首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hairpin secondary structural elements play important roles in the folding and function of RNA and DNA molecules. Previous work from our lab on small DNA hairpin loop motifs, d(cGNAg) and d(cGNABg) (where B is C, G, or T), showed that folding is highly cooperative and obeys indirect coupling, consistent with a concerted transition. Herein, we investigate folding of the related, exceptionally stable RNA hairpin motif, r(cGNRAg) (where R is A or G). Previous NMR characterization identified a complex network of seven hydrogen bonds in this loop. We inserted three carbon (C3) spacers throughout the loop and found coupling between G1 of the loop and the CG closing base pair, similar to that found in DNA. These data support a GNRA motif being expandable at any position but before the G. Thermodynamic measurements of nucleotide-analogue-substituted oligonucleotides revealed pairwise-coupling free energies ranging from weak to strong. When coupling free energies were remeasured in the background of changes at a third site, they remained essentially unchanged even though all of the sites were coupled to each other. This type of coupling, referred to as "direct", is peculiar to the RNA loop. The data suggest that, for small stable loops, folding of RNA obeys a model with nearest-neighbor interactions, while folding of DNA follows a more concerted process in which the stabilizing interactions are linked through a conformational change. The lesser cooperativity in RNA loops may provide a more robust loop that can withstand mutations without a severe loss in stability. These differences may enhance the ability of RNA to evolve.  相似文献   

2.
RNA molecules have numerous functions including catalysis and small molecule recognition, which typically arise from a tertiary structure. There is increasing interest in mechanisms for the thermostability of functional RNA molecules. Sosnick, Pan, and co-workers introduced the notion of "functional stability" as the free energy of the tertiary (functional) state relative to the next most stable (nonfunctional) state. We investigated the extent to which secondary structure stability influences the functional stability of nucleic acids. Intramolecularly folding DNA triplexes containing alternating T*AT and C+*GC base triples were used as a three-state model for the folding of nucleic acids with functional tertiary structures. A four-base-pair tunable region was included adjacent to the triplex-forming portion of the helix to allow secondary structure strength to be modulated. The degree of folding cooperativity was controlled by pH, with high cooperativity maintained by lower pH (5.5), and no cooperativity by higher pH (7.0). We find a linear relationship between functional free energy and the free energy of the secondary structure element adjacent to tertiary interactions, but only when folding is cooperative. We translate the definition of functional stability into equations and perform simulations of the thermodynamic data, which lend support to this model. The ability to increase the melting temperature of tertiary structure by strengthening base-pairing interactions separate from tertiary interactions provides a simple means for evolving thermostability in functional RNAs.  相似文献   

3.
Most protein domains are found in multi-domain proteins, yet most studies of protein folding have concentrated on small, single-domain proteins or on isolated domains from larger proteins. Spectrin domains are small (106 amino acid residues), independently folding domains consisting of three long alpha-helices. They are found in multi-domain proteins with a number of spectrin domains in tandem array. Structural studies have shown that in these arrays the last helix of one domain forms a continuous helix with the first helix of the following domain. It has been demonstrated that a number of spectrin domains are stabilised by their neighbours. Here we investigate the molecular basis for cooperativity between adjacent spectrin domains 16 and 17 from chicken brain alpha-spectrin (R16 and R17). We show that whereas the proteins unfold as a single cooperative unit at 25 degrees C, cooperativity is lost at higher temperatures and in the presence of stabilising salts. Mutations in the linker region also cause the cooperativity to be lost. However, the cooperativity does not rely on specific interactions in the linker region alone. Most mutations in the R17 domain cause a decrease in cooperativity, whereas proteins with mutations in the R16 domain still fold cooperatively. We propose a mechanism for this behaviour.  相似文献   

4.
Behrouzi R  Roh JH  Kilburn D  Briber RM  Woodson SA 《Cell》2012,149(2):348-357
Noncoding RNAs form unique 3D structures, which perform many regulatory functions. To understand how RNAs fold uniquely despite a small number of tertiary interaction motifs, we mutated the major tertiary interactions in a group I ribozyme by single-base substitutions. The resulting perturbations to the folding energy landscape were measured using SAXS, ribozyme activity, hydroxyl radical footprinting, and native PAGE. Double- and triple-mutant cycles show that most tertiary interactions have?a small effect on the stability of the native state. Instead, the formation of core and peripheral structural motifs is cooperatively linked in near-native folding intermediates, and this cooperativity depends on the native helix orientation. The emergence of a cooperative interaction network at an early stage of folding suppresses nonnative structures and guides the search for the native state. We suggest that cooperativity in noncoding RNAs arose from natural selection of architectures conducive to forming?a unique, stable fold.  相似文献   

