首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Prolactin-releasing peptide (PrRP) is a novel peptide found in bovine hypothalamus as an endogenous ligand of an orphan G-protein-coupled receptor (hGR3). It is known that PrRP is widely distributed and plays roles in the central nervous system (CNS). In particular, PrRP acts as a neurotransmitter that mediates stress and activates the hypothalamo-pituitary-adrenal axis. On the other hand, only a few studies have so far been performed on PrRP in peripheral tissues. Among peripheral tissues, appreciable levels of PrRP are found only in the adrenal gland; however, the PrRP-producing cells in the adrenal gland have not been identified. In this study, we detected PrRP mRNA in the rat adrenal medulla. So, we tried to identify the PrRP-producing cells in primary culture cells of the adrenal medulla. We found immunopositive PrRP cells among the cultured cells from the adrenal gland, but not in the adrenal gland tissue, by means of immunocytochemistry. The PrRP immunopositive cells were double positive for tyrosine hydroxylase (TH) and for phenylethanolamine N-methyltransferase (PNMT), which indicates that PrRP may be produced in a part of the adrenaline cells in the adrenal gland. This is the first report that PrRP is produced in the adrenaline-containing cells of the adrenal gland.  相似文献   

2.
Neuropeptide W (NPW) is an endogenous ligand for GPR7, a member of the G-protein-coupled receptor family. NPW plays an important role in the regulation of both feeding and energy metabolism, and is also implicated in modulating responses to an acute inflammatory pain through activation of the hypothalamus-pituitary-adrenal axis. GPR7 mRNA has been shown to be expressed in the hypothalamus, pituitary gland and adrenal cortex. Similarly, NPW expression has been demonstrated in the brain and pituitary gland. However, the precise distribution of NPW-producing cells in the adrenal gland remains unknown. The aim of this study was to explore the distribution and localization of NPW immunoreactivity in the rat adrenal gland. Total RNA was prepared from the hypothalamus, pituitary gland and adrenal gland. RT-PCR revealed the expression of NPW mRNA in these tissues, while in situ hybridization demonstrated the presence of NPW mRNA in the adrenal medulla. When immunohistochemistry was performed on sections of adrenal gland, NPW-like immunoreactivity (NPW-LI) was observed in the medulla but not in the cortex. Moreover, NPW-LI was found to be co-localized in cells which expressed dopamine beta hydroxylase but not phenylethanolamine-N-methyltransferase. The finding that NPW is expressed in noradrenalin-containing cells in the adrenal medulla suggests that it may play an important role in endocrine function in the adrenal gland.  相似文献   

3.
Immunohistochemistry has been used to demonstrate tyrosine hydroxylase (TH), dopamine--hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) immunoreactivities, and acetylcholinesterase (AChE) activity was demonstrated in rat adrenal glands. The TH, DBH, NPY and VIP immunoreactivities and AChE activity were observed in both the large ganglion cells and the small chromaffin cells whereas PNMT immunoreactivity was found only in chromaffin cells, and not in ganglion cells. Most intraadrenal ganglion cells showed NPY immunoreactivity and a few were VIP immunoreactive. Numerous NPY-immunoreactive ganglion cells were also immunoreactive for TH and DBH; these cells were localized as single cells or groups of several cells in the adrenal cortex and medulla. Use of serial sections, or double and triple staining techniques, showed that all TH- and DBH-immunoreactive ganglion cells also showed NPY immunoreactivity, whereas some NPY-immunoreactive ganglion cells were TH and DBH immunonegative. NPY-immunoreactive ganglion cells showed no VIP immunoreactivity. AChE activity was seen in VIP-immunopositive and VIP-immunonegative ganglion cells. These results suggest that ganglion cells containing noradrenaline and NPY, or NPY only, or VIP and acetylcholine occur in the rat adrenal gland; they may project within the adrenal gland or to other target organs. TH, DBH, NPY, and VIP were colocalized in numerous immunoreactive nerve fibres, which were distributed in the superficial adrenal cortex, while TH-, DBH- and NPY-immunoreactive ganglion cells and nerve fibres were different from VIP-immunoreactive ganglion cells and nerve fibres in the medulla. This suggests that the immunoreactive nerve fibres in the superficial cortex may be mainly extrinsic in origin and may be different from those in the medulla.  相似文献   

