首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
硒蛋白P的研究进展   总被引:4,自引:0,他引:4  
硒蛋白P(SeP)是从大鼠和人血浆中分离,纯化得到的一种糖蛋白,每个硒蛋白P多肽含有10个硒代半胱氨酸,硒蛋白P中的硒含量占大鼠和人血浆中硒含量的50%以上,在其mRNA开放阅读框架中克隆的cDNA的序列含有10个UGA密码子。硒代半胱氨酸在一个UGA密码子处嵌入蛋白的一级结构,尽管对硒蛋白P功能还没有彻底了解,它的一种非常可能的作用是作为一种胞外抗氧化剂,大鼠血浆中的硒蛋白P在体内实验中对Diquat诱导的脂质过氧化和肝损坏具有保护作用,人血浆中的硒蛋白P在体外实验中显示减少内作为一存活促进因子。  相似文献   

2.
硒蛋白P的研究进展   总被引:3,自引:0,他引:3  
微量元素硒 (Se)作为许多具有重要生物功能的硒酶的活性中心 ,不但与机体的免疫应答及抗氧化作用等生理功能密切相关 ,而且能够降低癌症的发生率[1,2 ] 。在流行病学和临床研究中 ,常用血浆或全血中Se浓度作为衡量Se状态的指标 ,而且血浆浓度能比全血浓度更迅速地反映Se状态的变化。在哺乳动物血浆中 ,Se主要结合在 3种蛋白质中 :硒蛋白P、胞外谷胱甘肽过氧化物酶和清蛋白。其中硒蛋白P所含Se大约占血浆中全部Se浓度的 5 0 %。硒蛋白P不同于目前所鉴定的所有其他硒蛋白 ,因为它含有 10~ 12个硒代半胱氨酸 (SeCys)残…  相似文献   

3.
硒蛋白P的研究进展   总被引:2,自引:0,他引:2  
硒蛋白P最初在血浆中发现,占血浆总硒的60%,在其多肽链中有10个硒半胱氨酸。由10个读码框内的UGA编码,而UGA一般是作为终止密码子起作用,故硒蛋白P的生物合成需要多个特异的因子。如特异的tR-NA,延伸因子和mRNA上的特异的二级结构等。硒蛋白P的功能尚不清,初步的研究结果提示可有转运硒,抗氧化,结构重金属和神经营养等作用。  相似文献   

4.
生物合成硒蛋白机制的研究进展   总被引:8,自引:0,他引:8  
作为第 2 1种氨基酸 ,硒代半胱氨酸在翻译阶段由核糖体介导 ,在mRNA编码区的UGA密码子处参入多肽链。研究表明硒代半胱氨酸的参入需要一个顺式作用元件SECIS和 4个基因产物 :SelA、SelB、SelC、SelD。原核生物和真核生物的SECIS在mRNA中的位置和结构特征差异显著。在利用Escherichiacoli硒代半胱氨酸的参入机制合成硒蛋白方面 ,研究人员进行了有益的探索。  相似文献   

5.
硒蛋白合成的特殊机制   总被引:1,自引:0,他引:1  
硒蛋白含有一种特殊氨基酸-硒代半胱氨酸。在翻译阶段,该氨基酸从硒蛋白mRNA编码区的UGA密码子处掺入多肽链。已证明它由丝氨酸和活性硒供体分子合成。一种独特的tRNA,某些特殊蛋白质因子以及硒蛋白mRNA的特殊二级结构是UGA解读为硒代半胱氨酸所必需的。  相似文献   

6.
硒蛋白的分子生物学研究进展   总被引:18,自引:0,他引:18  
已有35种硒蛋白被分离和表征,但许多硒蛋白及其功能仍未完全阐明.硒半胱氨酸(Sec)作为参入蛋白质的第21种氨基酸,由硒蛋白mRNA上的UGA编码.在原核生物,Sec参入硒蛋白的复杂机制已经较为明确,需要四种基因产物(SELA、SELB、SELC和SELD)和一个存在于硒蛋白mRNA上的被称为Sec插入序列(SECIS)的茎环(stem loop)样二级结构.在真核生物,硒蛋白生物合成途径可能在SECIS的结构和位置、特异的延伸因子及其他RNA-RNA或RNA-蛋白质因子之间的相互作用等方面与原核生物不同.另外,哺乳动物硒蛋白mRNA上的UGA翻译为Sec的过程低效,特定位点的UGA密码子不同功能(终止密码和Sec密码)的调控可能是硒蛋白表达低效的关键.  相似文献   

