首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Glutamic acid-148, an active-site residue of diphtheria toxin identified by photoaffinity labeling with NAD, was replaced with aspartic acid, glutamine, or serine by directed mutagenesis of the F2 fragment of the toxin gene. Wild-type and mutant F2 proteins were synthesized in Escherichia coli, and the corresponding enzymic fragment A moieties (DTA) were derived, purified, and characterized. The Glu----Asp (E148D), Glu----Gln (E148Q), and Glu----Ser (E148S) mutations caused reductions in NAD:EF-2 ADP-ribosyltransferase activity of ca. 100-, 250-, and 300-fold, respectively, while causing only minimal changes in substrate affinity. The effects of the mutations on NAD-glycohydrolase activity were considerably different; only a 10-fold reduction in activity was observed for E148S, and the E148D and E148Q mutants actually exhibited a small but reproducible increase in NAD-glycohydrolytic activity. Photolabeling by nicotinamide-radiolabeled NAD was diminished ca. 8-fold in the E148D mutant and was undetectable in the other mutants. The results confirm that Glu-148 plays a crucial role in the ADP-ribosylation of EF-2 and imply an important function for the side-chain carboxyl group in catalysis. The carboxyl group is also important for photochemical labeling by NAD but not for NAD-glycohydrolase activity. The pH dependence of the catalytic parameters for the ADP-ribosyltransferase reaction revealed a group in DTA-wt that titrates with an apparent pKa of 6.2-6.3 and is in the protonated state in the rate-determining step.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
M Lukac  R J Collier 《Biochemistry》1988,27(20):7629-7632
Directed mutagenesis was used to probe the functions of Tyr-470 and Tyr-481 of Pseudomonas aeruginosa exotoxin A (ETA) with respect to cytotoxicity, ADP-ribosylation of elongation factor 2 (EF-2), and NAD-glycohydrolase activity. Both of these residues lie in the active site cleft, close to Glu-553, a residue believed to play a direct role in catalysis of ADP-ribosylation of EF-2. Substitution of Tyr-470 with Phe caused no change in any of these activities, thus eliminating the possibility that the phenolic hydroxyl group of Tyr-470 might be directly involved in catalysis. Mutation of Tyr-481 to Phe caused an approximately 10-fold reduction in NAD:EF-2 ADP-ribosyltransferase activity and cytotoxicity but no change in NAD-glycohydrolase activity. The latter mutation did not alter the KM of NAD in the NAD-glycohydrolase reaction, which suggests that the phenolic hydroxyl of Tyr-481 does not participate in NAD binding. We hypothesize that the phenolic hydroxyl of Tyr-481 may be involved in the interaction of the toxin with substrate EF-2.  相似文献   

3.
Glutamic acid 553 of Pseudomonas aeruginosa exotoxin A (ETA) has been identified by photoaffinity labeling as a residue within the NAD binding site (S.F. Carroll and R.J. Collier, J. Biol. Chem. 262:8707-8711, 1987). To explore the function of Glu-553 we used oligonucleotide-directed mutagenesis to replace this residue with Asp in cloned ETA and expressed the mutant gene in Escherichia coli K-12. ADP-ribosylation activity of Asp-553 ETA in cell extracts was about 1,800-fold lower and toxicity for mouse L-M929 fibroblasts was at least 10,000-fold lower than that of the wild-type toxin. Extracts containing Asp-553 ETA inhibited the cytotoxicity of authentic ETA on L-M929 fibroblasts, suggesting that the mutant toxin competes for ETA receptors. The results indicate that Glu-553 is crucial for ADP-ribosylation activity and, consequently, cytotoxicity of ETA. Substitution or deletion of this residue may be a route to new ETA vaccines.  相似文献   

4.
Pseudomonas aeruginosa exotoxin A (ETA) is inactivated greater than 1,000-fold when an active site glutamic acid, E553, is mutated to aspartic acid (Douglas, C.M., and Collier, R. J. (1987) J. Bacteriol. 169, 4967-4971). To test the effect of creating a carboxyl-containing side chain at position 553 longer than that of glutamic acid, we first replaced Glu-553 with cysteine by site-directed mutagenesis of cloned ETA and then carboxymethylated the cysteine side chain with iodoacetic acid. The E553C mutation reduced ADP-ribosyltransferase and cytotoxic activities greater than 10,000-fold. Reaction of the mutant with iodoacetic acid enhanced enzymic activity 2,500-fold, to a level approximately one-sixth that of wild type toxin, and restored cytotoxicity to a slightly lesser extent. Iodoacetamide did not activate the mutant, and neither iodoacetic acid nor iodoacetamide affected the activity of wild type toxin. These results show that the carboxyl group of Glu-553 is important for ADP-ribosylation activity and imply flexibility in the enzyme-substrate complex in accommodating the slightly longer S-carboxymethylcysteine side chain. This general approach may have applications in protein engineering as well as in studying carboxyl side chain functions in enzymes.  相似文献   