4.
Summary The present immunohistochemical study reveals that a small number of chromaffin cells in the rat adrenal medulla exhibit CGRP-like immunoreactivity. All CGRP-immunoreactive cells were found to be chromaffin cells without noradrenaline fluorescence; from combined immunohistochemistry and fluorescence histochemistry we suggest that these are adrenaline cells. In addition, all CGRP-immunoreactive cells simultaneously exhibited NPY-like immunoreactivity. CGRP-chromaffin cells were characterized by abundant chromaffin granules with round cores in which the immunoreactive material was densely localized. These findings suggest the co-existence of CGRP, NPY and adrenaline within the chromaffin granules in a substantial number of chromaffin cells.Thicker and thinner nerve bundles, which included CGRP-immunoreactive nerve fibers, with or without varicosities, penetrated the adrenal capsule. Most of them passed through the cortex and entered the medulla directly, whereas others were distributed in subcapsular regions and among the cortical cells of the zona glomerulosa. Here the CGRP-fibers were in close contact with cortical cells. A few of the fibers supplying the cortex extended further into the medulla. The CGRP-immunoreactive fibers in the medulla were traced among and within small clusters of chromaffin cells and around ganglion cells. The CGRP-fibers were directly apposed to both CGRP-positive and negative chromaffin cells, as well as to ganglion cells. Immunoreactive fibers, which could not be found close to blood vessels, were characterized by the presence of numerous small clear vesicles mixed with a few large granular vesicles. The immunoreactive material was localized in the large granular vesicles and also in the axoplasm. Since no ganglion cells with CGRP-like immunoreactivity were found in the adrenal gland, the CGRP-fibers are regarded as extrinsic in origin. In double-immunofluorescence staining for CGRP and SP, all the SP-immunoreactive fibers corresponded to CGRP-immunoreactive ones in the adrenal gland. This suggests that CGRP-positive fibers in the adrenal gland may be derived from the spinal ganglia, as has been demonstrated with regard to the SP-nerve fibers.  相似文献   

5.
In the present study, we examined the morphological features of the adrenal gland in Bactrian camel by means of digital anatomy, light and electron microscopy. Our findings testified that the gland was divided into three parts, capsule, cortex and medulla from outside to inside as other mammals, and the cortex itself was further distinguished into four zones: zona glomerulosa, zona intermedia, zona fasciculate and zona reticularis. Notably, the zona intermedia could be seen clearly in the glands from females and castrated males, whereas it was not morphologically clear in male. There was a great deal of lipid droplets in the zona fasciculate, while it was fewer in the zona glomerulosa and zona reticularis. The cytoplasm of adrenocortical cell contained rich mitochondria and endoplasmic reticulum. The adrenal medulla was well-developed with two separations of external and internal zones. The most obvious histological property of adrenal medulla cells were that they contained a huge number of electron-dense granules enveloped by the membrane, and so medulla cells could be divided into norepinephrine cells and epinephrine cells. Moreover, the cortical cuffs were frequently present in adrenal gland. Results of this study provides a theoretical basis necessary for ongoing investigations on Bactrian camels and their good adaptability in arid and semi-arid circumstances.  相似文献   

6.
The aim of the present investigation is to study the relative influence of neuohypophysis, adrenal cortex and adrenal medulla under dehydration stress in the parakeet. Birds subjected to dehydration for 7 days lost body weight. Neurosecretory material (NSM) was partially depleted from the neurohypophysis. Adrenal gland weight was increased followed by a hypertrophy of the cortical tissue. A fall in adrenal cholesterol and ascorbic acid level was marked. Adrenaline and noradrenaline contents of the adrenal medulla were suppressed as was evident from cytochemical and biochemical findings. It is suggested that neurohypophysis, adrenal cortex and adrenal medulla are involved in maintaining water homeostasis in this avian species.  相似文献   

