首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autistic disorder (AD) is a neurodevelopmental disorder that affects approximately 2–10/10,000 individuals. Chromosome 15q11–q13 has been implicated in the genetic etiology of AD based on (1) cytogenetic abnormalities; (2) increased recombination frequency in this region in AD versus non-AD families; (3) suggested linkage with markers D15S156, D15S219, and D15S217; and (4) evidence for significant association with polymorphisms in the γ-aminobutyric acid receptor subunit B3 gene (GABRB3). To isolate the putative 15q11–q13 candidate AD gene, a genomic contig and physical map of the approximately 1.2-Mb region from the GABA receptor gene cluster to the OCA2 locus was generated. Twenty-one bacterial artificial chromosome (BAC) clones, 32 P1-derived artificial chromosome (PAC) clones, and 2 P1 clones have been isolated using the markers D15S540, GABRB3, GABRA5, GABRG3, D15S822, and D15S217, as well as 34 novel markers developed from the end sequences of BAC/PAC clones. In contrast to previous findings, the markers D15S822 and D15S975 have been localized within the GABRG3 gene, which we have shown to be approximately 250 kb in size. NotI and numerous EagI restriction enzyme cut sites were identified in this region. The BAC/PAC genomic contig can be utilized for the study of genomic structure and the identification and characterization of genes and their methylation status in this autism candidate gene region on human chromosome 15q11–q13.  相似文献   

2.
Summary A systematic search for restriction fragment length polymorphisms (RFLPs) on the human Y chromosome was performed. DNA samples from 16–34 individuals were screened with five restriction enzymes and 12 Y-chromosomal probes, 3 of which detect lowly repetitive sequences and 9 of which are apparently single copy in genomic DNA. None of the single-copy probes revealed any variation. The repetitive sequence probe p21A1 (DYZ?) revealed a TaqI RFLP with q = 0.05. The frequency of fixed point mutations in Y-chromosomal DNA outside the pseudoautosomal region is probably less than 1 in 18000 bp.  相似文献   

3.
We have constructed a linkage map of 14 short tandem repeat polymorphisms (11 with heterozygosity > 70%) on the long arm of human chromosome 22 using 23 non-CEPH pedigrees. Twelve of the markers could be positioned uniquely with a likelihood of at least 1,000:1, and distributed at an average distance of 6.62 cM (range 1.5–16.1 cM). The sex-combined map covers a total of 79.6 cM, the female map 93.2 cM and the male map 64.6 cM. Based on comparisons between physical maps and other genetic maps, we estimate that our map covers 70%–80% of the chromosome. The map integrates markers from previous genetic maps and uniquely positions one marker (D22S307). Data from physical mapping on the location of four genetic markers correlates well with our linkage map, and provides information on an additional marker (D22S315). This map will facilitate high resolution mapping of additional polymorphic loci and disease genes on chromosome 22, and act as a reference for building and verifying physical maps.  相似文献   

4.
Summary A collection of 2,000 lambda phage-carrying human single-copy inserts (> 700 bp) were isolated from two chromosome-3 flow-sorted libraries. The single-copy DNA fragments were first sorted into 3p and 3q locations and about 700 3p fragments were regionally mapped using a deletion mapping panel comprised of two humanhamster and two-human-mouse cell hybrids, each containing a chromosome 3 with different deletions in the short arm. The hybrids were extensively mapped with a set of standard 3p markers physically localized or ordered by linkage. The deletion mapping panel divided the short arm into five distinct subregions (A-E). The 3p fragments were distributed on 3p regions as follows: region A, 26%; B, 31%; C, 4%; D, 4% and E, 35%. We screened 300 single-copy DNA fragments from the distal part of 3p (regions A and B) with ten restriction endonucleases for their ability to detect restriction fragment length polymorphisms (RFLPs). Of these fragments 110 (36%) were found to detect useful RFLPs: 35% detected polymorphisms with frequency of heterozygosity of 40% or higher, and 25% with frequency of 30% or higher. All polymorphisms originated from single loci and most of them were of the base pair substitution type. These RFLP markers make it possible to construct a fine linkage map that will span the distal part of chromosome 3p and encompasses the von Hippel-Lindau disease locus. The large number of single-copy fragments (2,000) spaced every 100–150 kb on chromosome 3 will make a significant contribution to mapping and sequencing the entire chromosome 3. The 300 conserved chromosome 3 probes will increase the existing knowledge of man-mouse homologies.  相似文献   