5.
Photoaffinity labeling experiments with diphtheria toxin fragment A have implicated glutamic acid 148 as a constituent of the NAD binding site. To evaluate the role of this residue in ADP-ribosylation of elongation factor 2, we replaced it with aspartic acid by in vitro mutagenesis of a toxin gene fragment cloned in Escherichia coli. Fragment A containing aspartic acid at position 148 had less than 0.6% the ADP-ribosylation activity of wild-type fragment A. The mutation produced no change in sensitivity of fragment A to trypsin and little, if any, reduction in affinity of fragment A for NAD. These results indicate that glutamic acid 148 is essential for the ADP-ribosylation of elongation factor 2 and are consistent with other data suggesting that this residue may be at or near the catalytic center of the toxin.  相似文献   

6.
Photoaffinity labeling with native NAD, a method employed earlier with diphtheria toxin (DT), was used to identify an active site residue of Pseudomonas aeruginosa exotoxin A (ETA). An enzymically active fragment (Mr 27,000), derived by partial digestion of ETA with thermolysin, was irradiated with ultraviolet light (254 nm) in the presence of various radiolabeled preparations of NAD. Label from the nicotinamide moiety was efficiently transferred to the protein (maximally 0.79 mol/mol), and the label was exclusively located at position 553. This position, like that photolabeled in DT (position 148), corresponds to glutamic acid in the native protein. Chromatographically identical photo-products were generated at these positions in the two toxins. Glu-553 lies in a cleft in domain III that is believed to represent the active site of ETA, and other evidence supports the notion that Glu-553 of ETA and Glu-148 of DT are directly involved in catalysis. When Glu-553 of ETA was aligned with Glu-148 of DT, we found similarities of local primary structure not detected earlier. These results suggest that the catalytically active domains of ETA and DT may be evolutionarily related, and they provide information that should prove useful for preparing vaccines against ETA by recombinant DNA methods.  相似文献   

7.
A cellular ADP-ribosyltransferase activity has been found in a variety of animals and tissues. The enzyme transfers ADP-ribose from NAD to elongation factor 2, inactivating the factor and thus inhibitingin vitro protein synthesis. Although, the mechanism of action of the cellular enzyme appears similar to diphtheria toxin andPseudomonas exotoxin A, it differs from the toxins in that only a fraction of the EF-2 pool is modified. The endogenously ADP-ribosylated EF-2 has been detected by a variety of methods including two-dimensional electrophoresis and immunoprecipitation with elongation factor 2 antibody. The nature of the cellular ADP-ribosyltransferase and its physiological significance are unknown.  相似文献   

8.
Pseudomonas aeruginosa exotoxin A (ETA) is an ADP-ribosyltransferase which inactivates protein synthesis by covalently attaching the ADP-ribose portion of NAD+ onto eucaryotic elongation factor 2 (EF-2). A direct biochemical comparison has been made between ETA and a nonenzymatically active mutant toxin (CRM 66) using highly purified preparations of each protein. The loss of ADP-ribosyltransferase activity and subsequent cytotoxicity have been correlated with the presence of a tyrosine residue in place of a histidine at position 426 in CRM 66. In the native conformation, CRM 66 demonstrated a limited ability (by a factor or at least 100,000) to modify EF-2 covalently and lacked in vitro and in vivo cytotoxicity, yet CRM 66 appeared to be normal with respect to NAD+ binding. Upon activation with urea and dithiothreitol, CRM 66 lost ADP-ribosyltransferase activity entirely yet CRM 66 retained the ability to bind NAD+. Replacement of Tyr-426 with histidine in CRM 66 completely restored cytotoxicity and ADP-ribosyltransferase activity. These results support previous findings from this laboratory (Wozniak, D. J., Hsu, L.-Y., and Galloway, D. R. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8880-8884) which suggest that the His-426 residue of ETA is not involved in NAD+ binding but appears to be associated with the interaction between ETA and EF-2.  相似文献   