7.
Summary VIP-like immunoreactivity was revealed in a few chromaffin cells, medullary ganglion cells and a plexus of varicose nerve fibers in the superficial cortex and single varicose fibers in the juxtamedullary cortex and the medulla of the rat adrenal gland. VIP-like immunoreactive chromaffin cells were polygonal in shape without any distinct cytoplasmic processes and they appeared solitarily. Their cytoplasm contained abundant granular vesicles having a round core and the immunoreactive material was localized to the granular core. VIP-immunoreactive ganglion cells were multipolar and had large intracytoplasmic vacuoles. The immunoreactive material was localized not only in a few granular vesicles but also diffusely throughout the axoplasm. VIP-immunoreactive varicose nerve fibers in the superficial cortex were characterized by abundant small clear vesicles and some large granular vesicles, while those in the juxtamedullary cortex and medulla and the ganglionic processes were characterized by abundant large clear vesicles, as well as the same vesicular elements as contained in the nerves in the superficial cortex. The immunoreactive material was localized on the granular cores and diffusely in the axoplasm in both nerves. Based on the similarity and difference in the composition of the vesicles contained in individual nerves, it is likely that the VIP-immunoreactive nerve fibers in the medulla and the juxtamedullary cortex are derived from the medullary VIP-ganglion cells, while those in the superficial cortex are of extrinsic origin. The immunoreactive nerve fibers in both the cortex and the medulla were often in direct contact with cortical cells and chromaffin cells, where no membrane specializations were formed. The immunoreactive nerve fibers were sometimes associated with the smooth muscle cells and pericytes of small blood vessels in the superficial cortex. In addition they were often seen in close apposition to the fenestrated endothelial cells in the cortex and the medulla, only a common basal lamina intervening. Several possible mechanisms by which VIP may exert its effect in the adrenal gland are discussed.  相似文献   

8.
Little is known of how adrenal hormones pass from the interstitial to the vascular space. We have begun to examine the adrenal endothelium as a barrier to hormone passage, by the freeze-fracturing technique. The endothelium of both cortex and medulla is fenestrated. Fractures from both regions show endothelial cells to be extremely thin in regions where fenestrations are abundant. En face fractures show fenestrae disposed in tracts; the fenestrae reaching a distribution of 35/μ2. In both cortex and medulla there are areas of continuous endothelium which contain caveolae. Structures believed to represent fenestra diaphragms contain randomly disposed particles and occasional pits. We have not identified in replicas the central ring and pore described in thin-sectioned material (Elfvin, 1965). The main differences between freeze-fractured aspects of cortical and medullary endothelium are the greater abundance of caveolae in the medulla and the size of the fenestrae (fenestra rims in the medulla are 525–780 Å in diameter; in the cortex 570–1660 Å). These differences may reflect the different embryological origins of the medulla and cortex. While caveolae may participate in hormone transport, there is no evidence for this. In the medulla the caveolae are more numerous and may have a function not necessarily related to transport. Possibly, caveolae play a role in processing hormones and related substances. For example, ATP and specific proteins are released as well as epinephrine during exocytosis from chromaffin cells. Epinephrine enters the vascular space but ATP does not. ATPase enzymes are a common feature of caveolae of other endothelia and may occur as well in adrenal endothelium.  相似文献   

9.
Monoamine Oxidase in Rat and Bovine Endocrine   总被引:1,自引:0,他引:1  
Monoamine oxidase (MAO) was characterized in tissue homogenates from rat pancreatic islets, rat neurohypophysis and adenohypophysis, and rat and bovine adrenal medulla and adrenal cortex. Phenylethylamine was preferentially deaminated by rat pancreatic islet and bovine adrenal medulla MAO and with slight preference by rat neurohypophysis MAO, whereas 5-hydroxytryptamine was preferentially deaminated by MAO from all other endocrine tissues. Tyramine was a good substrate for all tissues. Clorgyline, a selective inhibitor of MAO-A, preferentially inhibited deamination of 5-hydroxytryptamine by all tissue homogenates, whereas deprenyl, a selective inhibitor of MAO-B, preferentially inhibited deamination of phenylethylamine. Km values for 5-hydroxytryptamine and tyramine were higher by one to two decimal powers than for phenylethylamine in homogenates from all endocrine tissues. Km values were significantly lower for 5-hydroxytryptamine and significantly higher for phenylethylamine in rat and bovine adrenal cortex than in adrenal medulla. According to these results, the contributions of MAO-B to total enzyme activity were 70% for rat pancreatic islets, 45% for rat neurohypophysis, 15% for rat adenohypophysis, 20% for rat adrenal medulla, 10% for rat adrenal cortex, 60% for bovine adrenal medulla, and 20% for bovine adrenal cortex. PC 12 cells also contained predominantly MAO-A (90%); however, an increased Km for phenylethylamine and a sensitivity of deamination of this MAO-B substrate to inhibition by clorgyline are indicators of abnormal behavior of MAO in this clonal rat pheochromocytoma cell line.  相似文献   