5.
Proteins fold up by coordinating the different segments of their polypeptide chain through a network of weak cooperative interactions. Such cooperativity results in unfolding curves that are typically sigmoidal. However, we still do not know what factors modulate folding cooperativity or the minimal amount that ensures folding into specific three-dimensional structures. Here, we address these issues on BBL, a small helical protein that folds in microseconds via a marginally cooperative downhill process (Li, P., Oliva, F. Y., Naganathan, A. N., and Muñoz, V. (2009) Proc. Natl. Acad. Sci. USA. 106, 103–108). Particularly, we explore the effects of salt-induced screening of the electrostatic interactions in BBL at neutral pH and in acid-denatured BBL. Our results show that electrostatic screening stabilizes the native state of the neutral and protonated forms, inducing complete refolding of acid-denatured BBL. Furthermore, without net electrostatic interactions, the unfolding process becomes much less cooperative, as judged by the broadness of the equilibrium unfolding curve and the relaxation rate. Our experiments show that the marginally cooperative unfolding of BBL can still be made twice as broad while the protein retains its ability to fold into the native three-dimensional structure in microseconds. This result demonstrates experimentally that efficient folding does not require cooperativity, confirming predictions from theory and computer simulations and challenging the conventional biochemical paradigm. Furthermore, we conclude that electrostatic interactions are an important factor in determining folding cooperativity. Thus, electrostatic modulation by pH-salt and/or mutagenesis of charged residues emerges as an attractive tool for tuning folding cooperativity.  相似文献   

6.
We have been unable to "force" double-stranded RNA to fold into nucleosome-like structures using several different histone-RNA "reconstitution" procedures. Even if the histones are first stabilized in octameric form by dimethylsuberimidate cross-linking they are still unable to form specific complexes with the RNA. Moreover double-stranded RNA is unable to induce histones to assemble into octamers although we confirm that the non-nucleic acid homopolymer, polyglutamic acid, has this ability. We have also determined, using pyrimidine tract analysis, that nucleosomes will not form over a sufficiently long segment of poly(dA).poly(dT) in a recombinant DNA molecule. Thus nucleosomes cannot fold DNA containing an 80 base pair poly(dA).poly(dT) segment but a 20 base pair segment can be accommodated in nucleosomes fairly well. Segments of intermediate length can be accommodated but are clearly selected against. Poly(dA).poly(dT) differs only slightly from natural DNA in helix structure. Therefore either this homopolymer resists folding, or nucleosomes are very exacting in the nucleic acid steroid parameters they will tolerate. Such constraints may be relevant to nucleosome positioning in chromatin.  相似文献   

7.
The crystal structure of the 19-mer RNA, 5'-GAAUGCCUGCGAGCAUCCC-3' has been determined from X-ray diffraction data to 1.6 A resolution by the multiwavelength anomalous diffraction method from crystals containing a brominated uridine. In the crystal, this RNA forms an 18-mer self-complementary double helix with the 19th nucleotide flipped out of the helix. This helix contains most of the target stem recognized by the bacteriophage Mu Com protein (control of mom), which activates translation of an unusual DNA modification enzyme, Mom. The 19-mer duplex, which contains one A.C mismatch and one A.C/G.U tandem wobble pair, was shown to bind to the Com protein by native gel electrophoresis shift assay. Comparison of the geometries and base stacking properties between Watson-Crick base pairs and the mismatches in the crystal structure suggest that both hydrogen bonding and base stacking are important for stabilizing these mismatched base pairs, and that the unusual geometry adopted by the A.C mismatch may reveal a unique structural motif required for the function of Com.  相似文献   