5.
A hypervariable repeated sequence on human chromosome 1p36   总被引:14,自引:2,他引:12  
Summary When used to probe Southern blots of TaqI-digested DNAs from unrelated individuals, p1–79, a 900 bp subclone of a random human cosmid, revealed at least 50 fragments, many of which were polymorphic. Each of 27 unrelated individuals tested with p1–79 displayed a distinct band pattern. Similar variation was seen with several other enzymes, including HaeIII, MspI, PstI and PvuII, whereas other enzymes yielded primarily large fragments of greater than 40 kb. In situ hybridization of p1–79 showed that the loci of hybridization are clustered on human chromosome band 1p36; localization of all TaqI fragments to chromosome 1 was confirmed with a human-rodent somatic cell hybrid panel. DNA sequencing of p1–79 revealed several copies of a 39 bp repeat whose variation in copy number might be the basis of the observed length polymorphisms. Studies of 3-generation Utah families suggest that the numerous restriction fragments homologous to p1–79 are inherited as haplotypes, implying that recombination within this cluster of loci is rare and allowing the cluster to serve as a useful marker for human gene mapping.  相似文献   

6.
Short, tandemly repeated DNA motifs, termed SSRs (simple sequence repeats) are widely distributed throughout eukaryotic genomes and exhibit a high degree of polymorphism. The availability of size-based methods for genotyping SSRs has made them the markers of choice for genetic linkage studies in all higher eukaryotes. These genotyping methods are not efficiently applicable to mononucleotide repeats (MNRs). Consequently, MNRs, although highly frequent in the genome, have generally been ignored as genetic markers. In contrast to single nucleotide polymorphisms (SNPs), SSRs can be identified in silico once the genomic sequence or segment of interest is available, without requiring any additional information. This makes possible ad-hoc saturation of a target chromosomal region with informative markers. In this context, MNRs appear to have much to offer by increasing the degree of marker saturation that can be obtained. By using the human genome sequence as a model, computational analysis demonstrates that MNRs in the size of 9–15 bp are highly abundant, with an average appearance every 2.9 kb, exceeding di- and tri-nucleotide SSRs frequencies by two- and five-fold, respectively. In order to enable practical, high throughput MNR genotyping, a rapid method was developed, based on sizing of fluorescent-labeled primer extension products. Genotyping of 16 arbitrarily chosen non-coding MNR sites along human chromosome 22 revealed that almost two-thirds (63%) of them were polymorphic, having 2–5 alleles per locus, with 20% of the polymorphic MNRs having more than two alleles. Thus, MNRs have potential for in silico saturation of sequenced eukaryote genomes with informative genetic markers.Helit Cohen and Yael Danin-Poleg contributed equally to this work  相似文献   