9.
C3 ADP-ribosyltransferase is an exoenzyme produced by certain strains of Clostridium botulinum types C and D, which specifically ADP-ribosylates rho proteins in eukaryotic cells. Using the photoaffinity probe [alpha-32P]nicotinamide-2-azidoadenine dinucleotide, we have identified the adenine ring binding domain of the NAD+ binding site. The specificity of labeling was demonstrated by saturation effects and protection by the natural compound at physiologically relevant concentrations. Saturation of labeling was observed at 50 microM. Protection experiments indicated an 80% protection of labeling by 100 microM NAD+ when protein was photolyzed in the presence of 10 microM probe. Trypsin or Staphylococcus aureus V8 protease digestion of the photolabeled protein, along with boronate affinity chromatography and immobilized metal affinity chromatography, was used to specifically isolate the peptide region photolabeled with the probe. The peptide corresponded to Phe9-Gly19 near the N terminus.  相似文献   

10.
1. An ADP-ribosyltransferase activity which appears to be capable of activating adenylyl cyclase was identified in a plasma membrane fraction from rabbit corpora lutea and partially characterized by comparing the properties of the luteal transferase with those of cholera toxin. 2. Incubation of luteal membranes in the presence of GTP and varying concentrations of NAD resulted in concentration-dependent increases in adenylyl cyclase activity. 3. Stimulation of adenylyl cyclase by NAD and cholera toxin plus NAD was observed in the presence of GTP but not in the presence of guanosine-5'-O-(2-thiodiphosphate) or guanyl-5'-yl imidodiphosphate. 4. NAD or cholera toxin plus NAD reduced the Kact values for luteinizing hormone to activate adenylyl cyclase 3- to 3.5-fold. 5. NAD or cholera toxin plus NAD increased the extent to which cholate extracts from luteal membranes were able to reconstitute adenylyl cyclase activity in S49 cyc- mouse lymphoma membranes. 6. It was necessary to add ADP-ribose and arginine to the incubation mixture in order to demonstrate cholera toxin-specific ADP-ribosylation of a protein corresponding to the alpha subunit of the stimulatory guanine nucleotide-binding regulatory component (alpha Gs). 7. Treatment of luteal membranes with NAD prior to incubation in the presence of [32P]NAD plus cholera toxin resulted in reduced labeling of alpha Gs. 8. Endogenous ADP-ribosylation of alpha Gs was enhanced by Mg but was not altered by guanine nucleotide, NaF or luteinizing hormone and was inhibited by cAMP. 9. Incubation of luteal membranes in the presence of [32P]ADP-ribose in the absence and presence of cholera toxin did not result in the labeling of any membrane proteins.  相似文献   

11.
Sulfhydryl-alkylating reagents are known to inactivate the NAD glycohydrolase and ADP-ribosyltransferase activities of the S1 subunit of pertussis toxin, a protein which contains two cysteines at positions 41 and 200. It has been proposed that NAD can retard alkylation of one of the two cysteines of this protein (Kaslow, H.R., and Lesikar, D.D. (1987) Biochemistry 26, 4397-4402). We now report that NAD retards the ability of these alkylating reagents to inactivate the S1 subunit. In order to determine which cysteine is protected by NAD, we used site-directed mutagenesis to construct analogs of the toxin with serines at positions 41 and/or 200. Sulfhydryl-alkylating reagents reduced the ADP-ribosyltransferase activity of the analog with a single cysteine at position 41; NAD retarded this inactivation. In contrast, sulfhydryl-alkylating reagents did not inactivate analogs with serine at position 41. An analog with alanine at position 41 possessed substantial ADP-ribosyltransferase activity. We conclude that alkylation of cysteine 41, and not cysteine 200, inactivates the S1 subunit of pertussis toxin, but that the sulfhydryl group of cysteine 41 is not essential for the ADP-ribosyltransferase activity of the toxin. These results suggest that the region near cysteine 41 contributes to features of the S1 subunit important for ADP-ribosyltransferase activity. Using site-directed mutagenesis, we found that changing aspartate 34 to asparagine, arginine 39 to lysine, and glutamine 42 to glutamate had little effect on ADP-ribosyltransferase activity. However, substituting an asparagine for the histidine at position 35 markedly decreased, but did not eliminate, ADP-ribosyltransferase activity. Chou-Fasman analysis predicted no significant modifications in secondary structure of the S1 peptide with the change of histidine 35 to asparagine. Thus, histidine 35 may interact with a substrate of the S1 subunit without being essential for catalysis.  相似文献   

