首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An antigenic determinant common to the major capsid polypeptide (VP1) of simian virus 40 (SV40) and polyoma virus is described. Antisera prepared against intact viral particles reacted only with cells infected with the homologous virus by immunofluorescence tests (IF). However, antisera prepared against disrupted SV40 particles reacted in IF with both polyoma- and SV40-infected permissive cells. The cross-reaction with polyoma was localized to VP1 by the following evidence. (i) The IF cross-reaction was inhibited by preincubation of the antiserum with purified SV40 VP1; (ii) purified radiolabeled polyoma VP1 was precipitated by the cross-reactive serum, and this reaction was inhibited by unlabeled SV40 VP1; (iii) other antisera prepared against purified SV40 VP1 or polyoma VP1 reacted in IF with both SV40- and polyma-infected permissive cells. These cross-reacting antisera also reacted in IF with permissive cells infected with BK virus, rabbit kidney vacuolating virus, and the stumptailed macaque virus, suggesting that all members of the polyoma-SV40 subgroup share a common antigenic determinant located in their major capsid polypeptides.  相似文献   

2.
The structural proteins of polyoma virions and capsids were analyzed by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Polyoma virion VP1 was found to be composed of six distinct species which had pI's between pH 6.75 and 5.75. Polyoma capsid VP1 was found to contain four species with pI's between pH 6.60 and 5.75. The different forms of virion and capsid VP1 appeared to be generated by modifications (phosphorylation and acetylation) of the initial translation product. The most basic of the virion VP1 species (pI, pH 6.75) was absent in capsids and was found to be exclusively associated with the viral nucleoprotein complex. Three of the virion VP1 species and three of the capsid VP1 species were found in capsomere preparations enriched for hexon subunits. Two VP1 species were specifically immune precipitated from virions with hemagglutination-inhibiting antibodies. These two VP1 species were common to both virions and capsids. Polyoma virions, but not capsids, possessed a single VP1 species which was immune precipitated with neutralizing antibodies. Both virion and capsid VP2 were found to have pI's of approximately pH 5.50. Virion VP3 had a pI of approximately pH 7.00, whereas capsid VP3 had a pI of approximately pH 6.50.  相似文献   

3.
A study was undertaken to produce antisera to sodium dodecyl sulfate-derived polyoma virion polypeptides. With the use of this antisera, it was possible to detect, by immunofluorescence, cytoplasmic synthesis of V1, V2, and V3 polypeptides at 18 h postinfection and subsequent transport to the nucleus by 22 h postinfection. Anti-V1, anti-V2, and anti-V3 sera did not react with intact virions in an immunodiffusion assay, nor did they possess hemagglutination inhibition or viral neutralization activity. Antiserum produced against the four host histone polypeptides (V4 through V7) demonstrated immunofluorescence when reacted with polyoma-infected cells but not with uninfected cells. Antihistone serum was also capable of neutralizing viral infectivity, inhibiting hemagglutination and reacting with whole virions in an immunodiffusion assay.  相似文献   

4.
Four hybridoma cell lines producing monoclonal antibodies against intact polyoma virions were produced and characterized. These antibodies were selected for their ability to react with polyoma virions in an enzyme-linked immunosorbent assay. The antibodies immunoprecipitated polyoma virions and specifically recognized the major capsid protein VP1 on an immunoblot. Distinct VP1 isoelectric species were immunoprecipitated from dissociated virion capsomere preparations. Two-dimensional gel electrophoresis demonstrated antibody reactivity with specific VP1 species. Monoclonal antibodies E7 and G9 recognized capsomeres containing VP1 species D, E, and F, while monoclonal antibodies C10 and D3 recognized capsomeres containing species B and C. Two of the monoclonal antibodies, E7 and G9, were capable of neutralizing viral infection and inhibiting hemagglutination. The biological activity of the monoclonal antibodies correlated well with the biological function of the species with which they reacted.  相似文献   

