首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SMADs are intracellular signaling molecules that transmit signals elicited by members of transforming growth factor-β (TGF-β) superfamily. To decipher the mechanism of TGF-β signaling during the estrous cycle and implantation, we performed in situ hybridization to investigate the expression patterns of mRNAs for Smad2 and Smad4 in rat endometrium during the estrous cycle and on Days 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, and 6.5 of pregnancy. Intense epithelial expression of Smad2 mRNA at diestrus and proestrus was reduced at estrus and metaestrus, while Smad4 maintained its constitutive expression during the estrous cycle. During pre-implantation, both Smads were accumulated in the luminal epithelium and the glandular epithelium. Contrary to the dramatic Smad4 expression, Smad2 was highly down-regulated on Day 2.5 and was increased on Day 3.5. During peri-implantation, both Smads were expressed in the luminal epithelium, subepithelial stroma, and the primary decidual zone. Smad4 was down-modulated on Day 5.5. These results suggest that (a) both Smads are involved in the tissue remodeling of cycling and pregnant rat uteri; (b) TGF-β signaling functions mainly in the epithelium during pre-implantation and Smad2 is involved in the endometrial switch from the neutral phase to the receptive phase; (c) TGF-β signaling is down-regulated at the time when trophoblast invasion begins and both Smads are involved in the formation of the primary decidual zone.  相似文献   

2.
Liu G  Zhang X  Lin H  Li Q  Wang H  Ni J  Amy Sang QX  Zhu C 《Life sciences》2005,77(26):3355-3365
Matrix metalloproteinases (MMPs) and their tissue inhibitors play important roles in the remodeling of extracellular matrix (ECM). MMP-26, also called endometase or matrilysin-2, is a novel member of the MMP family. The present study was to investigate the temporal and spatial expression of MMP-26 mRNA in mouse uterus during the estrous cycle and early pregnancy by using in situ hybridization and semi-quantitative RT-PCR. In this study, MMP-26 mRNA was found to be localized to the luminal and glandular epithelium at proestrus and estrus, and the expression level was decreased significantly from metestrus to dioestrus. During pre-implantation period, MMP-26 mRNA was predominantly expressed in luminal and glandular epithelium at much higher level; whereas it switched to stroma during peri-implantation period, and also appeared in the blastocysts and the implantation sites. The results suggested that MMP-26 might play a role in the cycling changes of mouse uterus during the estrous cycle and embryo implantation.  相似文献   

3.
4.
5.
Endoglin is an auxiliary component of the transforming growth factor-beta (TGF-beta) receptor system, able to associate with the signaling receptor types I (TbetaRI) and II (TbetaRII) in the presence of ligand and to modulate the cellular responses to TGF-beta1. Endoglin cannot bind ligand on its own but requires the presence of the signaling receptors, supporting a critical role for the interaction between endoglin and TbetaRI or TbetaRII. This study shows that full-length endoglin interacts with both TbetaRI and TbetaRII, independently of their kinase activation state or the presence of exogenous TGF-beta1. Truncated constructs encoding either the extracellular or the cytoplasmic domains of endoglin demonstrated that the association with the signaling receptors occurs through both extracellular and cytoplasmic domains. However, a more specific mapping revealed that the endoglin/TbetaRI interaction was different from that of endoglin/TbetaRII. TbetaRII interacts with the amino acid region 437-558 of the extracellular domain of endoglin, whereas TbetaRI interacts not only with the region 437-558 but also with the protein region located between amino acid 437 and the N terminus. Both TbetaRI and TbetaRII interact with the cytoplasmic domain of endoglin, but TbetaRI only interacts when the kinase domain is inactive, whereas TbetaRII remains associated in its active and inactive forms. Upon association, TbetaRI and TbetaRII phosphorylate the endoglin cytoplasmic domain, and then TbetaRI, but not TbetaRII, kinase dissociates from the complex. Conversely, endoglin expression results in an altered phosphorylation state of TbetaRII, TbetaRI, and downstream Smad proteins as well as a modulation of TGF-beta signaling, as measured by the reporter gene expression. These results suggest that by interacting through its extracellular and cytoplasmic domains with the signaling receptors, endoglin might affect TGF-beta responses.  相似文献   