12.
An NAD:cysteine ADP-ribosyltransferase designated ADP-ribosyltransferase C was purified approximately 35,000-fold from human erythrocytes with an 11% yield. The purified ADP-ribosyltransferase C exhibited one predominant protein band on sodium dodecyl sulfate-polyacrylamide gels with an estimated molecular weight (Mr) of 28,500. The Km values for NAD and cysteine methyl ester were determined to be 65 and 4,400 microM, respectively. By using human erythrocyte inside-out membrane vesicles, the transferase C was found to ADP-ribosylate the alpha subunit (Mr = 41,000) of Gi, which is a substrate for pertussis toxin. The ADP-ribosylation of Gi alpha catalyzed by ADP-ribosyltransferase C was inhibited by pre-ADP-ribosylation with pertussis toxin. The linkage of ADP-ribose-Gi alpha in the membranes formed by ADP-ribosyltransferase C was as stable to hydroxylamine as that formed by pertussis toxin. These data represent the first demonstration that eukaryotic cells contain an ADP-ribosyltransferase which can catalyze the ADP-ribosylation of a cysteine residue in Gi alpha.  相似文献   

13.
It is known that extracellular Mg(2+) and Ca(2+) can permeate TRPM7 and at the same time block the permeation by monovalent cations. In the present study, we examined the molecular basis for the conductivity and sensitivity of human TRPM7 to these divalent cations. Extracellular acidification to pH 4.0 markedly reduced the blocking effects of Mg(2+) and Ca(2+) on the Cs(+) currents, decreasing their binding affinities: their IC(50) values increased 510- and 447-fold, respectively. We examined the effects of neutralizing each of four negatively charged amino acid residues, Glu-1047, Glu-1052, Asp-1054 and Asp-1059, within the putative pore-forming region of human TRPM7. Mutating Glu-1047 to alanine (E1047A) resulted in non-functional channels, whereas mutating any of the other residues resulted in functionally expressed channels. Cs(+) currents through D1054A and E1052A were less sensitive to block by divalent cations; the IC(50) values were increased 5.5- and 3.9-fold, respectively, for Mg(2+) and 10.5- and 6.7-fold, respectively, for Ca(2+). D1059A also had a significant reduction, though less marked compared to the reductions seen for D1054A and E1052A, in sensitivity to Mg(2+) (1.7-fold) and Ca(2+) (3.9-fold). The D1054A mutation largely abolished inward currents conveyed by Mg(2+) and Ca(2+). In the E1052A and D1059A mutants, inward Mg(2+) and Ca(2+) currents were sizable but significantly diminished. Thus, it is concluded that in human TRPM7, (1) both Asp-1054 and Glu-1052, which are located near the narrowest portion in the pore's selectivity filter, may provide the binding sites for Mg(2+) and Ca(2+), (2) Asp-1054 is an essential determinant of Mg(2+)and Ca(2+) conductivity, and (3) Glu-1052 and Asp-1059 facilitate the conduction of divalent cations.  相似文献   

14.
Eukaryotic elongation factor 2 can undergo ADP-ribosylation in the absence of diphtheria toxin under the action of an endogenous transferase. The investigation which aimed to gain insight into the nature of endogenous ADP-ribosylation revealed that this reaction may be, in some cases, due to covalent binding of free ADP-ribose to elongation factor 2. Binding of free ADP-ribose, and NAD- and endogenous transferase-dependent ADP-ribosylation were suggested to be distinct reactions by different findings. Free ADP-ribose could bind to elongation factor 2 previously subjected to ADP-ribosylation by diphtheria toxin or endogenous transferase. The binding of free ADP-ribose was inhibited by neutral NH2OH, L-lysine and picrylsulfonate, whereas endogenous ADP-ribosyltransferase was inhibited by NAD glycohydrolase inhibitors and L-arginine. The ADP-ribosyl-elongation factor 2 adduct which formed upon binding of free ADP-ribose was resistant to neutral NH2OH, but decomposed almost completely upon treatment with NaOH. The product of endogenous transferase-dependent ADP- ribosylation was partially resistant to NH2OH and NaOH treatment. Moreover, this reaction was reversed in the presence of diphtheria toxin and nicotinamide. Both types of endogenous ADP-ribosylation gave rise to inhibition of polyphenylalanine synthesis. This study thus provides evidence for the presence of two different types of endogenous ADP-ribosylation of eukaryotic elongation factor 2. The respective sites involved in these reactions are distinct from one another as well as from diphthamide, the site of attack by diphtheria toxin.  相似文献   