10.
Dopamine in rat adrenal glomerulosa   总被引:1,自引:0,他引:1  
There is increasing evidence that dopamine (DA) inhibits aldosterone production, but the source of DA for this dopaminergic influence is not known. In the present study we examined the adrenal's zona glomerulosa for the presence of DA. Rats maintained on an intake of regular food were killed by decapitation and the adrenal capsule (containing zona glomerulosa) and the remainder of the gland (containing both cortex and medulla) were examined for their content of DA and also for norepinephrine (NE) and epinephrine (E). DA was found in adrenal glomerulosa in substantial quantity, 1.92 +/- 0.17 (SEM) ng/mg wet weight, representing an approximate concentration of DA of 1-100 microM. DA in adrenal capsule represented 12.2% of the total adrenal content of DA. NE and E were also present in glomerulosa, 3.46 +/- 0.32 and 18.7 +/- 2.1 ng/mg respectively, but, unlike DA, about 98% of the total adrenal content of NE and E was contained in adrenal medulla. The NE/E ratio in capsule and medulla were similar, although slightly higher in adrenal medulla, suggesting that the medulla is the source of the NE and E found in glomerulosa. On the other hand, the DA/E ratio was several-fold higher in glomerulosa than medulla--suggesting that glomerulosa DA was derived at least partially from a source other than adrenal medulla. We also found that short-term culturing of the adrenal reduced DA levels to 1/3 that observed in fresh tissue. This could explain in part why cultured glomerulosa has been shown to be more responsive to administered stimuli. In summary, the findings indicate a significant concentration of DA in adrenal glomerulosa, and suggest that the effects of DA on aldosterone production are mediated locally within the adrenal.  相似文献   

11.
Vasoactive intestinal peptide (VIP) was found in the adrenal gland of ovine fetuses at 130-135 days gestation and was shown to stimulate catecholamine secretion. VIP was demonstrated by immunocytochemistry using the indirect antibody-enzyme method. VIP-immunoreactive nerve fibers were observed in the capsule, zona glomerulosa and inner layer of the cortex as well as in the medulla; furthermore small clusters of VIP-containing cell bodies were found at the corticomedullary border. To study the direct effect of VIP on catecholamine release, fetal adrenal medulla was dispersed into single cells and incubated in vitro with VIP for 6 hours. Catecholamine release into the medium was measured at 1, 3 and 6 hours. At 6 hours of incubation, VIP stimulated total catecholamine release from fetal adrenomedullary cells in a dose-dependent manner at concentrations ranging from 10(-8) to 10(-4) M. The release of norepinephrine and epinephrine, but not dopamine, was significantly enhanced. The presence of VIP in the fetal adrenal cortex and medulla, and the ability of VIP to stimulate catecholamine release from fetal adrenomedullary cells in vitro suggest that VIP may be an important modulator of medullary catecholamine secretion during fetal life.  相似文献   