5.
The preparation of antisera to the three purified sodium dodecyl sulfate (SDS)-treated polypeptide components (VP1, VP2, VP3) of adenovirus-associated virus (AAV) type 3H is described. In immunofluorescence tests (FA), these antisera stained heat-stable antigens with distinct morphologies in cells co-infected with either adenovirus or herpes simplex virus. Kinetic studies of antigen formation showed that VP1 antiserum first stained the cytoplasm (14 hr) and later (by 18 hr) stained both cytoplasmic and intranuclear areas. VP2 antiserum stained only discrete intranuclear areas, and VP3 antiserum stained nearly the entire nucleus. All three VP antigens appeared at about the 14th hr postinfection, about 2 hr prior to the appearance of whole virion antigen. The VP antisera cross-reacted in FA with AAV types 1 and 2 (all at one-eighth of the homologous titer), but did not react with other parvoviruses, i.e., rat virus, hemadsorbing enteric virus of calves, minute virus of mice, or H-1 virus. These non-neutralizing antisera reacted specifically with SDS-treated AAV virion antigens in complement fixation and immunodiffusion tests, and antiserum prepared against SDS-treated helper adenovirus structural polypeptides reacted with adenovirus polypeptide antigens. All antisera to SDS-treated polypeptides were specific for new antigens revealed on the dissociated peptides and did not react with whole virions, whereas whole-virion antisera did not cross-react with the polypeptide antigens. These findings suggest that antigens unique to the polypeptides of AAV are revealed by SDS treatment and that these antigens can be detected in cells prior to the folding of the polypeptides into the molecular configuration they possess as virion subunits. These results also indicate that at least one AAV polypeptide component is synthesized in the cell cytoplasm.  相似文献   

6.
The antigenic properties of purified glycinin subunits were studied using antibodies prepared against them. Antisera against native glycinin did not react with the isolated subunits, and antibodies prepared against the purified subunits were not active against native glycinin. When native glycinin -was denatured, the antiglycinin immunoglobulins lost their ability to react with it, although the denatured complex was then recognized by antibodies against the purified subunits. Substantial structural rearrangement apparently occurred when the native complex was denatured and disaggregated. Acidic polypeptides A1a, A1b, and A2 had similar determinants as judged by their reactions against A1a and A1a antisera. The reaction of the A3 polypeptides with these antibodies was of lower intensity and in each case clear spurs of cross-reactivity were visible. No cross-reaction was detected between polypeptide A4 and either anti-A1a or A2. Anti-A3 antibodies reacted with each of the acidic polypeptides of glycinin, and distinct spurs of cross-reactivity were observed between A3 vs A1a, A3 vs A2, and A3 vs A4. B1 Antisera developed a reaction of identity between basic polypeptides B1 and B2, but reacted very weakly with B3 and B4. The acidic and basic polypeptides of glycinin were immunologically unrelated. The results demonstrated that immunological tests would successfully differentiate some members of the family of acidic subunits, and other immunoglobulins would discriminate between members of the family of basic subunits.  相似文献   

7.
Polyoma virions have different attachment proteins which are responsible for hemagglutination of erythrocytes and attachment to cultured mouse kidney cells (MKC). Virion binding studies demonstrated that MKC possess specific (productive infection) and nonspecific (nonproductive) receptors. Empty polyoma capsids have hemagglutination activity and bind to non-specific MKC receptors, but they are not capable of competing for specific virion cell receptors or preventing productive infection. Isoelectric focusing of the virion major capsid protein, VP1, separated this protein into six species (A through F). These species had identical amino acid sequences, but differed in degree of modification (phosphorylation, acetylation, sulfation and hydroxylation). Evidence based upon precipitation with specific antisera supports the view that VP1 species E is required for specific adsorption and that D and F are required for hemagglutination. The virion attachment domain has been localized to an 18 kilodalton fragment of the C-terminal region of VP1. Monopinocytotic vesicles containing 125I-labeled polyoma virions were isolated from infected MKC. A crosslinker was used to bind the MKC cell receptor(s) covalently to VP1 attachment protein, and a new 120 kilodalton band was identified by SDS-PAGE. An anti-idiotype antibody prepared against a neutralizing polyoma monoclonal antiody was used to identify a putative 50 kilodalton receptor protein from a detergent extract of MKC, as well as from MKC membrane preparation.  相似文献   

8.
Herpes simplex virus virion protein 19C (VP19C) is a constituent of both unenveloped (nuclear) and enveloped (cytoplasmic) capsids. In this paper we report that 32P-labeled DNA, either supercoiled or linear double stranded, efficiently bound to VP19C electrically transferred from denaturing polyacrylamide gels containing electrophoretically separated proteins from purified capsids. Analyses of the polypeptides specified by herpes simplex virus type 1 X herpes simplex type 2 recombinants with respect to electrophoretic mobility and binding of 32P-labeled DNA indicate that VP19C maps at the same location as infected cell polypeptide 32 and is derived from it.  相似文献   

