首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The versatile carbonyl reductases from Gluconobacter oxydans in the enantioselective reduction of ketones to the corresponding alcohols were exploited by genome search approach. All purified enzymes showed activities toward the tested ketoesters with different activities. In the reduction of 4-phenyl-2-butanone with in situ NAD(P)H regeneration system, (S)-alcohol was obtained with an e.e. of up to 100% catalyzed by Gox0644. Under the same experimental condition, all enzymes catalyzed ethyl 4-chloroacetoacetate to give chiral products with an excellent e.e. of up to 99%, except Gox0644. Gox2036 had a strict requirement for NADH as the cofactor and showed excellent enantiospecificity in the synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate. For the reduction of ethyl 2-oxo-4-phenylbutyrate, excellent e.e. (>99%) and high conversion (93.1%) were obtained by Gox0525, whereas the other enzymes showed relatively lower e.e. and conversions. Among them, Gox2036 and Gox0525 showed potentials in the synthesis of chiral alcohols as useful biocatalysts.  相似文献   

2.
Ethyl (R)-2-hydroxy-4-phenylbutanoate [(R)-HPBE] is a versatile and important chiral intermediate for the synthesis of angiotensin-converting enzyme (ACE) inhibitors. Recombinant E. coli strain coexpressing a novel NADPH-dependent carbonyl reductase gene iolS and glucose dehydrogenase gene gdh from Bacillus subtilis showed excellent catalytic activity in (R)-HPBE production by asymmetric reduction. IolS exhibited high stereoselectivity (>98.5% ee) toward α-ketoesters substrates, whereas fluctuant ee values (53.2–99.5%) for β-ketoesters with different halogen substitution groups. Strategies including aqueous/organic biphasic system and substrate fed-batch were adopted to improve the biocatalytic process. In a 1-L aqueous/octanol biphasic reaction system, (R)-HPBE was produced in 99.5% ee with an exceptional catalyst yield (gproduct/gcatalyst) of 31.7 via bioreduction of ethyl 2-oxo-4-phenylbutyrate (OPBE) at 330 g/L.  相似文献   

3.
Wang LJ  Li CX  Ni Y  Zhang J  Liu X  Xu JH 《Bioresource technology》2011,102(14):7023-7028
An NADH-dependent reductase (ScCR) from Streptomyces coelicolor was discovered by genome mining for carbonyl reductases. ScCR was overexpressed in Escherichia coli BL21, purified to homogeneity and its catalytic properties were studied. This enzyme catalyzed the asymmetric reduction of a broad range of prochiral ketones including aryl ketones, α- and β-ketoesters, with high activity and excellent enantioselectivity (>99% ee) towards β-ketoesters. Among them, ethyl 4-chloro-3-oxobutanoate (COBE) was efficiently converted to ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE), an important pharmaceutical intermediate, in water/toluene biphasic system. As much as 600 g/L (3.6 M) of COBE was asymmetrically reduced within 22 h using 2-propanol as a co-substrate for NADH regeneration, resulting in a yield of 93%, an enantioselectivity of >99% ee, and a total turnover number (TTN) of 12,100. These results indicate the potential of ScCR for the industrial production of valuable chiral alcohols.  相似文献   

4.
The gene encoding a novel alcohol dehydrogenase that belongs to the short-chain dehydrogenases/reductases superfamily was identified in the aerobic thermoacidophilic crenarchaeon Sulfolobus acidocaldarius strain DSM 639. The saadh2 gene was heterologously overexpressed in Escherichia coli, and the resulting protein (SaADH2) was purified to homogeneity and both biochemically and structurally characterized. The crystal structure of the SaADH2 NADH-bound form reveals that the enzyme is a tetramer consisting of identical 27,024-Da subunits, each composed of 255 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to 80 °C and a 30-min half-inactivation temperature of ~88 °C. It also shows good tolerance to common organic solvents and a strict requirement for NAD(H) as the coenzyme. SaADH2 displays a preference for the reduction of alicyclic, bicyclic and aromatic ketones and α-ketoesters, but is poorly active on aliphatic, cyclic and aromatic alcohols, showing no activity on aldehydes. Interestingly, the enzyme catalyses the asymmetric reduction of benzil to (R)-benzoin with both excellent conversion (98 %) and optical purity (98 %) by way of an efficient in situ NADH-recycling system involving a second thermophilic ADH. The crystal structure of the binary complex SaADH2–NADH, determined at 1.75 Å resolution, reveals details of the active site providing hints on the structural basis of the enzyme enantioselectivity.  相似文献   