8.
Raman and Raman optical activity (ROA) spectra were collected for four RNA oligonucleotides based on the EMCV IRES Domain I to assess the contributions of helix, GNRA tetraloop, U·C mismatch base pair and pyrimidine-rich bulge structures to each. Both Raman and ROA spectra show overall similarities for all oligonucleotides, reflecting the presence of the same base paired helical regions and GNRA tetraloop in each. Specific bands are sensitive to the effect of the mismatch and asymmetric bulge on the structure of the RNA. Raman band changes are observed that reflect the structural contexts of adenine residues, disruption of A-form helical structure, and incorporation of pyrimidine bases in non-helical regions. The ROA spectra are also sensitive to conformational mobility of ribose sugars, and verify a decrease in A-type helix content upon introduction of the pyrimidine-rich bulge. Several Raman and ROA bands also clearly show cooperative effects between the mismatch and pyrimidine-rich bulge motifs on the structure of the RNA. The complementary nature of Raman and ROA spectra provides detailed and highly sensitive information about the local environments of bases, and secondary and tertiary structures, and has the potential to yield spectral signatures for a wide range of RNA structural motifs.  相似文献   

9.
The specificity of a homopyrimidine oligonucleotide binding to a homopurine-homopyrimidine sequence on double-stranded DNA was investigated by both molecular modeling and thermal dissociation experiments. The presence of a single mismatched triplet at the center of the triplex was shown to destabilize the triple helix, leading to a lower melting temperature and a less favorable energy of interaction. A terminal mismatch was less destabilizing than a central mismatch. The extent of destabilization was shown to be dependent on the nature of the mismatch. Both single base-pair substitution and deletion in the duplex DNA target were investigated. When a homopurine stretch was interrupted by one thymine, guanine was the least destabilizing base on the third strand. However, G in the third strand did not discriminate between a C.G and an A.T base pair. If the stretch of purines was interrupted by a cytosine, the presence of pyrimidines (C or T) in the third strand yielded a less destabilizing effect than purines. This study shows that oligonucleotides forming triple helices can discriminate between duplex DNA sequences that differ by one base pair. It provides a basis for the choice of antigene oligonucleotide sequences targeted to selected sequences on duplex DNA.  相似文献   

10.
The hairpin ribozyme in its natural context consists of two loops in RNA duplexes that are connected as arms of a four-way helical junction. Magnesium ions induce folding into the active conformation in which the two loops are in proximity. In this study, we have investigated nucleotides that are important to this folding process. We have analyzed the folding in terms of the cooperativity and apparent affinity for magnesium ions as a function of changes in base sequence and functional groups, using fluorescence resonance energy transfer. Our results suggest that the interaction between the loops is the sum of a number of component interactions. Some sequence variants such as A10U, G+1A, and C25U exhibit loss of cooperativity and reduced affinity of apparent magnesium ion binding. These variants are also very impaired in ribozyme cleavage activity. Nucleotides A10, G+1, and C25 thus appear to be essential in creating the conformational environment necessary for ion binding. The double variant G+1A/C25U exhibits a marked recovery of both folding and catalytic activity compared to either individual variant, consistent with the proposal of a triple-base interaction among A9, G+1, and C25 [Pinard, R., Lambert, D., Walter, N. G., Heckman, J. E., Major, F., and Burke, J. M. (1999) Biochemistry 38, 16035-16039]. However, substitution of A9 leads to relatively small changes in folding properties and cleavage activity, and the double variant G+1DAP/C25U (DAP is 2,6-diaminopurine), which could form an isosteric triple-base interaction, exhibits folding and cleavage activities that are both very impaired compared to those of the natural sequence. Our results indicate an important role for a Watson--Crick base pair between G+1 and C25; this may be buttressed by an interaction with A9, but the loss of this has less significant consequences for folding. 2'-Deoxyribose substitution leads to folding with reduced magnesium ion affinity in the following order: unmodified RNA > dA9 > dA10 > dC25 approximately dA10 plus dC25. The results are interpreted in terms of an interaction between the ribose ring of C25 and the ribose and base of A10, in agreement with the proposal of Ryder and Strobel [Ryder, S. P., and Strobel, S. A. (1999) J. Mol. Biol. 291, 295-311]. In general, there is a correlation between the ability to undergo ion-induced folding and the rate of ribozyme cleavage. An exception to this is provided by G8, for which substitution with uridine leads to severe impairment of cleavage but folding characteristics that are virtually unaltered from those of the natural species. This is consistent with a direct role for the nucleobase of G8 in the chemistry of cleavage.  相似文献   

