative cell damage, we fed four groups of 1-day-old broiler chicks (n = 40/group) with a basal diet (BD; 10 μg Se/kg; no Vit. E added, −Se −Vit. E) or the BD plus all-rac-α-tocopheryl acetate at 50 mg/kg (−Se +Vit. E), Se (as sodium selenite) at 0.3 mg/kg (+Se −Vit. E), or both of these nutrients (+Se +Vit. E) for 6 weeks. High incidences of NMD (93%) and mortality (36%) of the chicks were induced by the BD, starting at week 3. Dietary Se deficiency alone also induced muscle fiber rupture and coagulation necrosis in the pectoral muscle of chicks at week 3 and thereafter, with increased (P < 0.05) malondialdehyde, decreased (P < 0.05) total antioxidant capacity, and diminished (P < 0.05) glutathione peroxidase activities in the muscle. To link these oxidative damages of the muscle cells to the Se-deficiency-induced NMD, we first determined gene expression of the potential 26 selenoproteins in the muscle of the chicks at week 2 before the onset of symptoms. Compared with the +Se chicks, the −Se chicks had lower (P < 0.05) muscle mRNA levels of Gpx1, Gpx3, Gpx4, Sepp1, Selo, Selk, Selu, Selh, Selm, Sepw1, and Sep15. The −Se chicks also had decreased (P < 0.05) production of 6 selenoproteins (long-form selenoprotein P (SelP-L), GPx1, GPx4, Sep15, SelW, and SelN), but increased levels (P < 0.05) of the short-form selenoprotein P in muscle at weeks 2 and 4. Dietary Se deficiency elevated (P < 0.05) muscle p53, cleaved caspase 3, cleaved caspase 9, cyclooxygenase 2 (COX2), focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI3K), phospho-Akt, nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (p38 MAPK), phospho-p38 MAPK, phospho-JNK, and phospho-ERK and decreased (P < 0.05) muscle procaspase 3, procaspase 9, and NF-κB inhibitor α. In conclusion, the downregulation of SelP-L, GPx1, GPx4, Sep15, SelW, and SelN by dietary Se deficiency might account for induced oxidative stress and the subsequent peroxidative damage of chick muscle cells via the activation of the p53/caspase 9/caspase 3, COX2/FAK/PI3K/Akt/NF-κB, and p38 MAPK/JNK/ERK signaling pathways. Metabolism of peroxides and redox regulation are likely to be the mechanisms whereby these selenoproteins prevented the onset of NMD in chicks.  相似文献   

10.
Matrix metalloproteinase-9 (MMP-9), secreted by activated monocytes, degrades matrix proteins, disrupts basal lamina, and activates TNF-alpha from its precursors. In turn, TNF-alpha enhances synthesis of MMP-9 in monocytes. We show here that trophozoite-parasitized RBCs/hemozoin-fed adherent human monocytes displayed increased MMP-9 activity and protein/mRNA expression, produced TNF-alpha time-dependently, and showed higher matrix invasion ability. MMP-9 activation was specific for trophozoite/hemozoin-fed monocytes, was dependent on TNF-alpha production, and abrogated by anti-TNF-alpha Ab and by a specific inhibitor of MMP-9/MMP-13 activity. Hemozoin-induced enhancement of MMP-9 and TNF-alpha production would have a 2-fold effect: to start and feed a cyclic reinforcement loop in which hemozoin enhances production of TNF-alpha, which in turn induces both activation of MMP-9 and shedding of TNF-alpha into the extracellular compartment; and, second, to disrupt the basal lamina of endothelia. Excess production of TNF-alpha and disruption of the basal lamina with extravasation of blood cells into perivascular tissues are hallmarks of severe malaria. Pharmacological inhibition of MMP-9 may offer a new chance to control pathogenic mechanisms in malaria.  相似文献   