5.
The alcohol dehydrogenase from horse liver is able to catalyze the oxidation of a number of 1,2-diols and α-aminoalcohols enantioselectively to l-α-hydroxyaldehydes and l-α-amino aldehydes. A decrease of enantioselectivity was found in reactions with 1,3-diols and substrates with hydrophobic substituent at position 3. α-Aminoalcohols are not substrates for yeast alcohol dehydrogenase, but the enzyme can catalyze the oxidation of most of the diols to l-hydroxyaldehydes. New methods for determination of the optical purity of α-hydroxy-and α-aminoaldehydes via converting them in situ to the corresponding acids, catalyzed by the aldehyde dehydrogenase from yeast, have been developed. The coupled alcohol dehydrogenase/aldehyde dehydrogenase has been extended to preparatory scale synthesis of optically pure l-α-hydroxyacids in the presence of a cofactor regeneration system. The active-site cubic-space section model has been shown not to be applicable to all substrates.  相似文献   

6.
Two cytosolic nicotinamide adenine dinucleotide phosphate-dependent aldehyde reductases, Gox1899 and Gox2253, from Gluconobacter oxydans 621H were overproduced and purified from Escherichia coli. The purified proteins exhibited subunit masses of 26.4 (Gox1899) and 36.7 kDa (Gox2253). Both proteins formed homo-octamers exhibiting native masses of 210 and 280 kDa, respectively. The substrate spectra, optimal reaction conditions, and kinetic constants were determined for Gox1899 and Gox2253. Both enzymes efficiently catalyzed the reduction of medium/long-chain aldehydes. However, Gox1899 had a wider substrate spectrum and was more catalytically efficient. The best activity with Gox1899 was found for aliphatic aldehydes of C6-C10. In contrast, Gox2253 had a limited substrate spectrum and reduced octanal, nonanal, and decanal. Both enzymes were unable to oxidize primary alcohols. Aldehyde removal may be of particular importance for Gluconobacter because the membrane-bound alcohol dehydrogenase rapidly oxidizes short to long-chain alcohols, and large quantities of aldehydes could enter the cell, making detoxification necessary.  相似文献   

7.
A new, acyclic NAD-analog, acycloNAD+ has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD+ with a redox potential of −324 mV and a 341 nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD+ by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD+. The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon–hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD+. In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD+ by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD+ has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases.  相似文献   

8.
Zygophyllum album has been used as herbal medicine in Southern Tunisia to treat several diseases such as diabetes mellitus. This study is aimed to reveal the mechanisms underlying the antihyperglycemic potential, the anti-inflammatory and the protective hematological proprieties of this plant in diabetic rats. The inhibition of the α-amylase activity by different solvent-extract fractions of Z. album was tested in vitro. The fraction endowed with the powerful inhibitory activity against α-amylase was administered to surviving diabetic rats for 30 days. Data from in vitro indicated that each extract from the medicinal plant showed moderate inhibition of α-amylase enzyme except the ethyl acetate extract which was ineffective. The powerful inhibition was achieved by ethanol extract of Z. album (EZA) with an IC50 of 43.48 μg/ml as compared to acarbose (Acar) with an IC50 of 14.88 μg/ml. In vivo, the results showed that EZA decreased the α-amylase levels in serum, pancreas and intestine of diabetic rats by 40 %, 45 % and 46 %, respectively, associated with considerably reduction in blood glucose rate by 61 %. Moreover, the EZA helped to protect the structure and function of the β-cells. Interestingly, EZA had a potent anti-inflammatory effect which is manifested by decreases in CRP and TNF-α levels. Overall, a notable reduction in lipase activity both in serum and small intestine of treated diabetic rats resulted in the improvement of serum and liver lipids profile. Z. album showed a prominent antidiabetic effect via inhibition of carbohydrate and lipid digestive enzymes and ameliorated the inflammation and the disturbance of hematological biomarkers in diabetes.  相似文献   