11.
H H Klump  T M Jovin 《Biochemistry》1987,26(16):5186-5190
Ultraviolet spectroscopic and nuclear magnetic resonance (NMR) studies have shown that poly[r(G-C)] in a solution of 4 M NaClO4 undergoes a transition to a left-handed Z-RNA helix upon raising the temperature to 60 degrees C [Hall, K., Cruz, P., Tinoco, I., Jr., Jovin, T. M., & van de Sande, J. H. (1984) Nature (London) 311, 584-586]. In the present report, the transition temperature of this particular order/order transition is shown to increase with decreasing NaClO4 concentration to about 110 degrees C, above which only the helix-to-random coil transition is detectable. The reversibility and cooperativity of the helix/helix conversion has facilitated the quantitative evaluation of the transition enthalpy by means of differential scanning microcalorimetry. In 5 M NaClO4, the transition temperature is 43 degrees C, the conversion enthalpy 4.2 kJ (1.0 kcal) per mole of base pair, and the corresponding entropy change 13 J (3.1 cal) deg-1. The van't Hoff enthalpy for the same process, determined from the temperature dependence of the optical transition, is 0.26 MJ (62 kcal) per mole of cooperative unit. The ratio of the two enthalpy values yields an apparent cooperative length for the A-Z transition of poly[r(G-C)] of approximately 60 base pairs, indicative of a concerted all-or-none process.  相似文献   

12.
Thermodynamics of single mismatches in RNA duplexes   总被引:4,自引:0,他引:4  
Kierzek R  Burkard ME  Turner DH 《Biochemistry》1999,38(43):14214-14223
The thermodynamic properties and structures of single mismatches in short RNA duplexes were studied in optical melting and imino proton NMR experiments. The free energy increments at 37 degrees C measured for non-GU single mismatches range from -2.6 to 1.7 kcal/mol. These increments depend on the identity of the mismatch, adjacent base pairs, and the position in the helix. UU and AA mismatches are more stable close to a helix end, but GG mismatch stability is essentially unaffected by the position in the helix. Approximations are suggested for predicting stabilities of single mismatches in short RNA duplexes.  相似文献   

13.
The structure of helix I of the 5S rRNA from Escherichia coli has been determined using a nucleolytic digest fragment of the intact molecule. The fragment analyzed, which corresponds to bases (-1)-11 and 108-120 of intact 5S rRNA, contains a G-U pair and has unpaired bases at its termini. Its proton resonances were assigned by two-dimensional NMR methods, and both NOE distance and coupling constant information have been used to calculate structural models for it using the full relaxation matrix algorithm of the molecular dynamics program XPLOR. Helix I has A-type helical geometry, as expected. Its most striking departure from regular helical geometry occurs at its G-U, which stacks on the base pair to the 5' side of its G but not on the base pair to its 3' side. This stacking pattern maximizes interstrand guanine-guanine interactions and explains why the G-U in question fails to give imino proton NOE's to the base pair to 5' side of its G. These results are consistent with the crystal structures that have been obtained for wobble base pairs in tRNAPhe [Mizuno, H., & Sundaralingam, M. (1978) Nucleic Acids Res. 5, 4451-4461] and A-form DNA [Rabbinovich, D., Haran, T., Eisenstein, M., & Shakked, Z. (1988) J. Mol. Biol. 200, 151-161]. The conformations of the terminal residues of helix I, which corresponds to bases (-1)-11 and 108-120 of native 5S RNA, are less well-determined, and their sugar puckers are intermediate between C2' and C3'-endo, on average.  相似文献   

14.
W T Miller  Y M Hou  P Schimmel 《Biochemistry》1991,30(10):2635-2641
A single G3.U70 base pair in the acceptor helix is the major determinant for the identity of alanine transfer RNAs (Hou & Schimmel, 1988). Introduction of this base pair into foreign tRNA sequences confers alanine acceptance on them. Moreover, small RNA helices with as few as seven base pairs can be aminoacylated with alanine, provided that they encode the critical base pair (Francklyn & Schimmel, 1989). Alteration of G3.U70 to G3.C70 abolishes aminoacylation with alanine in vivo and in vitro. We describe here the mutagenesis and selection of a single point mutation in Escherichia coli Ala-tRNA synthetase that compensates for a G3.C70 mutation in tRNAAla. The mutation maps to a region previously implicated as proximal to the acceptor end of the bound tRNA. In contrast to the wild-type enzyme, the mutant charges small RNA helices that encode a G3.C70 base pair. However, the mutant enzyme retains specificity for alanine tRNA and can serve as the sole source of Ala-tRNA synthetase in vivo. The results demonstrate the capacity of an aminoacyl-tRNA synthetase to compensate through a single amino acid substitution for mutations in the major determinant of its cognate tRNA.  相似文献   