9.
Immunological comparisons were made of baculovirus structural proteins by using a modification of the radioimmunological techniques described by Renart et al. (Proc. Natl. Acad. Sci. U.S.A. 76: 3116-3120, 1979) and Towbin et al. (Proc. Natl. Acad. Sci. U.S.A. 76: 4350-4354, 1979). Viral proteins were electrophoresed in polyacrylamide gels, transferred to nitrocellulose, and incubated with viral antisera, and the antibodies were detected with 125I-labeled Staphylococcus aureus protein A. Antisera were prepared to purified and intact virions from five baculoviruses: Autographa californica, Porthetria dispar, Trichoplusia ni, and Heliothis zea nuclear polyhedrosis viruses (NPVs) and T. ni granulosis virus (GV). These antisera were tested against the virion structural polypeptides of 17 different species of baculoviruses. Specific multiple-nucleocapsid NPV (MNPV), single-nucleocapsid NPV (SNPV), and GV virion polypeptides were shown to have similar antigenic determinants and thus be immunologically related. The molecular weights of the virion polypeptides with cross-reacting antigenic determinants were identified. Antisera prepared to purified A. californica and H. zea MNPV polyhedrin (the occlusion body protein from NPVs) recognized antigenic determinants on all the polyhedrins and granulins (occlusion body protein from GVs) that were tested. No immunological relationship was detected between A. californica MNPV polyhedrin and any of the A. californica MNPV virion structural polypeptides present on either the virus isolated from occlusion bodies or A. californica MNPV extracellular virus from infected-cell cultures.  相似文献   

10.
An immunodominant region on baculovirus-produced parvovirus B19 VP2 capsids was localized between amino acids 259 and 426 by mapping the binding sites of a panel of monoclonal antibodies which recognize determinants on the particles. The binding sites of three monoclonal antibodies were fine-mapped within this antigenic domain. Six VP2-specific monoclonal antibodies recognized determinants common to both the empty capsids and native parvovirus. The defined antigenic region is most probably exposed on the native B19 virion and corresponds to part of the threefold spike on the surface of canine parvovirus particles.  相似文献   

11.
Structural protein complexes sedimenting at 140S, 70S (empty capsids), and 14S were isolated from foot-and-mouth disease virus-infected cells. The empty capsids were stable, while 14S complexes were relatively short-lived. Radioimmune binding assays involving the use of neutralizing monoclonal antibodies to six distinct epitopes on type A12 virus and polyclonal antisera to A12 structural proteins demonstrated that native empty capsids were indistinguishable from virus. Infected cell 14S particles possessed all the neutralizing epitopes and reacted with VP2 antiserum. Cell-free structural protein complexes sedimenting at 110S, 60S, and 14S containing capsid proteins VP0, VP3, and VP1 are assembled in a rabbit reticulocyte lysate programmed with foot-and-mouth viral RNA. These structures also contain the six epitopes, and cell-free 14S structures like their in vivo counterparts reacted with VP2 antiserum. Capsid structures from infected cells and the cell-free complexes adsorbed to susceptible cells, and this binding was inhibited, to various degrees, by saturating levels of unlabeled virus. These assays and other biochemical evidence indicate that capsid assembly in the cell-free system resembles viral morphogenesis in infected cells. In addition, epitopes on the virus surface possibly involved in interaction with cellular receptor sites are found early in virion morphogenesis.  相似文献   

12.
The rotavirus neutralizing antigen, VP7, is a 37,000-molecular-weight glycoprotein which is a major component of the outer shell of the virion. The amino acid sequence of VP7 for strain S2 (human serotype 2) and Nebraska calf diarrhea virus (bovine serotype) has been inferred from the nucleic acid sequence of cloned copies of genomic segment nine. Comparison of the amino acid sequences of these two VP7 proteins with those already determined for other rotavirus strains reveals extensive sequence conservation between serotypes with clusters of amino acid differences sited predominantly in hydrophilic domains of the protein. Six peptides have been synthesized that span the hydrophilic regions of the molecule. Antisera to these peptides both recognize the respective homologous peptides in a solid-phase radioimmunoassay and bind to denatured VP7 in a Western blot. However, none of the antisera either recognize virus or exhibit significant neutralizing activity, indicating that these peptide sequences are not available on the surface of the virus.  相似文献   