9.
The proton magnetic resonance spectra of the dihydronicotinamide ring of αNADH3 and the nicotinamide ring of αNAD+ are reported and the proton absorptions assigned. The absolute assignment of the C4 methylene protons of αNADH is based on the generation of specifically deuterium-labeled (pro-S) B-deuterio-αNADH from enzymatically prepared B-deuterio-βNADH. The C4 proton absorption of αNAD+ is assigned by oxidation of B-deuterio-αNADH by the A specific, yeast alcohol dehydrogenase to yield 4-deuterio-αNAD+.The epimerization of either αNADH or βNADH yields an equilibrium ratio of approximately 9:1 βNADH to αNADH. The rate of epimerization of αNADH to βNADH at 38 °C in 0.05, pH 7.5, phosphate buffer is 3.1 × 10?3 min?1, corresponding to a half-life of 4 hr. Four related dehydrogenases, yeast and horse liver alcohol dehydrogenase and chicken M4 and H4 lactate dehydrogenase, are shown to oxidize αNADH to αNAD+ at rates three to four orders of magnitude slower than for βNADH. By using specifically labeled B-deuterio-αNADH the enzymatic oxidation by yeast alcohol dehydrogenase has been shown to occur with the identical stereospecificity as the oxidation of βNADH. The nonenzymatic epimerization of αNADH to βNADH and the enzymatic oxidation αNADH are discussed as a possible source of αNAD+in vivo.  相似文献   

10.
The gene encoding a novel short-chain alcohol dehydrogenase in the thermophilic bacterium, Carboxydothermus hydrogenoformans, was identified and overexpressed in Escherichia coli. The enzyme was thermally stable and displayed the highest activity at 70 °C and pH 6.0. It preferred NAD(H) over NADP(H) as a cofactor and exhibited broad substrate specificity towards aliphatic ketones, cycloalkanones, aromatic ketones, and ketoesters. Furthermore, ethyl benzoylformate was asymmetrically reduced by the purified enzyme, using an additional coupled NADH regeneration system, with 95 % conversion and in an enantiomeric excess of (99.9 %). The results of this study may lead to the discovery of a novel method for asymmetric reduction of alcohols, which is an important tool in organic synthesis.  相似文献   

11.
Autochthonous Oenococcus oeni strains (MS9, MS20 and MS46) with good malolactic performance and yielding adequate diacetyl levels, were selected to investigate the effect of synthetic and grape glycosides on bacterial growth, substrate utilization and β-glucosidase (βGlu), α-arabinofuranosidase (αAra) and α-rhamnopyranosidase (αRha) activities in a wine-like medium containing 6% ethanol, pH 4.0 (WBM). Then, changes in the volatile compounds profile were evaluated at the end of malolactic fermentation (MLF) carried out by the MS46 strain in WBM containing 1 mg L?1 of natural glycoside. All strains grew and efficiently degraded l-malic acid in WBM where βGlu and αAra activities were found but not αRha. In presence of a synthetic glycoside (eriodictyol 7-O-β-rutinoside) βGlu activity was significantly enhanced for two of the cultures tested (MS20 and MS460) while a low αRha activity was induced, presenting MS46 the better performance. Glycosides extracted from fermented grape musts under different conditions allowed maximum growths, l-malic acid utilization rates and glycosidase activities in the MS46 strain. Thus, βGlu, αAra and αRha activities increased between 30–50 and 3–11% respectively. This indirectly correlated to significant changes in total esters and higher alcohols at the end of MLF, which increased by up to 140 and 30% respectively. Moreover, ethyl and acetate esters formed up to 100-fold than alcohols or esters degraded highlighted the main role of this microorganism in the esters synthesis. Results obtained encourage the potential use of selected indigenous O. oeni strains as a tool to enhance wine complexity through MLF, mainly on highly fruity aroma.  相似文献   

12.
13.
A cofactor regeneration system for enzymatic biosynthesis was constructed by coexpressing a carbonyl reductase from Pichia stipitis and a glucose dehydrogenase from Bacillus megaterium in Escherichia coli Rosetta (DE3) PlySs. Transformants containing the polycistronic plasmid pET-PII-SD2-AS1-B exhibited an activity of 13.5 U/mg protein with 4-chloro-3-oxobutanoate ethyl ester (COBE) as the substrate and an activity of 14.4 U/mg protein with glucose as the substrate; NAD(H) was the coenzyme in both cases. Asymmetric reduction of COBE to (S)-4-chloro-3-hydroxybutanoate ethyl ester [(S)-CHBE] with more than 99% enantiomeric excess was demonstrated by transformants. Furthermore, the paper made a comparison of crude enzyme catalysis and whole-cell catalysis in an aqueous monophasic system and a water/organic solvent biphasic system. In the water/n-butyl acetate system, the coexpression system produced 1,398 mM CHBE in the organic phase, which is the highest yield ever reported for CHBE production by NADH-dependent reductases from yeasts. In this case, the molar yield of CHBE was 90.7%, and the total turnover number, defined as moles (S)-CHBE formed per mole NAD+, was 13,980.  相似文献   