15.
Purified recombinant S1 subunit of pertussis toxin (rS1) possessed similar NAD glycohydrolase and ADP-ribosyltransferase activities as S1 subunit purified from pertussis toxin. Purified rS1 and C180 peptide, a deletion peptide which contains amino acids 1-180 of rS1, had Km values for NAD of 24 and 13 microM and kcat values of 22 and 24 h-1, respectively, in the NAD glycohydrolase reaction. In contrast, under linear velocity conditions, the C180 peptide possessed less than 1% of the ADP-ribosyltransferase activity of rS1 using transducin as target. Radiolabeled tryptic peptides of transducin that had been ADP-ribosylated by either rS1 or C180 peptide were identical which suggested that both rS1 and C180 peptide ADP-ribosylated the same amino acid within transducin. To extend the functional primary amino acid map of the S1 subunit, two carboxyl-terminal deletions were constructed. One deletion, C195, removed the 40 carboxyl-terminal amino acids and the other, C219, removed the 16 carboxyl-terminal amino acids of the S1 subunit. Both C195 and C219 migrated in reduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis with apparent molecular masses of 22,000 and 27,500 Da, respectively. Relative to the C180 peptide C195 possessed 10-20-fold increase and C219 possessed 100-150-fold increase in ADP-ribosyltransferase activities. In addition, C219 appeared to have the same ADP-ribosyltransferase activity as rS1. These studies indicate that (i) rS1, purified from Escherichia coli, possesses biochemical properties similar to S1 subunit purified from pertussis toxin, (ii) amino acids 1-180 of the S1 subunit contain residues required for NAD binding, N-glycosidic cleavage, and transfer of ADP-ribose to transducin, and (iii) residues between 181 and 219 of the S1 subunit are required for efficient ADP-ribosyltransferase activity.  相似文献   

16.
A full-length recombinant mutant of diphtheria toxin containing serine in place of a crucial active-site glutamate has been purified and characterized. The serine substitution caused a minor structural alteration in the toxin as measured by trypsinolysis. ADP-ribosyltransferase activity and cytotoxicity of the mutant were both decreased by approximately 500-fold. A similar reduction in cytotoxicity was found when the enzymic fragments of both the wild-type and mutant toxins were introduced into the cytosol of fibroblasts by osmotically lysing pinosomes. The mutation did not alter the binding of the toxin to cell surface receptors and had no apparent effect on membrane translocation. The results suggest that the decreased cytotoxicity of the mutant is solely due to the reduced ADP-ribosyltransferase activity.  相似文献   

17.
3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) lyase catalyzes the divalent cation-dependent cleavage of HMG-CoA to form acetyl-CoA and acetoacetate. In metal-dependent aldol and Claisen reactions, acidic residues often function either as cation ligands or as participants in general acid/base catalysis. Site-directed mutagenesis was used to produce conservative substitutions for the conserved acidic residues Glu-37, Asp-42, Glu-72, Asp-204, Glu-279, and Asp-280. HMG-CoA lyase deficiency results from a human mutation that substitutes lysine for glutamate 279. The E279K mutation has also been engineered; expression in Escherichia coli produces an unstable protein. Substitution of alanine for glutamate 279 produces a protein that is sufficiently stable for isolation and retains substantial catalytic activity. However, thermal inactivation experiments demonstrate that E279A is much less stable than wild-type enzyme. HMG-CoA lyase deficiency also results from mutations at aspartate 42. Substitutions that eliminate a carboxyl group at residue 42 perturb cation binding and substantially lower catalytic efficiency (104-105-fold decreases in specific activity for D42A, D42G, or D42H versus wild-type). Substitutions of alanine for the other conserved acidic residues indicate the importance of glutamate 72. E72A exhibits a 200-fold decrease in kcat and >103-fold decrease in kcat/Km. E72A is also characterized by inflation in the Km for activator cation (26-fold for Mg2+; >200-fold for Mn2+). Similar, but less pronounced, effects are measured for the D204A mutant. E72A and D204A mutant proteins both bind stoichiometric amounts of Mn2+, but D204A exhibits only a 2-fold inflation in KD for Mn2+, whereas E72A exhibits a 12-fold inflation in KD (23 microm) in comparison with wild-type enzyme (KD = 1.9 microm). Acidic residues corresponding to HMG-CoA lyase Asp-42 and Glu-72 are conserved in the HMG-CoA lyase protein family, which includes proteins that utilize acetyl-CoA in aldol condensations. These related reactions may require an activator cation that binds to the corresponding acidic residues in this protein family.  相似文献   