13.
The three serotypes of poliovirus were compared with respect to their polypeptide composition. Type 1, 2, and 3 strains were clearly different from each other in the electrophoretic mobilities of their larger structural polypeptides. Some of the viral polypeptides formerly identified as single peaks (e.g., VP 2) were shown to contain multiple components, indicating that purified virions contain at least six polypeptides. Three type 1 strains were indistinguishable in their viral polypeptides. A quantitative estimate was made of the polypeptide composition of the type 1 Mahoney poliovirion, as well as of naturally occurring empty capsids and 14S precursor particles. The data are discussed in light of the antigenic differences among polioviruses and the possible modes of virion morphogenesis.  相似文献   

14.
The expression of three antigenic subsets of C3--the C3(S), the C3(N), and the C3(D) antigens--by soluble and target-bound forms of C3 was studied. The C3(S) subset is stable and is expressed by native as well as denatured C3 (exposure to sodium dodecyl sulphate (SDS) M greater than or equal to 10(-3)). The C3(N) and C3(D) subsets are labile and are expressed by native and denatured C3, respectively. Antisera to native C3, anti-C3(S-N), react with the C3(S) as well as the C3(N) subset. Antisera to isolated C3 subunits react exclusively with the C3(D) subset. A separation of anti-C3(S) and anti-C3(N) antibodies was accomplished by adsorbing the anti-C3(S-N) antiserum with insolubilized, denatured C3, anti-C3(N) antibodies remained unadsorbed. Anti-C3(S) antibodies were adsorbed and subsequently eluted from the denatured C3. Agglutination studies with EAC1423b cells showed significant agglutination with anti-C3(S) and anti-C3(D) antisera but reduced agglutination with anti-C3(N) antisera. Agglutination by anti-C3(D) antisera was unaffected in the presence of EDTA serum containing converted or unconverted C3. These data suggest an antigenic modification of C3b-b' upon binding that mirrors the antigenic transition associated with SDS denaturation of C3.  相似文献   

15.
Structural polypeptides of rabbit, bovine, and human papillomaviruses.   总被引:24,自引:16,他引:8       下载免费PDF全文
M Favre 《Journal of virology》1975,15(5):1239-1247
The number and apparent molecular weight of the structural polypeptides of Shope rabbit papilloma virus (RPV), bovine papilloma virus (BPV), and human papilloma virus (HPV) were estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Up to 10 polypeptides were detected in highly purified BPV and HPV full particles; a close homology was found between the polypeptide composition of both viruses. Purified RPV virions gave a similar polypeptide pattern. The main components of the three papillomaviruses are the major polypeptide (VP1) with a mol wt of approximately 54,000 and the three smaller polypeptides (VP8, 9, 10) with mol wt of about 16,500, 15,500 and 12,500, respectively. VP8, VP9, and VP10 are never detected in empty capsids. When BPV virions were disrupted with alkaline buffer, the six lower-molecular-weight polypeptides (VP5 to 10) remained associated with viral DNA. This suggests that they are internal components of the virions and that the four higher-molecular-weight polypeptides (VP1 to 4) may represent external components. The polypeptide compositions of BPV and polyoma virus, another papovavirus, have been compared. The number of BPV and polyoma virus components (10 and 6, respectively) and the molecular weight of their major polypeptide (54,000 and 44,500, respectively) are different; however, the three main DNA-associated polypeptides of BPV (VP8, 9, 10) and the three histone-like components of polyoma virus (VP4, 5, 6) were shown to have identical apparent molecular weights. The possibility that some of the minor components of papillomaviruses may be proteolytic degradation products or cell protein contaiminants is discussed.  相似文献   

16.
HA1 and HA2 polypeptides of influenza A virus haemagglutinin (HA) were separated in purified form using electrophoresis in SDS containing polyacrylamide gels (PAGE) or chloroform-methanol extraction. The populations of HA1 polypeptides were immunogenic but considerably less so than the intact HA molecule and induced antibody which cross-reacted with influenza A and B viruses. After absorption with heterologous influenza B virus, the cross-reacting antibodies were removed and the HA1 antisera then possessed antibodies which reacted only with the cross-reactive (CR) determinants of the HA of the homologous influenza A virus and viruses of the same subtype. Neither strain-specific (SS) nor virus-neutralizing antibodies were detected in these anti-HA1 sera. HA2 polypeptides were less immunogenic and anti-HA2 antisera after absorption with influenza B virus failed to react with influenza A virus in immuno double diffusion tests and only reacted with partially denatured HA in the more sensitive single radial diffusion tests.  相似文献   