6.
Transforming growth factor-beta (TGF-beta) binds to and signals via two serine-threonine kinase receptors, the type I (TbetaRI) and type II (TbetaRII) receptors. We have used different and complementary techniques to study the physical nature and ligand dependence of the complex formed by TbetaRI and TbetaRII. Velocity centrifugation of endogenous receptors suggests that ligand-bound TbetaRI and TbetaRII form a heteromeric complex that is most likely a heterotetramer. Antibody-mediated immunofluorescence co-patching of epitope-tagged receptors provides the first evidence in live cells that TbetaRI. TbetaRII complex formation occurs at a low but measurable degree in the absence of ligand, increasing significantly after TGF-beta binding. In addition, we demonstrate that pretreatment of cells with dithiothreitol, which inhibits the binding of TGF-beta to TbetaRI, does not prevent formation of the TbetaRI.TbetaRII complex, but increases its sensitivity to detergent and prevents TGF-beta-activated TbetaRI from phosphorylating Smad3 in vitro. This indicates that either a specific conformation of the TbetaRI. TbetaRII complex, disrupted by dithiothreitol, or direct binding of TGF-beta to TbetaRI is required for signaling.  相似文献   

7.
8.
K Luo  H F Lodish 《The EMBO journal》1996,15(17):4485-4496
Transforming growth factor-beta (TGF-beta) affects multiple cellular functions through the type I and type II receptor Ser/Thr kinases (TbetaRI and TbetaRII). Analysis of TGF-beta signaling pathways has been hampered by the lack of cell lines in which both TbetaRI and TbetaRII are deleted, and by the inability to study signal transduction by TbetaRI independently of TbetaRII since TbetaRI does not bind TGF-beta directly. To overcome these problems, we constructed and expressed chimeric receptors with the extracellular domain of the erythropoietin receptor (EpoR) and the cytoplasmic domains of TbetaRI or TbetaRII. When expressed in Ba/F3 cells, which do not express EpoR, Epo induces the formation of a heteromeric complex between cell surface EpoR-TbetaRI and EpoR-TbetaRII chimeras. Neither the EpoR-TbetaRI nor the EpoR-TbetaRII chimera interacts with endogenous TGF-beta receptors. Ba/F3 cells expressing both EpoR-TbetaRI and EpoR-TbetaRII chimeras, but not EpoR-TbetaRI or EpoR-TbetaRII alone, undergo Epo-induced growth arrest. When expressed in Ba/F3 cells in the absence of the EpoR-TbetaRII chimera, EpoR-TbetaRI(T204D), a chimeric receptor with a point mutation in the GS domain of TbetaRI that is autophosphorylated constitutively, triggers growth inhibition in response to Epo. Thus, both homo- and heterodimerization of the cytoplasmic domain of the type I TGF-beta receptor are required for intracellular signal transduction leading to inhibition of cell proliferation. These chimeric receptors provide a unique system to study the function and signal transduction of individual TGF-beta receptor subunits independently of endogenous TGF-beta receptors.  相似文献   

9.
10.
It has been well recognized that epithelial cells of the rat endometrium cyclically proliferate and die during the estrous cycle. The aim of the present study was to determine p53 expression pattern and correlate it with the the apoptotic pattern of epithelial cells of the rat uterus during the estrous cycle. The p53 mRNA and protein expression pattern was assessed by in situ hybridization and immunohistochemistry. The apoptotic index was determined by using terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) and electron microscopy. The highest p53 mRNA content, detected by in situ hybridization, was observed on the metestrus day both in the luminal and the glandular epithelia. During this period both epithelia presented high proliferation. The content of p53 mRNA markedly decreased in the following days, presenting its minimal values on the estrus day. The highest number of p53 immunopositive nuclei, in both the luminal and the glandular epithelia, was also detected on the metestrus day, while the lowest one was found on estrus day. On the proestrus day, p53 protein was predominantly detected in the glandular epithelium. However, on the estrus day, p53 protein was detected both in the nuclei and in the cytoplasm of luminal epithelial cells, predominantly in the cytoplasm. The highest apoptotic index in both the luminal and the glandular epithelia was observed on the estrus day whereas the lowest one was observed on the proestrus day. The apoptotic index values were higher in the luminal than in the glandular epithelia. The overall results indicate that p53 expression at both mRNA and protein levels is higher on the metestrus day when the apoptotic index is low. This suggests that p53 should play an important physiological role during proliferative phases of the estrous cycle in the rat uterus.  相似文献   

11.
为研究蛋白激酶H11基因在生殖系统中的作用,我们采用半定量RT-PCR和原位杂交方法,研究了蛋白激酶H11基因在小鼠中的组织特异性表达,在妊娠初始期胚胎植入位点、妊娠期子宫和胎盘以及正常动情周期子宫中的表达及其受性激素的调节。结果发现:蛋白激酶H11基因在小鼠多种组织中都有表达,在卵巢及子宫等一些生殖相关的组织中表达水平较高;妊娠初始期,蛋白激酶H11基因在小鼠子宫内膜植入位点处有明显的高表达,其mRNA定位于腔上皮细胞和基质细胞中。在动情周期中,蛋白激酶H11基因在动情前期子宫中表达水平较低;卵巢切除模型显示雌激素和孕激素均可显著上调蛋白激酶H11基因的表达。以上结果提示蛋白激酶H11可能参与了胚胎植入过程中腔上皮细胞凋亡和基质细胞增殖与蜕膜化以及动情周期小鼠子宫内膜细胞的功能调节[动物学报51(3):462-468,2005]。  相似文献   