7.
Braga  E. A.  Kisselev  L. L.  Zabarovsky  E. R. 《Molecular Biology》2004,38(2):145-154
The review considers the results obtained by several groups in the fields of identification of polymorphic loci in the human genome, localization and analysis of genes associated with epithelial tumors of various origins, and generation of molecular markers of socially important oncological diseases. In the first two cases, work was initiated and supported by the Russian program Human Genome. To find new polymorphic loci in the human genome, di-, tri-, and tetranucleotide repeats were searched for in an ordered cosmid library of chromosome 13, NotI and cosmid clones of chromosome 3, and in brain EST. In total, nine polymorphisms and almost 200 STS were identified. Markers of NotI clones of chromosome 3 were associated with particular genes. Polymorphic loci NL1-024, NL2-007, and EST04896 were employed in analysis of deletions from chromosome 3p in tumor DNA. Deletion mapping of 3p in epithelial tumors of five types revealed six critical regions containing potential tumor suppressor genes. Of these, two were in the distal region of chromosome 3p and four, in region 3p21.3. A significant correlation was observed for the frequency of allelic deletions and the stage and the grade of tumors (P < 0.05). On the strength of these findings, genes of region 3p were associated with both tumor development and progression, and proposed as prognostic markers. Regions LUCA and AP20 (3p21.3) showed a high (90%) frequency of aberrations, including homozygous deletions in almost 20% cases. The peak of allelic deletions from region D3S2409–D3S3667 (600 kb) was statistically valid (P = 10–3). Regions AP20 and D3S2409–D3S3667 (3p21.3) were for the first time associated with tumorigenesis. Clusters of tumor suppressor genes were identified in regions LUCA, AP20, and D3S2409–D3S3667. Methylation of RASSF1A and RAR-beta2 (3p) was associated with early carcinogenesis, and that of SEMA3B, with tumor progression. These findings are useful for early diagnostics and post-surgery prognosis of tumors.  相似文献   

8.
A series of 175 lambda phage carrying human inserts isolated from a library that is specific for the short arm of human chromosome 5 (5p) have been regionally mapped on 5p using a deletion mapping panel of 16 human-hamster cell hybrids, each of which contains a chromosome 5 with a different deletion in the short arm. Seventy-five single copy DNA fragments were screened with 12 restriction enzymes for their ability to detect restriction fragment length polymorphisms (RFLPs). Twenty-eight of these DNA fragments, which are located in 13 distinct physical regions of 5p, were found to detect RFLPs. These DNA markers make it possible to construct a linkage map that will span the entire length of 5p and will allow the relationship between genetic and physical distance for this region of the genome to be examined at a high level of resolution.  相似文献   

9.
Zhou X  Mok SC  Chen Z  Li Y  Wong DT 《Human genetics》2004,115(4):327-330
Like most human cancers, oral squamous cell carcinoma (SCC) is characterized by genetic instabilities. In this study, a single platform (Affymetrix 10K SNP mapping array) was used to generate both loss of heterozygosity (LOH) and DNA copy number abnormality (CNA) read-outs for precise and high-resolution genetic alteration profiles. As a proof of principle, we performed this concordant analysis on a panel of deletion and trisomy cell lines with known chromosomal alterations and the precise LOH and CNA regions were detected as expected. Using a previously described oral SCC progression model system, we identified a set of genomic regions that may be associated with the malignancy progression, including chromosome regions 3pter–3p35.3, 3p14.1–3p13, 11p, 11q14.3–11q22.2, and 11q13.5–11q14.1. These data show that it is feasible to utilize high-density SNP arrays to generate concordant LOH and CNA profiles at high resolution.  相似文献   

10.
Using nucleotide sequences from jumping and linking NotI libraries of human chromosome 3, 94 NotI-STS markers for 72 individual NotI clones were developed. The positions of the NotI-STS markers and their order on the chromosome were determined by a combination of RH-mapping (our data), contig mapping, cytogenetic mapping, and in silico mapping. Comparison of NotI-STS DNAs with human genome sequences revealed two gaps in the regions 3p21.33 (marker NL1-256) and 3p21.31 (NL3-005), and a segmental duplication. Identical DNA fragments were found in the regions 12q and 3p22–21.33 (marker NL3-007). In the 3q28–q29 region (marker NLM-084), a fragment was detected whose identical copies were also present on chromosomes 1, 2, 15, and 19. For 69 NotI-STSs, significant homologies to nucleotide sequences of 70 genes and 2 cDNAs were detected (with homologies in NotI-STS 5′- and 3′-terminal sequences being taken into account). An association between NotI-STSs and genes is confirmed by a strong correlation between the density distributions of genes and NotI-STS markers on the map of human chromosome 3. Our results indicate that the NotI map may be regarded as a gene map of human chromosome 3. Thus, NotI-STSs are applicable as gene markers.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 4, 2005, pp. 687–701.Original Russian Text Copyright © 2005 by Sulimova, Rakhmanaliev, Klimov, Kompaniytsev, Udina, Zabarovsky, Kisselev.  相似文献   