14.
Escherichia coli strain CAR001 that produces β-carotene was genetically engineered to produce lycopene by deleting genes encoding zeaxanthin glucosyltransferase (crtX) and lycopene β-cyclase (crtY) from the crtEXYIB operon. The resulting strain, LYC001, produced 10.5 mg lycopene/l (6.5 mg/g dry cell weight, DCW). Modulating expression of genes encoding α-ketoglutarate dehydrogenase, succinate dehydrogenase and transaldolase B within central metabolic modules increased NADPH and ATP supplies, leading to a 76 % increase of lycopene yield. Ribosome binding site libraries were further used to modulate expression of genes encoding 1-deoxy-d-xylulose-5-phosphate synthase (dxs) and isopentenyl diphosphate isomerase (idi) and the crt gene operon, which improved the lycopene yield by 32 %. The optimal strain LYC010 produced 3.52 g lycopene/l (50.6 mg/g DCW) in fed-batch fermentation.  相似文献   

15.
A novel aldo–keto reductase (LEK) from Lodderomyces elongisporus NRRL YB-4239 (ATCC 11503) was discovered by genome database mining for carbonyl reduction. LEK was overexpressed in Escherichia coli BL21 (DE3), purified to homogeneity and the catalytic properties were studied. Among the substrates, ethyl 4-chloro-3-oxobutanoate was converted to ethyl (R)-4-chloro-3- hydroxybutanoate ((R)-CHBE), an important pharmaceutical intermediate, with an excellent enantiomeric excess (e.e.) (>99 %). The mutants W28A and S209G obtained by site-directed mutation were identified with much higher molar conversion yields and lower Km values. Further, the constructed coenzyme regeneration system with glucose as co-substrate resulted in a yield of 100 %, an enantioselectivity of >99 %, and the calculated production rate of 56.51 mmol/L/H. These results indicated the potential of LEK for the industrial production of (R)-CHBE and other valuable chiral alcohols.  相似文献   

16.
Rhodococcus erythropolis WZ010 was capable of producing optically pure (2S,3S)-2,3-butanediol in alcoholic fermentation. The gene encoding an acetoin(diacetyl) reductase from R. erythropolis WZ010 (ReADR) was cloned, overexpressed in Escherichia coli, and subsequently purified by Ni-affinity chromatography. ReADR in the native form appeared to be a homodimer with a calculated subunit size of 26,864, belonging to the family of the short-chain dehydrogenase/reductases. The enzyme accepted a broad range of substrates including aliphatic and aryl alcohols, aldehydes, and ketones. It exhibited remarkable tolerance to dimethyl sulfoxide (DMSO) and retained 53.6 % of the initial activity after 4 h incubation with 30 % (v/v) DMSO. The enzyme displayed absolute stereospecificity in the reduction of diacetyl to (2S,3S)-2,3-butanediol via (S)-acetoin. The optimal pH and temperature for diacetyl reduction were pH 7.0 and 30 °C, whereas those for (2S,3S)-2,3-butanediol oxidation were pH 9.5 and 25 °C. Under the optimized conditions, the activity of diacetyl reduction was 11.9-fold higher than that of (2S,3S)-2,3-butanediol oxidation. Kinetic parameters of the enzyme showed lower K m values and higher catalytic efficiency for diacetyl and NADH in comparison to those for (2S,3S)-2,3-butanediol and NAD+, suggesting its physiological role in favor of (2S,3S)-2,3-butanediol formation. Interestingly, the enzyme showed higher catalytic efficiency for (S)-1-phenylethanol oxidation than that for acetophenone reduction. ReADR-catalyzed asymmetric reduction of diacetyl was coupled with stereoselective oxidation of 1-phenylethanol, which simultaneously formed both (2S,3S)-2,3-butanediol and (R)-1-phenylethanol in great conversions and enantiomeric excess values.  相似文献   