7.
硒蛋白含有一种特殊氨基酸--硒代半胱氨酸。在翻译阶段,该氨基酸从硒蛋白mRNA编码区的UGA密码子处掺入多肽链。已证明它由丝氨酸和活性硒供体分子合成。一种独特的tRNA、某些特殊蛋白质因子以及硒蛋白mRNA的特殊二级结构是UGA解读为硒代半胱氨酸所必需的。  相似文献   

8.
硒蛋白的生物合成与调控   总被引:4,自引:0,他引:4  
硒蛋白是硒以硒半胱氨酸(Sec)形式参入形成的蛋白质。Sec作为参入蛋白质的第21种氨基酸,由硒蛋白mRNA上的UGA编码。在原核生物中,Sec参入硒蛋白的相关因子及其参入机制已基本阐明,Sec在SELA、SELB、SELC、SELD及Sec插入序列(SECIS)等的共同作用下参入到蛋白质中。在真核生物中,Sec参入硒蛋白的可能途径是:Ser-tRNA‘^[Ser]Sec。通过磷酸丝氨酰-tRNA^[Ser]Sec。最终转变为Sec-tRNA^[Ser]Sec,并在延伸因子及相关蛋白质因子的作用下参入到硒蛋白中。硒蛋白的合成在翻译前水平、mRNA水平、供硒水平等都受到相应的调控。  相似文献   

9.
疟蚊基因组中新硒蛋白的计算机识别   总被引:5,自引:0,他引:5  
硒蛋白的生物合成取决于硒代半胱氨酸插入蛋白质的过程. TGA码既是终止码、又可翻译成硒代半胱氨酸, 这使普通基因注释软件无法正确预测硒蛋白, 导致现有数据库中许多物种的硒蛋白被错误注释或丢失. 本研究基于已公布的疟蚊基因组预测信息、采用PERL语言编程, 对疟蚊基因组中的硒蛋白进行了计算机检索与分析. 结果表明: 以TGA码终止的基因有11365条, 其中具有SECIS结构的基因有918条, 同时具有半胱氨酸同源类似物的基因58条. 再经Sec侧翼序列比对, 最终检索到具有硒蛋白全部特点的基因7条. 从硒蛋白的基本生物功能推测, 冈比亚疟蚊基因组中存在的新硒蛋白可能与疟蚊的氧化耐受特性及其相关蛋白的调控相关联. 因此, 研究疟蚊硒蛋白将为干涉疟蚊带菌能力、从蚊媒传播途径防止疟疾提供理论基础.  相似文献   

10.
哺乳动物硒蛋白的研究进展   总被引:16,自引:0,他引:16  
硒是哺乳动物和人必需的微是元素。硒的生物学功能主要是以硒蛋白的形式表现的。到目前为止,已经克隆并测定cDNA顺序的哺乳动物硒蛋白有9种停,它们是细胞内谷胱甘肽过氧化物酶、细胞外谷胱甘肽过氧化物酶、磷脂氢谷胱甘肽过氧化物酶、胃肠谷胱甘肽过氧化物酶、I型碘化甲状腺原氨酸5′脱碘酶、Ⅱ型碘化甲状腺原氨酸5′脱磺酶、Ⅲ型碘化甲状腺原氨酸5′脱碘酶、硒蛋白P和硒蛋白W。这些硒蛋白中硒参入到蛋白分子是通过硒半  相似文献   

11.
Sepp1 is a widely expressed extracellular protein that in humans and mice contains 10 selenocysteine residues in its primary structure. Extra-hepatic tissues take up plasma Sepp1 for its selenium via apolipoprotein E receptor-2 (apoER2)-mediated endocytosis. The role of Sepp1 in the transport of selenium from liver, a rich source of the element, to peripheral tissues was studied using mice with selective deletion of Sepp1 in hepatocytes (Sepp1c/c/alb-cre+/− mice). Deletion of Sepp1 in hepatocytes lowered plasma Sepp1 concentration to 10% of that in Sepp1c/c mice (controls) and increased urinary selenium excretion, decreasing whole-body and tissue selenium concentrations. Under selenium-deficient conditions, Sepp1c/c/alb-cre+/− mice accumulated selenium in the liver at the expense of extra-hepatic tissues, severely worsening clinical manifestations of dietary selenium deficiency. These findings are consistent with there being competition for metabolically available hepatocyte selenium between the synthesis of selenoproteins and the synthesis of selenium excretory metabolites. In addition, selenium deficiency down-regulated the mRNA of the most abundant hepatic selenoprotein, glutathione peroxidase-1 (Gpx1), to 15% of the selenium-replete value, while reducing Sepp1 mRNA, the most abundant hepatic selenoprotein mRNA, only to 61%. This strongly suggests that Sepp1 synthesis is favored in the liver over Gpx1 synthesis when selenium supply is limited, directing hepatocyte selenium to peripheral tissues in selenium deficiency. We conclude that production of Sepp1 by hepatocytes is central to selenium homeostasis in the organism because it promotes retention of selenium in the body and effects selenium distribution from the liver to extra-hepatic tissues, especially under selenium-deficient conditions.  相似文献   