17.
We used 18 monoclonal antibodies against B19 parvovirus to identify neutralizing epitopes on the viral capsid. Of the 18 antibodies, 9 had in vitro neutralizing activity in a bone marrow colony culture assay. The overlapping polypeptide fragments spanning the B19 structural proteins were produced in a pMAL-c Escherichia coli expression system and used to investigate the binding sites of the neutralizing antibodies. One of the nine neutralizing antibodies reacted with both VP1 and VP2 capsid proteins and a single polypeptide fragment on an immunoblot, identifying a linear neutralizing epitope between amino acids 57 and 77 of the VP2 capsid protein. Eight of nine neutralizing antibodies failed to react with either of the capsid proteins or any polypeptide fragments, despite reactivities with intact virions in a radioimmunoassay, suggesting that additional conformationally dependent neutralizing epitopes exist.  相似文献   

18.
Ros C  Gerber M  Kempf C 《Journal of virology》2006,80(24):12017-12024
The unique region of the capsid protein VP1 (VP1u) of human parvovirus B19 (B19) elicits a dominant immune response and has a phospholipase A(2) (PLA(2)) activity, which is necessary for the infection. In contrast to the rest of the parvoviruses, the VP1u of B19 is thought to occupy an external position in the virion, making this region a promising candidate for vaccine development. By using a monoclonal antibody against the most-N-terminal portion of VP1u, we revealed that this region rich in neutralizing epitopes is not accessible in native capsids. However, exposure of capsids to increasing temperatures or low pH led to its progressive accessibility without particle disassembly. Although unable to bind free virus or to block virus attachment to the cell, the anti-VP1u antibody was neutralizing, suggesting that the exposure of the epitope and the subsequent virus neutralization occur only after receptor attachment. The measurement of the VP1u-associated PLA(2) activity of B19 capsids revealed that this region is also internal but becomes exposed in heat- and in low-pH-treated particles. In sharp contrast to native virions, the VP1u of baculovirus-derived B19 capsids was readily accessible in the absence of any treatment. These results indicate that stretches of VP1u of native B19 capsids harboring neutralizing epitopes and essential functional motifs are not external to the capsid. However, a conformational change renders these regions accessible and triggers the PLA(2) potential of the virus. The results also emphasize major differences in the VP1u conformation between natural and recombinant particles.  相似文献   

19.
Ca2+ binding has been studied in isolated heart sarcolemmal membranes using the 45Ca overlay technique. 45Ca bound to two sarcolemmal polypeptides of 125 kDa and 97 kDa in preparations from dog, rabbit, cow and pig. During fractionation on DEAE ion-exchange and wheat-germ lectin affinity columns, the two Ca2(+)-binding polypeptides copurified with the dihydropyridine receptor associated with the voltage gated Ca2+ channel. These polypeptides were the major proteins in the isolated fraction as judged by silver staining in SDS-PAGE. Antisera raised against purified dog heart, sarcolemma indicated that the 125 and 97 kDa polypeptides were highly antigenic components of this membrane. The antisera cross-reacted with similar polypeptides in cardiac sarcolemmal preparations from rabbit, cow and pig, but not sarcoplasmic reticulum membranes. Purified antibodies against the 125 kDa polypeptide did not cross-react with the 97 kDa polypeptide, while antibodies against the 97 kDa polypeptide did not cross-react with the 125 kDa polypeptide. Both the 125 kDa and 97 kDa polypeptides bound wheat-germ lectin, suggesting both were glycoproteins. It is unlikely that these Ca2+ binding glycoproteins represent subunits of the dihydropyridine receptor-Ca2+ channel in this membrane.  相似文献   

20.
After disruption of echovirus type 7 virions with urea and heat, VP1 and VP2 were separated by isoelectric focusing in urea-containing sucrose gradients. Antisera to these two polypeptides were produced in guinea pigs. In complement fixation, antiserum to VP1 reacted with native and heated virions (N and H antigens, respectively) of homologous virus, and also cross-reacted with heated virions of some other enteroviruses used. Antiserum to VP2 was reactive only with heated virions of homologous and heterologous viruses. Interestingly, the anti-VP2 serum reacted neither with native nor even with heated procapsids (naturally-occurring empty capsids). Antiserum to VP1, but not VP2, showed neutralizing and hemagglutination-inhibiting activities. These results suggest that 1) both VP1 and VP2 possess cross-reactive antigenic determinants which are exposed on the surface of heated virions, and 2) type-specific determinants of VP1 are located on the surface of native virions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号