18.
It is known that extracellular Mg2+ and Ca2+ can permeate TRPM7 and at the same time block the permeation by monovalent cations. In the present study, we examined the molecular basis for the conductivity and sensitivity of human TRPM7 to these divalent cations. Extracellular acidification to pH 4.0 markedly reduced the blocking effects of Mg2+ and Ca2+ on the Cs+ currents, decreasing their binding affinities: their IC50 values increased 510- and 447-fold, respectively. We examined the effects of neutralizing each of four negatively charged amino acid residues, Glu-1047, Glu-1052, Asp-1054 and Asp-1059, within the putative pore-forming region of human TRPM7. Mutating Glu-1047 to alanine (E1047A) resulted in non-functional channels, whereas mutating any of the other residues resulted in functionally expressed channels. Cs+ currents through D1054A and E1052A were less sensitive to block by divalent cations; the IC50 values were increased 5.5- and 3.9-fold, respectively, for Mg2+ and 10.5- and 6.7-fold, respectively, for Ca2+. D1059A also had a significant reduction, though less marked compared to the reductions seen for D1054A and E1052A, in sensitivity to Mg2+ (1.7-fold) and Ca2+ (3.9-fold). The D1054A mutation largely abolished inward currents conveyed by Mg2+ and Ca2+. In the E1052A and D1059A mutants, inward Mg2+ and Ca2+ currents were sizable but significantly diminished. Thus, it is concluded that in human TRPM7, (1) both Asp-1054 and Glu-1052, which are located near the narrowest portion in the pore's selectivity filter, may provide the binding sites for Mg2+ and Ca2+, (2) Asp-1054 is an essential determinant of Mg2+ and Ca2+ conductivity, and (3) Glu-1052 and Asp-1059 facilitate the conduction of divalent cations.  相似文献   

19.
Diphtheria toxin and exotoxin A are well-characterized members of the ADP-ribosyltransferase toxin family that function as virulence factors in the pathogenic bacteria Corynebacterium diphtheriae and Pseudomonas aeruginosa. Recent high-resolution structural data of the Michaelis (enzyme-substrate) complex of the P. aeruginosa toxin with an NAD(+) analog and eukaryotic elongation factor 2 (eEF2) have provided insights into the mechanism of inactivation of protein synthesis caused by these protein factors. In addition, rigorous steady-state and stopped-flow kinetic analyses of the toxin-catalyzed reaction, in combination with inhibitor studies, have resulted in a quantum leap in our understanding of the mechanistic details of this deadly enzyme mechanism. It is now apparent that these toxins use stealth and molecular mimicry in unleashing their toxic strategy in the infected host eukaryotic cell.  相似文献   

20.
Choleragen (cholera toxin) activates adenylate cyclase by catalyzing ADP-ribosylation of Gs alpha, the stimulatory guanine nucleotide-binding protein. It was recently found (Tsai, S.-C., Noda, M., Adamik, R., Moss, J., and Vaughan, M. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 5139-5142) that a bovine brain membrane protein known as ADP-ribosylation factor or ARF, which enhances ADP-ribosylation of Gs alpha, also increases the GTP-dependent NAD:arginine and NAD:protein ADP-ribosyltransferase, NAD glycohydrolase, and auto-ADP-ribosylation activities of choleragen. We report here the purification and characterization of two soluble proteins from bovine brain that similarly enhance the Gs alpha-dependent and independent ADP-ribose transfer reactions catalyzed by toxin. Like membrane ARF, both soluble factors are 19-kDA proteins dependent on GTP or GTP analogues for activity. Maximal ARF effects were observed at a molar ratio of less than 2:1, ARF/toxin A subunit. Dimyristoyl phosphatidylcholine was necessary for optimal ADP-ribosylation of Gs alpha but inhibited auto-ADP-ribosylation of the choleragen A1 subunit and NAD:agmatine ADP-ribosyltransferase activity. It appears that the soluble factors directly activate choleragen in a GTP-dependent fashion. The relationships of the ARF proteins to the ras oncogene products and to the family of guanine nucleotide-binding regulatory proteins that includes Gs alpha remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号