11.
Our objective was to evaluate the characteristics of the production of AOS from the neutrophils that had adhered to the endothelial cells, fibronectin or polystyrene, using the method of electron paramagnetic resonance (EPR) spin trapping. Neutrophils and endothelial cells were isolated from human venous blood and umbilical veins, respectively. AOS production from neutrophils was not elicited only by adhesion. The stimulation of adherent neutrophils with phorbol myristate acetate (PMA) induced the production of AOS. The production of AOS from adherent neutrophils to endothelial cells, but not to fibronectin or polystyrene, decreased with the interval time between the adhesion and the stimulation by PMA. The amount of AOS produced by the neutrophils adherent to fibronectin or polystyrene was maintained for one hour after stimulation with PMA, whereas that by suspended neutrophils gradually decreased with the time after stimulation. Results indicate that adherent and non-adherent neutrophils exhibit differing time course of AOS production.  相似文献   

12.
Organic solvents are inherently toxic for microorganisms. Their effects depend not only on the nature of the compound, but also on the intrinsic tolerance of the bacterial species and strains. Three efflux pumps belonging to the RND (resistance-nodulation-cell division) family of multidrug extrusion pumps are the main factor involved in the high intrinsic tolerance to toluene of Pseudomonas putida DOT-T1E. We have analyzed the tolerance to toluene shocks [0.1% and 0.3% (v/v)] of a number of strains belonging to different species of the genus Pseudomonas upon growth in the absence and in the presence of sublethal concentrations of toluene. The strains can be grouped in three categories: (1) highly resistant strains, in which almost 100% of the cells precultured in the presence of sublethal concentrations of toluene withstood a 0.3% (v/v) toluene shock, (2) moderately resistant strains, in which only a fraction (10(-4)-1) of the cells withstood a 0.1% (v/v) toluene shock, but fewer than 1 in 10(7) cells survived a sudden 0.3% (v/v) toluene shock regardless of the growth conditions, and (3) sensitive strains, in which regardless of the growth conditions fewer than 10(-5) cells survived a 0.1% (v/v) toluene shock. We also studied the number and type of efflux pumps in different strains in comparison with the P. putida DOT-T1E strain.  相似文献   

13.
Matrix metalloproteinase (MMP)-9 has been consistently identified in the lungs of patients with chronic obstructive pulmonary disease (COPD). However, its role in the development of the disease remains undefined. Mice that specifically express human MMP-9 in their macrophages were generated, and morphometric, biochemical, and histological analyses were conducted on the transgenic and littermate control mice over 1 yr to determine the effect of macrophage MMP-9 expression on emphysema formation and lung matrix content. Lung morphometry was normal in transgenic mice at 2 mo of age (mean linear intercept = 50+/-3 littermate mice vs. 51+/-2 transgenic mice). However, after 12 mo of age, the MMP-9 transgenic mice developed significant air space enlargement (mean linear intercept = 53+/-3 littermate mice vs. 61+/-2 MMP-9 transgenic mice; P<0.04). Lung hydroxyproline content was not significantly different between wild-type and transgenic mice, but MMP-9 did significantly decrease alveolar wall elastin at 1 yr of age (4.9+/-0.3% area of alveolar wall in the littermate mice vs. 3.3+/-0.3% area of alveolar wall in the MMP-9 mice; P<0.004). Thus these results establish a central role for MMP-9 in the pathogenesis of this disease by demonstrating that expression of this protease in macrophages can alter the extracellular matrix and induce progressive air space enlargement in mice.  相似文献   

14.
Ischemia-reperfusion-induced neutrophil adhesion to endothelium is CD18-dependent, but information regarding polarity of CD18 adhesion molecules remains speculative. This study evaluated neutrophil adhesion using an in vitro cell adhesion assay and introduces a quantitative method of measuring CD18 membrane distribution using confocal microscopy. Neutrophils from normal animals were isolated from whole blood and incubated with plasma from rat gracilis muscle flaps with no ischemia and reperfusion (nonischemic control, n = 10) or 4 hours of ischemia and 90 minutes of reperfusion (ischemia/reperfusion, n = 10), on coverslips pretreated with and without (phosphate-buffered saline) soluble intercellular adhesion molecules. Coverslips without intercellular adhesion molecules represented a negative control (intercellular adhesion molecules were required for adhesion). Percent adherence to intercellular adhesion molecules was expressed as a ratio of adherent cells/total cells. CD18 polarization was assessed by staining neutrophils with fluorescein isothiocyanate-labeled anti-CD11b, followed by confocal microscopy and Z-stack analysis. Membrane-associated CD18 was expressed as fluorescence intensity units in three equal areas of the cell membrane. Capping was defined as twice as much fluorescence in 33 percent of the cell membrane as in the remaining 67 percent. Neutrophils exposed to ischemia and reperfusion plasma showed a significant increase in adhesion (0.8 +/- 0.1 percent versus 16.7 +/- 2.2 percent, p < 0.001) and CD18 polarization (6.2 +/- 1.7 percent versus 43.9 +/- 12.2 percent, p = 0.0206) compared with controls. This article describes an in vitro assay that reliably reproduces the neutrophil adhesion phenomenon associated with ischemia-reperfusion injury. Results from confocal microscopy allowed for quantitative estimation of membrane-associated receptor polarization.  相似文献   