17.
The NAD-dependent oxidation of ethanol, 2,3-butanediol, and other primary and secondary alcohols, catalyzed by alcohol dehydrogenases derived from Penicillium charlesii, was investigated. Alcohol dehydrogenase, ADH-I, was purified to homogeneity in a yield of 54%. The enzyme utilizes several primary alcohols as substrates, with Km values of the order of 10?4m. A Km value of 60 mm was obtained for R,R,-2,3-butanediol. The stereospecificity of the oxidation of 2-butanol was investigated, and S-(+)-2-butanol was found to be oxidized 2.4 times faster than was R-(?)-2-butanol. The reduction of 2-butanone was shown to produce S-(+)-2-butanol and R-(?)-butanol in a ratio of 7:3. ADH-I is the primary isozyme of alcohol dehydrogenase present in cultures utilizing glucose as the sole carbon source. The level of alcohol dehydrogenase activity increased 7.6-fold in mycelia from cultures grown with glucose and 2,3-butanediol (0.5%) as carbon sources compared with the activity in cultures grown on only glucose. Two additional forms of alcohol dehydrogenase, ADH-II and ADH-III, were present in the cultures supplemented with 2,3-butanediol. These forms of alcohol dehydrogenase catalyze the oxidation of ethanol and 2,3-butanediol. These data suggest that P. charlesii carries out an oxidation of 2,3-butanediol which may constitute the first reaction in the degradation of 2,3-butanediol as well as the last reaction in the mixed-acid fermentation. Alcohol dehydrogenase activities in P. charlesii may be encoded by multiple genes, one which is expressed constitutively and others whose expression is inducible by 2,3-butanediol.  相似文献   

18.
Gluconobacter oxydans enable to oxidize sugars and polyols incompletely to corresponding materials with potential industrial applications, containing around 75 putative dehydrogenases. One of these putative dehydrogenases, Gox2181, was cloned and expressed in Escherichia coli BL21 (DE3), and its X-ray crystal structure was determined to a resolution of 1.8 Å. Gox2181 formed a homo-tetramer in the crystal that was coincident with the apparent molecular mass determined in the solution. Gox2181 displayed α/β-folding patterns, the conserved catalytic tetrad of Asn119-Ser147-Tyr162-Lys166, and the NAD-binding pocket, which aligned well with the ‘classical’ type of short-chain dehydrogenase/reductase (SDR) enzymes. Gox2181 was denoted SDR51C based on the SDR nomenclature system. The purified recombinant Gox2181 was demonstrated to be NAD(H)-dependent and active towards a wide range of substrates, including sugar alcohols, secondary alcohols, ketones, and ketoses. Among the substrates tested, Gox2181 displayed preference for secondary hydroxyl or carbonyl groups, showing low Km values with d-arabitol and butanedione.  相似文献   

19.
The total contents of ethyl acetate, ethyl caproate, ethyl caprylate, isoamyl caproate, ethyl caprate, isoamyl caprylate, ethyl laurate, isoamyl caprate, ethyl myristate, ethyl palmitate, ethyl stearate, ethyl oleate, ethyl linoleate and β-phenethyl acetate in awamori ranged from 70.67 to 569.72 mg per l a t 100 per cent alcohol. The ratio of ethyl acetate content to the total content of 14 ester compounds (ethyl acetate/total esters) ranged from 0.59 to 0.86, and that of ethyl caprylate to the total esters was from 0.98 ×10−2 to 8.26 × 10−2. Ethyl acetate was the main component of ester compounds followed in descending order by ethyl caprate, ethyl palmitate and ethyl caprylate. Of the higher alcohols, awamori contained only β-phenethyl alcohol in significant quantity.On aging in kame 13 of 16 ester compounds tended to decrease distinctly and the remaining 3 components to show no distinct change, while 3 of 5 higher alcohols tended to increase distinctly. On aging in non-porous containers, however, 3 of 16 ester compounds decreased distinctly, and 3 of 5 higher alcohols increased distinctly. In the process of aging, esters underwent hydrolysis in kame but not in non-porous containers.  相似文献   

20.
The oxidizing activity of CYP109B1 from Bacillus subtilis was reconstituted in vitro with various artificial redox proteins including putidaredoxin reductase and putidaredoxin from Pseudomonas putida, truncated bovine adrenodoxin reductase and adrenodoxin, flavodoxin reductase and flavodoxin from Escherichia coli, and two flavodoxins from B. subtilis (YkuN and YkuP). Binding and oxidation of a broad range of chemically different substrates (fatty acids, n-alkanes, primary n-alcohols, terpenoids like (+)-valencene, α- and β-ionone, and the steroid testosterone) were investigated. CYP109B1was found to oxidize saturated fatty acids (conversion up to 99%) and their methyl and ethyl esters (conversion up to 80%) at subterminal positions with a preference for the carbon atoms C11 and C12 counted from the carboxyl group. For the hydroxylation of primary n-alcohols, the ω?2 position was preferred. n-Alkanes were not accepted as substrates by CYP109B1. Regioselective hydroxylation of terpenoids α-ionone (~70% conversion) and β-ionone (~ 91% conversion) yielded the allylic alcohols 3-hydroxy-α-ionone and 4-hydroxy-β-ionone, respectively. Furthermore, indole was demonstrated to inhibit fatty acid oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号