15.
A thermodynamically and kinetically simple picture of protein folding envisages only two states, native (N) and unfolded (U), separated by a single activation free energy barrier, and interconverting by cooperative two‐state transitions. The folding/unfolding transitions of many proteins occur, however, in multiple discrete steps associated with the formation of intermediates, which is indicative of reduced cooperativity. Furthermore, much advancement in experimental and computational approaches has demonstrated entirely non‐cooperative (gradual) transitions via a continuum of states and a multitude of small energetic barriers between the N and U states of some proteins. These findings have been instrumental towards providing a structural rationale for cooperative versus noncooperative transitions, based on the coupling between interaction networks in proteins. The cooperativity inherent in a folding/unfolding reaction appears to be context dependent, and can be tuned via experimental conditions which change the stabilities of N and U. The evolution of cooperativity in protein folding transitions is linked closely to the evolution of function as well as the aggregation propensity of the protein. A large activation energy barrier in a fully cooperative transition can provide the kinetic control required to prevent the accumulation of partially unfolded forms, which may promote aggregation. Nevertheless, increasing evidence for barrier‐less “downhill” folding, as well as for continuous “uphill” unfolding transitions, indicate that gradual non‐cooperative processes may be ubiquitous features on the free energy landscape of protein folding.  相似文献   

16.
Locked nucleic acid (LNA) and 2'-O-methyl nucleotide (OMeN) are the most extensively studied nucleotide analogues. Although both LNA and OMeN are characterized by the C3'-endo sugar pucker conformation, which is dominant in A-form DNA and RNA nucleotides, they demonstrate different binding behaviours. Previous studies have focused attention on their properties of duplex stabilities, hybridization kinetics and resistance against nuclease digestion; however, their ability to discriminate mismatched hybridizations has been explored much less. In this study, LNA- and OMeN-modified oligonucleotide probes have been prepared and their effects on the DNA duplex stability have been examined: LNA modifications can enhance the duplex stability, whereas OMeN modifications reduce the duplex stability. Next, we studied how the LNA:DNA and OMeN:DNA mismatches reduced the duplex stability. Melting temperature measurement showed that different LNA:DNA or OMeN:DNA mismatches indeed influence the duplex stability differently. LNA purines can discriminate LNA:DNA mismatches more effectively than LNA pyrimidines as well as DNA nucleotides. Furthermore, we designed five LNA- and five OMeN-modified oligonucleotide probes to simulate realistic situations where target-probe duplexes contain a complementary LNA:DNA or OMeN:DNA base pairs and a DNA:DNA mismatch simultaneously. The measured collective effect showed that the duplex stability was enhanced by the complementary LNA:DNA base pair but decreased by the DNA:DNA mismatch in a position-dependent manner regardless of the chemical identity and position of the complementary LNA:DNA base pair. On the other hand, the OMeN-modified probes also showed that the duplex stability was reduced by both the OMeN modification and the OMeN:DNA mismatch in a position-dependent manner.  相似文献   

17.
Experiments point to appreciable variations in folding cooperativity among natural proteins with approximately 40 residues, indicating that the behaviors of these proteins are valuable for delineating the contributing factors to cooperative folding. To explore the role of native topology in a protein's propensity to fold cooperatively and how native topology might constrain the degree of cooperativity achievable by a given set of physical interactions, we compared folding/unfolding kinetics simulated using three classes of native-centric Cα chain models with different interaction schemes. The approach was applied to two homologous 45-residue fragments from the peripheral subunit-binding domain family and a 39-residue fragment of the N-terminal domain of ribosomal protein L9. Free-energy profiles as functions of native contact number were computed to assess the heights of thermodynamic barriers to folding. In addition, chevron plots of folding/unfolding rates were constructed as functions of native stability to facilitate comparison with available experimental data. Although common Gō-like models with pairwise Lennard-Jones-type interactions generally fold less cooperatively than real proteins, the rank ordering of cooperativity predicted by these models is consistent with experiment for the proteins investigated, showing increasing folding cooperativity with increasing nonlocality of a protein's native contacts. Models that account for water-expulsion (desolvation) barriers and models with many-body (nonadditive) interactions generally entail higher degrees of folding cooperativity indicated by more linear model chevron plots, but the rank ordering of cooperativity remains unchanged. A robust, experimentally valid rank ordering of model folding cooperativity independent of the multiple native-centric interaction schemes tested here argues that native topology places significant constraints on how cooperatively a protein can fold.  相似文献   