11.
A myeloblastin/proteinase-3 (MBN/PR-3) cDNA probe detects two bi-allelic (BglII, PvuII) DNA polymorphisms. These restriction fragment length polymorphisms provide new genetic markers on chromosome 19.  相似文献   

12.
Z Xiang  X L Hu  J Flint  H C Riethman 《Genomics》1999,58(2):207-210
A half-YAC clone derived from human chromosome 17p was mapped at high resolution using cosmid subclone fingerprint analysis. Colinearity of the half-YAC with the telomeric human genomic DNA fragment was ascertained by RecA-assisted restriction endonuclease cleavage mapping. Previously isolated and radiation hybrid-mapped markers TEL17P37, TEL17P49, and TEL17P80 mapped 30-60 kb from the 17p terminus. This sequence-ready map permits high-resolution integration of genetic maps with the DNA sequences directly adjacent to the tip of human chromosome 17p, and will provide the cloned DNA required for ascertaining the nucleotide sequence of this subtelomeric region.  相似文献   

13.
Allelic deletions along the short arm of human chromosome 3 were mapped in 57 pairs of DNA samples from tumor and normal tissue of renal carcinoma patients in order to locate potential tumor suppressor genes. Twenty highly polymorphic microsatellite markers were used for deletion mapping. Allelic deletions were found in most of the samples (91%). Extended terminal deletions (56%) prevailed over shorter internal and multiple deletions and dominated (65%) in the most aggressive histopathological kidney cancer subtype, clear-cell carcinoma. Frequency analysis of loss of heterozygosity allowed detection of the human chromosome 3 regions most essential for renal carcinomas: the region adjacent to the gene VHL(3p26–p25), the region of homozygous deletions AP20 (3p22–p21.33), and a new region between markers D3S2420 and D3S2409 (3p21.31, 2.2 Mbp).  相似文献   

14.
Thedeafwaddler(dfw) mutation, displaying motor ataxia and profound deafness, arose spontaneously in a C3H/HeJ colony and was mapped previously to distal mouse Chr 6. In this study, a high-resolution genetic map was generated by positioning 10 microsatellite markers and 5 known genes on a 968-meioses intersubspecific backcross segregating fordfw[(CAST/Ei–+/+ × C3HeB/FeJ–dfw/dfw) × C3HeB/FeJ–dfw/dfw], giving the following marker order and sex-averaged distances:D6Mit64–(0.10 + 0.10 cM)–Pang–(1.24 + 0.36 cM)–Itpr1–(0.62 + 0.25 cM)–D6Mit108–(0.52 + 0.23 cM)–D6Mit54–(0.21 + 0.15 cM)–D6Mit23, D6Mit107, D6Mit328–(0.72 + 0.27 cM)–D6Mit11–(0.21 + 0.15 cM)–dfw–(0.93 + 0.31 cM)–Gat4, D6Mit55–(0.10 + 0.10 cM)–D6Mit63–(0.31 + 0.18 cM)–Syn2–(0.62 + 0.25 cM)–D6Mit44(Rho). Female and male genetic maps are similar immediately surrounding thedfwlocus, but show marked differences in other areas. A yeast artificial chromosome-based physical map suggests that the closest markers flanking thedfwlocus,D6Mit11(proximal) andGat4, D6Mit55(distal), are contained within 650–950 kb. The human homologues of the flanking lociItpr1(proximal) andSyn2(distal) map to chromosome 3p25–p26, suggesting that the human homologue of thedfwgene is located within this same region.  相似文献   