15.
In human pregnancy, abnormal placental hemodynamics likely contribute to the etiology of early-onset preeclampsia and fetal intrauterine growth restriction. The mouse is increasingly being deployed to study normal and abnormal mammalian placental development, yet the placental hemodynamics in normal pregnancy in mice is currently unknown. We used ultrasound biomicroscopy to noninvasively image and record Doppler blood velocity waveforms from the maternal and embryonic placental circulations in mice throughout gestation. In the uterine artery, peak systolic velocity (PSV) increased significantly from 23+/-2 (SE) to 59+/-3 cm/s, and end-diastolic velocity (EDV) increased from 7+/-1 to 28+/-2 cm/s in nonpregnant versus full-term females so that the uterine arterial resistance index (RI) decreased from 0.70+/-0.02 to 0.53+/-0.02. Velocities in the maternal arterial canal in the placenta were low and nearly steady and increased from 0.9+/-0.03 cm/s at embryonic day 10.5 (E10.5) to 2.4+/-0.07 cm/s at E18.5. PSV in the umbilical artery increased steadily from 0.8+/-0.1 cm/s at E8.5 to 15+/-0.6 cm/s at E18.5, whereas PSV in the vitelline artery increased from 0.6+/-0.1 cm/s at E8.5 to 4+/-0.2 cm/s at E13.5 and then remained stable to term. In the umbilical artery, the EDV detection rate was 0% at 相似文献   

16.
Phosphorylation of vitronectin (Vn) by casein kinase II was previously shown to occur at Thr50 and Thr57 and to augment a major physiological function of vitronectin-cell adhesion and spreading. Here we show that this phosphorylation increases cell adhesion via the alpha(v)beta3 (not via the alpha(v)beta5 integrin), suggesting that alpha(v)beta3 differs from alpha(v)beta5 in its biorecognition profile. Although both the phospho (CK2-PVn) and non-phospho (Vn) analogs of vitronectin (simulated by mutants Vn(T50E,T57E), and Vn(T50A,T57A), respectively) trigger the alpha(v)beta3 as well as the alpha(v)beta5 integrins, and equally activate the ERK pathway, these two forms are different in their activation of the focal adhesion kinase/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) pathway. Specifically, we show (i) that, upon exposure of cells to Vn/CK2-PVn, their PKB activation depends on the availability of the alpha(v)beta3 integrin on their surface; (ii) that upon adhesion of the beta3-transfected cells onto the CK2-PVn, the extent of PKB activation coincides with the enhanced adhesion of these cells, and (iii) that both the PKB activation and the elevation in the adhesion of these cells is PI3K-dependent. The occurrence of a cell surface receptor that specifically distinguishes between a phosphorylated and a non-phosphorylated analog of Vn, together with the fact that it preferentially activates a distinct intra-cellular signaling pathway, suggest that extra-cellular CK2 phosphorylation may play an important role in the regulation of cell adhesion and migration.  相似文献   