12.
The effects of training are dependent on complex, adaptive changes which are induced by acute physical exercise at different levels. In particular, evidence shows that the hypothalamus-pituitary-adrenocortical axis, as well as the sympatho-adrenomedullary system, is mainly involved in mediating the physiological effects of physical exercise. The aim of the present study was to investigate, through a morphological and biochemical approach, the effects of training on the adrenal gland of mice, following two different protocols consisting of either low- or high-intensity training. Mice were run daily on a motorised treadmill for 8 weeks, at a velocity corresponding to 60% (low-intensity exercise) or 90% (high-intensity exercise) of the maximal running velocity previously determined by an incremental exercise test. We found that physical exercise produced an increase in the adrenal gland size compared with the control (sedentary) mice. The increase was 31.04% for mice that underwent high-intensity exercise and 10.08% for mice that underwent low intensity exercise, and this appeared to be the result of an increase in the area of both the adrenal cortex and adrenal medulla. Morphological analysis of the adrenal cortex showed that both types of exercise produced an increase in cytoplasmic vacuoles in steroidogenic cells, appearing more abundant after high-intensity exercise. No change was found in the reticulate zone. In the adrenal medulla, despite the absence of morphological changes, immunohistochemistry for tyrosine hydroxylase, dopamine β-hydroxylase and phenyl-ethanolamine-N-methyltransferase demonstrated an increased immunopositivity for these cathecolamine-synthesizing enzymes after intense exercise. These results were confirmed by immunoblot accompanied by densitometric analysis.  相似文献   

13.
14.
Immunoreactive alpha-, beta- and gamma-endorphins and beta-lipotropin--C-terminal peptide fragments of pro-opiomelanocortin (POMC)--were discovered and measured by RIA in the bovine adrenal medulla and cortex. These peptides were also discovered in perfusates of the adrenal gland. POMC proper and some intermediate forms of its processing not differing in electrophoretic mobility from the respective molecular forms of hypophyseal POMC were identified in the medulla and cortex of the adrenals by the immunoblotting technique with the use of antiserum to beta-lipoprotein. It is concluded that POMC gene is expressed in the adrenal medulla and cortex and that as a result of POMC processing a noticeable amount of its peptide fragments is formed and secreted in adrenal cells. The authors thus suggest the presence of existence of the pituitary-unrelated mechanisms of adrenal function control with participation of POMC peptides synthesized in the adrenals.  相似文献   

15.
The presence of an uptake system and a functional glycine receptor in adrenal medulla chromaffin cells was investigated using an autoradiographic technique in adrenal gland slices. Specific3[H]-glycine binding was observed in both adrenal cortex and medulla slices, while only specific binding of [3H]strychnine was seen only in chromaffin cells and was not associated with cortical cells. [3H]Glycine binding sites in the cortex are apparently different from those of [3H]strychnine binding sites in the medulla since excess strychnine does not displace [3H]glycine from adrenal cortex but does so from medulla. This difference supports biochemical evidence for glycine transport into medulla cells and glycine receptor sites on the chromaffin cell membrane.  相似文献   

16.
A Bjartell  M Fenger  R Ekman  F Sundler 《Peptides》1990,11(1):149-161
The distribution of the proopiomelanocortin-derivated amidated joining peptide (JP-N) was examined in the human pituitary gland, adrenal gland, gut and in three bronchial carcinoids. Double immunostaining showed coexistence of immunoreactive JP-N and other proopiomelanocortin derivatives, e.g., ACTH, beta-endorphin, Pro-tau-MSH, in the pituitary gland and adrenal medulla. The JP-N immunoreactive cells in the adrenal medulla were identified as a subpopulation of adrenaline-producing cells by means of an antiserum against phenylethanolamine N-methyltransferase. In the gut immunoreactive JP-N was costored with somatostatin in endocrine cells. Using radioimmunoassay, JP-N was found in higher concentrations than ACTH and alpha-MSH in the gut but not in the adrenal gland. Gel chromatography of gastric antrum and adrenal gland extracts showed three and two dominating components of immunoreactive JP-N, respectively, but under reduced conditions most of the immunoreactive material appeared as of low molecular weight in both extracts. In conclusion, immunoreactive JP-N is a major product from the processing of proopiomelanocortin in human extrapituitary tissues. The molecular forms of immunoreactive JP-N correspond to previous findings in the human pituitary gland.  相似文献   