12.
Selenoprotein P protects low-density lipoprotein against oxidation   总被引:4,自引:0,他引:4  
Selenoprotein P (SeP) is an extracellular glycoprotein with 8-10 selenocysteines per molecule, containing approximately 50% of total selenium in human serum. An antioxidant function of SeP has been postulated. In the present study, we show that SeP protects low-density lipoproteins (LDL) against oxidation in a cell-free in-vitro system. LDL were isolated from human blood plasma and oxidized with CuCl2, 2,2'-azobis(2-amidinopropane) (AAPH) or peroxynitrite in the presence or absence of SeP, using the formation of conjugated dienes as parameter for lipid peroxidation. SeP delayed the CuCl2- and AAPH-induced LDL oxidation significantly and more efficiently than bovine serum albumin used as control. In contrast, SeP was not capable of inhibiting peroxynitrite-induced LDL oxidation. The protection of LDL against CuCl2- and AAPH-induced oxidation provides evidence for the antioxidant capacity of SeP. Because SeP associates with endothelial membranes, it may act in vivo as a protective factor inhibiting the oxidation of LDL by reactive oxygen species.  相似文献   

13.
Selenoprotein P is a newly characterized selenoprotein. It is the first protein described to contain multiple selenocysteines. It is secreted by the liver into the plasma and turns over rapidly. Its concentration is sensitive to the selenium status of the animal. Its function is unknown.  相似文献   

14.
In vivo studies have shown that selenium is supplied to testis and brain by apoER2-mediated endocytosis of Sepp1. Although cultured cell lines have been shown to utilize selenium from Sepp1 added to the medium, the mechanism of uptake and utilization has not been characterized. Rat L8 myoblast cells were studied. They took up mouse Sepp1 from the medium and used its selenium to increase their glutathione peroxidase (Gpx) activity. L8 cells did not utilize selenium from Gpx3, the other plasma selenoprotein. Neither did they utilize it from Sepp1(Δ240-361), the isoform of Sepp1 that lacks the selenium-rich C-terminal domain. To identify Sepp1 receptors, a solubilized membrane fraction was passed over a Sepp1 column. The receptors apoER2 and Lrp1 were identified in the eluate by mass spectrometry. siRNA experiments showed that knockdown of apoER2, but not of Lrp1, inhibited (75)Se uptake from (75)Se-labeled Sepp1. The addition of protamine to the medium or treatment of the cells with chlorate also inhibited (75)Se uptake. Blockage of lysosome acidification did not inhibit uptake of Sepp1 but did prevent its digestion and thereby utilization of its selenium. These results indicate that L8 cells take up Sepp1 by an apoER2-mediated mechanism requiring binding to heparin sulfate proteoglycans. The presence of at least part of the selenium-rich C-terminal domain of Sepp1 is required for uptake. RT-PCR showed that mouse tissues express apoER2 in varying amounts. It is postulated that apoER2-mediated uptake of long isoform Sepp1 is responsible for selenium distribution to tissues throughout the body.  相似文献   

15.
Selenoproteins are unique as they contain selenium in their active site in the form of the 21st amino acid selenocysteine (Sec), which is encoded by an in-frame UGA stop codon. Sec incorporation requires both cis- and trans-acting factors, which are known to be sufficient for Sec incorporation in vitro, albeit with low efficiency. However, the abundance of the naturally occurring selenoprotein that contains 10 Sec residues (SEPP1) suggests that processive and efficient Sec incorporation occurs in vivo. Here, we set out to study native SEPP1 synthesis in vitro to identify factors that regulate processivity and efficiency. Deletion analysis of the long and conserved 3′-UTR has revealed that the incorporation of multiple Sec residues is inherently processive requiring only the SECIS elements but surprisingly responsive to the selenium concentration. We provide evidence that processive Sec incorporation is linked to selenium utilization and that reconstitution of known Sec incorporation factors in a wheat germ lysate does not permit multiple Sec incorporation events, thus suggesting a role for yet unidentified mammalian-specific processes or factors. The relationship between our findings and the channeling theory of translational efficiency is discussed.  相似文献   