17.
18.
Hyaluronic acid (HA) has been implicated in cell adhesion, motility, and tumor progression in gliomas. We previously reported that HA stimulates secretion of matrix metalloproteinase-9 (MMP-9) and induces glioma invasion. However, the molecular mechanism of HA action and therapeutic strategies for blocking HA-induced MMP-9 secretion remain unknown. Here, we report that the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) blocks MMP-9 secretion and that HA-induced nuclear factor-kappaB (NF-kappaB) activation is mediated by IkappaB kinase, which phosphorylates the NF-kappaB inhibitor IkappaBalpha and promotes its degradation. In addition, using an RNA interference approach, we show that the focal adhesion kinase plays a critical role in mediating HA-induced NF-kappaB activation, which resulted in increased MMP-9 expression and secretion, cell migration, and invasion. Importantly, we show that 17-AAG acts by blocking focal adhesion kinase activation, thereby inhibiting IkappaB kinase-dependent IkappaBalpha phosphorylation/degradation, NF-kappaB activation, and MMP-9 expression. This leads to suppression of HA-induced cell migration and invasion. Based on our data, we propose that 17-AAG is a candidate drug for treatment of highly invasive gliomas resulting from HA-induced, NF-kappaB-mediated MMP-9 secretion.  相似文献   

19.
Oxidative stress in patients with multiple sclerosis   总被引:5,自引:0,他引:5  
It is well known that brain and nervous system cells are prone to oxidative damage because of their relatively low content of antioxidants, especially enzymatic ones, and of the high levels of both membrane polyunsaturated fatty acids (PUFA) and iron easily released from injured cells. We have investigated the oxidative stress in the blood (plasma, erythrocytes and lymphocytes) of 28 patients affected with multiple sclerosis (MS) and of 30 healthy age matched controls, by performing a multiparameter analysis of non-enzymatic and enzymatic antioxidants--Vitamin E (Vit. E), ubiquinone (UBI), reduced and oxidized glutathione (GSH, GS-SG), superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and fatty acid patterns of phospholipids (PL-FA). PL-FA and Vit. E were assayed by GC-MS; UBI and GSH/GS-SG by HPLC; SOD, GPX and CAT by spectrophotometry. In comparison to controls, patients with MS showed significantly reduced levels of plasma UBI (0.21 +/- 0.10 vs. 0.78 +/- 0.08 mg/ml, p < 0.001), plasma Vit. E (7.4 +/- 2.1 vs. 11.4 +/- 1.8 mg/ml, p < 0.01), lymphocyte UBI (8.1 +/- 4.0 vs. 30.3 +/- 7.2 ng/ml blood, p < 0.001) and erythrocyte GPX (22.6 +/- 5.7 vs. 36.3 +/- 6.4 U/g Hb, p < 0.001). This blood antioxidant deficiency was associated with plasma levels of PL-PUFA--especially C20:3 n-6 and C20:4 n-6--significantly higher than controls. In conclusion, the blood of patients with MS shows the signs of a significant oxidative stress. The possibility of counteracting it by antioxidant administration plus an appropriate diet, might represent a promising way of inhibiting the progression of the disease. Antioxidant supplements should include not only GSH repleting agents, but also Vit. E, ubiquinol, and selenium.  相似文献   

20.
Sedimentation analysis and light-scattering measurements were made with the two forms of pig pancreas pro-(carboxypeptidase A), in order to determine some of their physical properties. The following values were found (the first value applies to the binary complex and the second one to the monomer). The A 1%/280.1 cm values were 19.9 +/- 0.3 and 16.3 +/- 0.3. The partial specific volumes v -0 were 0.707 +/- 0.016 cm3/g and 0.714 +/- 0.015 cm3/g. The sedimentation coefficients S 0/20,w were 4.90 +/- 0.15S and 3.75 +/- 0.15 S. The diffusion coefficients D 0/20,w were (5.8 +/- 0.1) X 10(-7) cm2/s and (6.95 +/- 0.15) X 10(-7) cm2/s. From these data the following values were calculated. Relative molecular masses Mr were 71 000 +/- 4000 and 46 000 +/- 3000. The frictional ratios f/fmin. were 1.37 +/- 0.06 and 1.31 +/- 0.07; assuming a value for the solvation of the molecules (delta = 0.5 g/g) the asymmetry values range from 3 to 5 for the binary complex and from 2 to 4 for the monomer. The Mr values found in the present work coincide with those found by means of polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate [Martínez, Avilés, SanSegundo & Cuchillo (1981) Biochem. J. 197, 141-147]. Therefore the low values obtained by those authors when using gel-filtration chromatography must be the result of the interaction of the zymogens with the gel matrix, as the asymmetry is too small to justify the large discrepancies found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号