17.
Gamma-aminobutyric acid (GABA) immunoreactivity was revealed by immunocytochemistry in the mouse adrenal gland at the light and electron microscopic levels. Groups of weakly or faintly GABA immunoreactive chromaffin cells were often seen in the adrenal medulla. By means of immunohistochemistry combined with fluorescent microscopy, these GABA immunoreactive chromaffin cells showed noradrenaline fluorescence. The immunoreaction product was seen mainly in the granular cores of these noradrenaline cells. These results suggest the co-existence of GABA and noradrenaline within the chromaffin granules. Sometimes thick or thin bundles of GABA immunoreactive nerve fibers with or without varicosities were found running through the cortex directly into the medulla. In the medulla, GABA immunoreactive varicose nerve fibers were numerous and were often in close contact with small adrenaline cells and large ganglion cells; a few, however, surrounded clusters of the noradrenaline cells, where membrane specializations were formed. Single GABA immunoreactive nerve fibers, and thin or thick bundles of the immunoreactive varicose nerve fibers ran along the blood vessels in the medulla. The immunoreaction deposits were observed diffusely in the axoplasm and in small agranular vesicles of the GABA immunoreactive nerve fibers. Since no ganglion cells with GABA immunoreactivity were found in the adrenal gland, the GABA immunoreactive nerve fibers are regarded as extrinsic in origin.  相似文献   

18.
Summary Somatostatin-like immunoreactivity was detected within the adrenal gland of the rat using specific monoclonal antibodies. Immunohistochemical studies demonstrated a few somatostatin-immunoreactive nerve fibers within the adrenal medulla. In addition, a large population of chromaffin cells in the cat adrenal medulla displayed intense somatostatin-like immunoreactivity. Similar cells were not observed in rat or guinea pig adrenal glands, although they were found in human material. The somatostatin-positive cells in the cat adrenal medulla often possessed short immunoreactive processes similar to those seen in somatostatin-immunoreactive paracrine cells of the gut. Characterization of the somatostatin-like immunoreactivity of the cat adrenal by high performance liquid chromatography and radioimmunoassay indicated that somatostatin-28 may account for over 90% of the observed immunoreactivity. It is suggested that somatostatin-28 may have a paracrine or endocrine role in the feline adrenal medulla.  相似文献   

19.
Somatostatin-like immunoreactivity was detected within the adrenal gland of the cat using specific monoclonal antibodies. Immunohistochemical studies demonstrated a few somatostatin-immunoreactive nerve fibers within the adrenal medulla. In addition, a large population of chromaffin cells in the cat adrenal medulla displayed intense somatostatin-like immunoreactivity. Similar cells were not observed in rat or guinea pig adrenal glands, although they were found in human material. The somatostatin-positive cells in the cat adrenal medulla often possessed short immunoreactive processes similar to those seen in somatostatin-immunoreactive paracrine cells of the gut. Characterization of the somatostatin-like immunoreactivity of the cat adrenal by high performance liquid chromatography and radioimmunoassay indicated that somatostatin-28 may account for over 90% of the observed immunoreactivity. It is suggested that somatostatin-28 may have a paracrine or endocrine role in the feline adrenal medulla.  相似文献   

20.
Abstract : In the rat adrenal gland, we previously observed that SNAP-25 is not restricted to the plasmalemma in noradrenergic cells as it is in adrenergic cells, and hypothesized that SNAP-25 isoform expression is different in the two phenotypes. Expression of SNAP-25 isoforms and SNAP-23 was examined by immunoblotting, immunofluorescence, and RT-PCR. Amplifications of SNAP-25 mRNAs were combined with Southern hybridization, restriction enzyme analysis, and sequencing of cloned PCR products to compare SNAP-25 isoform expression in rat and bovine adrenal glands. SNAP-25 and SNAP-23 mRNA and protein are expressed in the glands ; SNAP-23 is enriched in the adrenal cortex, whereas SNAP-25 is restricted to the adrenal medulla. Furthermore, high levels of SNAP-25 and low levels of SNAP-23 are observed in the PC12 cells, whereas both SNAP-25 and SNAP-23 are expressed in adrenal medullary cultures. In all extracts, the SNAP-23 mRNA corresponded to SNAP-23a. SNAP-25a is the major form expressed in rat adrenal glands (75%), as it is in PC12 cells (80%), but both SNAP-25a and SNAP-25b (40% vs. 60%) are expressed in bovine adrenal medulla in situ and in culture. In addition, an enriched population of adrenergic cells (93%) expressed a higher level of SNAP-25b (70%), suggesting that this isoform may not be restricted to fast neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号