16.
Polychlorinated biphenyls and their metabolites are environmental pollutants that are believed to have adverse health effects presumably by inducing oxidative stress. To determine if 1-(4-Chlorophenyl)-benzo-2,5-quinone (4-ClBQ; metabolite of 4-monochlorobiphenyl, PCB3)-induced oxidative stress is associated with changes in the expression of specific antioxidant genes, mRNA levels of 92 oxidative stress-response genes were analyzed using TaqMan Array Human Antioxidant Mechanisms (Life Technologies), and results were verified by performing quantitative RT-PCR assays. The expression of selenoprotein P (sepp1) was significantly downregulated (8- to 10-fold) in 4-ClBQ-treated HaCaT human skin keratinocytes, which correlated with a significant increase in MitoSOX oxidation. Overexpression of Mn-superoxide dismutase or catalase or treatment with N-acetyl-l-cysteine suppressed 4-ClBQ-induced toxicity. Sodium selenite supplementation also suppressed 4-ClBQ-induced decrease in sepp1 expression, which was associated with a significant inhibition in cell death. Furthermore, HaCaT cells overexpressing sepp1 were resistant to 4-ClBQ-induced oxidative stress and toxicity. These results demonstrate that SEPP1 represents a previously unrecognized regulator of PCB-induced biological effects. These results support the speculation that selenoproteins can be an attractive countermeasure for PCB-induced adverse biological effects.  相似文献   

17.
Selenium is an essential micronutrient important to human health. The main objective of this study is to describe serum selenium and selenoprotein P status in two samples of the Danish population. In addition, the influence of various factors potentially associated with selenium status was investigated.Blood samples from a total of 817 randomly selected subjects from two cities in Denmark were analyzed. Half of the samples were collected in 1997–1998 and the other half in 2004–2005. Samples from women aged 18–22, 40–45 and 60–65 years, and men aged 60–65 years were selected for this study. All subjects had filled in a food frequency questionnaire (FFQ) and a questionnaire with information about smoking habits, alcohol consumption and exercise habits.Mean serum selenium level was 98.7±19.8 μg/L and median selenoprotein P level was 2.72 (2.18–3.49) mg/L. Serum selenium and selenoprotein P increased with age, and selenoprotein P was higher in men than in women. Serum selenium levels decreased by 5% on average from 1997–98 to 2004–05 (P<0.001), whereas selenoprotein P level increased (P<0.001). The intake of fish correlated weakly with serum selenium level (r=0.14, P<0.001) but not with selenoprotein P level. Smoking status, alcohol intake, exercise habits, BMI and medicine use did not influence selenium status.It is concluded that selenium status in this Danish population is at an acceptable level. No major groups with regard to age, sex or lifestyle factors could be identified as being in risk for selenium deficiency.  相似文献   

18.
19.
Selenoproteins are a unique family of proteins, characterized by the co-translational incorporation of selenium as selenocysteine, which play key roles in antioxidant defense. Among selenoproteins, selenoprotein P (Sepp1) is particularly distinctive due to the fact that it contains multiple selenocysteine residues and has been postulated to act in selenium transport. Within the brain, Sepp1 delivers selenium to neurons by binding to the ApoER2 receptor. Upon feeding a selenium-deficient diet, mice lacking ApoER2 or Sepp1 develop severe neurological dysfunction and exhibit widespread brainstem neurodegeneration, indicating an important role for ApoER2-mediated Sepp1 uptake in normal brain function. Selenocysteine lyase (Scly) is an enzyme that plays an important role in selenium homeostasis, in that it catalyzes the decomposition of selenocysteine and allows selenium to be recycled for additional selenoprotein synthesis. We previously reported that constitutive deletion of Scly results in neurological deficits only when mice are challenged with a low selenium diet. To gain insight into the relationship between Sepp1 and Scly in selenium metabolism, we created novel transgenic mice constitutively lacking both genes (Scly−/−Sepp1−/−) and characterized the neurobehavioral phenotype. We report that deletion of Scly in conjunction with Sepp1 further aggravates the phenotype of Sepp1−/− mice, as these mice needed supraphysiological selenium supplementation to survive, and surviving mice exhibited impaired motor coordination, audiogenic seizures, and brainstem neurodegeneration. These findings provide the first in vivo evidence that Scly and Sepp1 work cooperatively to maintain selenoprotein function in the mammalian brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号