18.
The topology of the designed protein Top7 is not found in natural proteins. Top7 shows signatures of non‐cooperative folding in both experimental studies and computer simulations. In particular, molecular dynamics of coarse‐grained structure‐based models of Top7 show a well‐populated C‐terminal folding‐intermediate. Since most similarly sized globular proteins are cooperative folders, the non‐natural topology of Top7 has been suggested as a reason for its non‐cooperative folding. Here, we computationally examine the folding of Top7 with the intent of making it cooperative. We find that its folding cooperativity can be increased in two ways: (a) Optimization of packing interactions in the N‐terminal half of the protein enables further folding of the C‐terminal intermediate. (b) Reduction in the packing density of the C‐terminal region destabilizes the intermediate. In practice, these strategies are implemented in our Top7 model through modifications to the contact‐map. These modifications do not alter the topology of Top7 but result in cooperative folding. Amino‐acid mutations that mimic these modifications also lead to a significant increase in folding cooperativity. Finally, we devise a method to randomize the sizes of amino‐acids within the same topology, and confirm that the structure of Top7 makes its folding sensitive to packing interactions. In contrast, the ribosomal protein S6, which has secondary structure similar to Top7, has folding which is much less sensitive to packing perturbations. Thus, it should be possible to make a sequence fold cooperatively to the structure of Top7, but to do so its side‐chain packing needs to be carefully designed. Proteins 2014; 82:364–374. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
One of the predictions of the energy landscape theory of protein folding is the possibility of barrierless, “downhill” folding under certain conditions. The protein 1BBL has been proposed to fold by such a downhill mechanism, though this is a matter of some dispute. We carried out extensive replica exchange molecular dynamics simulations on 1BBL in explicit solvent to address this controversy and provide a microscopic picture of its folding thermodynamics. Our simulations show two distinct structural transitions in the folding of 1BBL. A low-temperature transition involves a disordering of the protein's tertiary structure without loss of secondary structure. A distinct, higher temperature transition involves the complete loss of secondary structure and dissolution of the hydrophobic core. In contrast, control simulations of the 1BBL homolog E3BD show a single high temperature unfolding transition. Further simulations of 1BBL at high ionic strength show a significant destabilization of helix II but not helix I, suggesting that the apparent folding cooperativity of 1BBL may be highly dependent on experimental conditions. Although our simulations cannot provide definitive evidence of downhill folding in 1BBL, they clearly show evidence of a complex, non-two-state folding process.  相似文献   

20.
Triple helix formation usually requires an oligopyrimidine*oligopurine sequence in the target DNA. A triple helix is destabilized when the oligopyrimidine*oligopurine target contains one (or two) purine*pyrimidine base pair inversion(s). Such an imperfect target sequence can be recognized by a third strand oligonucleotide containing an internally incorporated acridine intercalator facing the inverted purine*pyrimidine base pair(s). The loss of triplex stability due to the mismatch is partially overcome. The stability of triplexes formed at perfect and imperfect target sequences was investigated by UV thermal denaturation experiments. The stabilization provided by an internally incorporated acridine third strand oligonucleotide depends on the sequences flanking the inverted base pair. For triplexes containing a single mismatch the highest stabilization is observed for an acridine or a propanediol tethered to an acridine on its 3'-side facing an inverted A*T base pair and for a cytosine with an acridine incorporated to its 3'-side or a guanine with an acridine at its 5'-side facing an inverted G*C base pair. Fluorescence studies provided evidence that the acridine was intercalated into the triplex. The target sequences containing a double base pair inversion which form very unstable triplexes can still be recognized by oligonucleotides provided they contain an appropriately incorporated acridine facing the double mismatch sites. Selectivity for an A*T base pair inversion was observed with an oligonucleotide containing an acridine incorporated at the mismatched site when this site is flanked by two T*A*T base triplets. These results show that the range of DNA base sequences available for triplex formation can be extended by using oligonucleotide intercalator conjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号