15.
Mazurenko  N. N.  Beliakov  I. S.  Bliyev  A. Yu.  Guo  Z.  Hu  X.  Vinokourova  S. V.  Bidzhieva  B. A.  Pavlova  L. S.  Ponten  J.  Kisseljov  F. L. 《Molecular Biology》2003,37(3):404-411
Loss of heterozygosity (LOH) analysis on chromosome 6 was performed to define the genetic changes that occur in the development of squamous cell cervical cancer (SCC). Detailed analysis with 28 microsatellite markers revealed several loci with high frequency of deletions at the short (6p25, 6p22, 6p21.3) and long (6q14, 6q16–q21, 6q23–q24, 6q25, 6q27) arms of chromosome 6. Examination of microdissected 37 SCC and 22 cervical intraepithelial neoplasias (CIN) revealed allelic deletions in the HLA class I–III region (6p22–p21.3) and at subtelomeric locus 6p25-ter in more than 40% of CIN. By a combination of LOH and microdissection of multiple samples from the same tumor sections, we studied the intratumoral genetic heterogeneity of SCC, and identified clonal and subclonal allelic deletions. Half of SCC had clonal allelic deletion at D6S273, which is localized in intron of Ly6G6D (MEGT1) gene mapped in the HLA class III region. The LOH frequency at 6q in CIN cases did not exceed 20%. Allelic deletions at two loci, 6q14 and 6q16–q21, were for the first time associated with invasion and metastasis in SCC.  相似文献   

16.
We recently cloned three membrane guanylyl cyclases, designated GC-D, GC-E, and GC-F, from rat olfactory tissue and eye. Amino acid sequence homology suggests that they may compose a new gene subfamily of guanylyl cyclase receptors specifically expressed in sensory tissues. Their chromosomal localization was determined by mouse interspecific backcross analysis. The GC-D, GC-E, and GC-F genes (Gucy2d, Gucy2e,andGucy2f) are dispersed through the mouse genome in that they map to chromosomes 7, 11, and X, respectively. Close proximity of the mouse GC-D gene toOmp(olfactory marker protein) andHbb(hemoglobin β-chain complex) suggests that the human homolog gene maps to 11p15.4 or 11q13.4–q14.1. The human GC-F gene was localized to the long arm of chromosome Xq22 by fluorescencein situhybridization. The genomic organization of the mouse GC-E gene was determined and compared to other guanylyl cyclase genes. The mouse GC-D, GC-E, and GC-F genomic clones contain identical exon–intron boundaries within their extracellular and cytoplasmic domains, demonstrating the conservation of the gene structures. With respect to human genetic diseases, GC-E mapped to mouse chromosome 11 within a syntenic region on human chromosome 17p13 that has been linked with loci for autosomal dominant retinitis pigmentosa and Leber congenital amaurosis. No apparent disease loci have been yet linked to the locations of the GC-D or GC-F genes.  相似文献   

17.
Numerous population samples from around the world have been tested for Y chromosome-specific p49a,f/TaqI restriction polymorphisms. Here we review the literature as well as unpublished data on Y-chromosome p49a,f/TaqI haplotypes and provide a new nomenclature unifying the notations used by different laboratories. We use this large data set to study worldwide genetic variability of human populations for this paternally transmitted chromosome segment. We observe, for the Y chromosome, an important level of population genetics structure among human populations (FST = .230, P < .001), mainly due to genetic differences among distinct linguistic groups of populations (FCT = .246, P < .001). A multivariate analysis based on genetic distances between populations shows that human population structure inferred from the Y chromosome corresponds broadly to language families (r = .567, P < .001), in agreement with autosomal and mitochondrial data. Times of divergence of linguistic families, estimated from their internal level of genetic differentiation, are fairly concordant with current archaeological and linguistic hypotheses. Variability of the p49a,f/TaqI polymorphic marker is also significantly correlated with the geographic location of the populations (r = .613, P < .001), reflecting the fact that distinct linguistic groups generally also occupy distinct geographic areas. Comparison of Y-chromosome and mtDNA RFLPs in a restricted set of populations shows a globally high level of congruence, but it also allows identification of unequal maternal and paternal contributions to the gene pool of several populations.  相似文献   

18.
The epidermal differentiation complex (EDC) unites a remarkable number of structurally, functionally, and evolutionarily related genes that play an important role in terminal differentiation of the human epidermis. It is localized within 2.05 Mb of region q21 on human chromosome 1. We have identified and characterized 24 yeast artificial chromosome (YAC) clones by mapping individual EDC genes, sequence-tagged site (STS) markers (D1S305, D1S442, D1S498, D1S1664), and 10 new region-specific probes (D1S3619–D1S3628). Here we present a contig that covers about 6 Mb of 1q21 including the entire EDC. Fluorescencein situhybridization on metaphase chromosomes with two YACs flanking the EDC determined its chromosomal orientation and established, in conjunction with physical mapping results, the following order of genes and STSs: 1cen–D1S442–D1S498–S100A10–THH–FLG–D1S1664–IVL–SPRR3–SPRR1–SPRR2–LOR–S100A9–S100A8–S100A7–S100A6–S100A5–S100A4–S100A3–S100A2–S100A1–D1S305–1qtel. These integrated physical, cytogenetic, and genetic mapping data will be useful for linkage analyses of diseases associated with region 1q21 and for the identification of novel genes and regulatory elements in the EDC.  相似文献   

19.
《Genomics》1995,29(3)
In an approach to mapping physically the most distal 30 Mb of human chromosome 1p, region-specific clone libraries were generated by microdissection and microcloning. PFGE blot hybridization of single or low-copy microclones against rare-cutter digests of genomic DNA revealed physical linkage for groups of markers. Supplementary PFGE analysis of 31 1p36–p35-specific probes for genetically mapped loci established a total of 15 grouped sets, consisting of altogether 69 markers. Twelve of the grouped sets were located in 1pter–p36.12, as revealed by microcell hybrid mapping; the remaining three were localized proximal to 1p36.12. Regional assignment and ordering of most grouped sets was achieved either by evaluating the included genetic markers or by fluorescencein situhybridization of representative probes. The genomic extent of individual grouped sets encompassed between 1100 and 2100 kb, covering a total of approximately 22 Mb of the distal chromosome 1p region. One particular grouped set was shown to contain seven polymorphic marker loci that were previously suggested to be distributed across the entire 1pter–p35 region. The increase in the number of hybridization marker probes in 1p36 and their physical mapping is expected to facilitate positional cloning experiments in this region; in particular, the construction of clone contigs may be greatly facilitated.  相似文献   

20.
Using human telomeric repeats and centromeric alpha repeats, we have identified adjacent single copy cosmid clones from human chromosome 22 cosmid libraries. These single copy cosmids were mapped to chromosome 22 by fluorescence in situ hybridisation (FISH). Based on these cosmids, we established contigs that included part of the telomeric and subtelomeric regions, and part of the centromeric and pericentromeric regions of the long arm of human chromosome 22. Each of the two cosmid contigs consisted of five consecutive steps and spanned approximately 100–150 kb at both extreme ends of 22q. Moreover, highly informative polymorphic markers were identified in the telomeric region. Our results suggest that the telomere specific repeat (TTAGGG) n encompasses a region that is larger than 40 kb. The cosmid contigs and restriction fragment length polymorphism markers described here are useful tools for physical and genetic mapping of chromosome 22, and constitute the basis of further studies of the structure of the subtelomeric and pericentromeric regions of 22q. We also demonstrate the use of these clones in clinical diagnosis of different chromosome 22 aberrations by FISH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号