12.
13.
The objectives of this study were to investigate in the goat uterus the expression of estrogen-alpha (ER alpha) and progesterone receptors (PR) and their relationship to proliferation indices (Ki-67) during peri-implantation on Days 22 to 30 post coitum (pc). Immunohistochemical methods were used to quantify ER alpha and PR for luminal and deep regions of the endometrium and of the myometrium. On Day 22 pc cell proliferation was only observed in the luminal epithelium. On Day 24 pc, high cell proliferation indices were seen in luminal epithelium and proliferation began in the luminal stroma and glands. There was a positive correlation between Ki-67 and total ER alpha score in the luminal epithelium (r = 0.53, P < 0.01). Levels of PR scores were highly correlated with Ki-67 indices in luminal epithelium (r = 0.74, P < 0.01) and stroma (r = 0.70, P < 0.01). No Ki-67 expression was observed in deep glands, stroma or myometrium on any of the days studied. Results indicate that patterns of ER alpha and PR expression differ markedly, and that there was a high correlation between PR expression and cell proliferation in the caprine uterus during the peri-implantation period.  相似文献   

14.
15.
Prostate cancers often develop insensitivity to TGF-beta to gain a growth advantage. In this study, we explored the status of promoter methylation of TGF-beta receptors (TbetaRs) in a prostate cancer cell line, LNCaP, which is insensitive to TGF-beta. Sensitivity to TGF-beta was restored in cells treated with 5-Aza-2'-deoxycytidine (5-Aza), as indicated by an increase in the expression of phosphorylated Smad-2, type I (TbetaRI), and type II (TbetaRII) TGF-beta receptors, and a reduced rate of proliferation. The same treatment did not significantly affect a benign prostate cell line, RWPE-1, which is sensitive to TGF-beta. Mapping of methylation sites was performed by screening 82 potential CpG methylation sites in the promoter of TbetaRI and 33 sites in TbetaRII using methylation-specific PCR and sequence analysis. There were six methylation sites (-365, -356, -348, -251, -244, -231) in the promoter of TbetaRI. The -244 site was located in an activator protein (AP)-2 box. There were three methylated sites (-140, +27, +32) in the TbetaRII promoter and the -140 site was located in one of the Sp1 boxes. Chromatin immunoprecipitation analysis demonstrated DNA binding activity of AP-2 in the TbetaRI promoter and of Sp1 in the TbetaRII promoter after treatment with 5-Aza. To test whether promoter methylation is present in clinical specimens, we analyzed human prostate specimens that showed negative staining for either TbetaRI or TbetaRII in a tissue microarray system. DNA samples were isolated from the microarray after laser capture microdissection. Methylation-specific PCR was performed for TbetaRI (six sites) and TbetaRII (three sites) promoters as identified in LNCaP cells. A significant number of clinical prostate cancer specimens lacked expression of either TbetaRI and/or TbetaRII, especially those with high Gleason's scores. In those specimens showing a loss of TbetaR expression, a promoter methylation pattern similar to that of LNCaP cells was a frequent event. These results demonstrate that insensitivity to TGF-beta in some prostate cancer cells is due to promoter methylation in TbetaRs.  相似文献   

16.
In many cancers, inactivating mutations in both alleles of the transforming growth factor beta (TGF-beta) type 11 receptor (TbetaRII) gene occur and correlate with loss of sensitivity to TGF-beta. Here we describe a novel mechanism for loss of sensitivity to growth inhibition by TGF-beta in tumor development. Mac-1 cells, isolated from the blood of a patient with an indolent form of cutaneous T-cell lymphoma, express wild-type TbetaRII and are sensitive to TGF-beta. Mac-2A cells, clonally related to Mac-1 and isolated from a skin nodule of the same patient at a later, clinically aggressive stage of lymphoma, are resistant to TGF-beta. They express both the wild-type TbetaRII and a receptor with a single point mutation (Asp-404-Gly [D404G]) in the kinase domain (D404G-->TbetaRII); no TbetaRI or TbetaRII is found on the plasma membrane, suggesting that D404G-TbetaRII dominantly inhibits the function of the wild-type receptor by inhibiting its appearance on the plasma membrane. Indeed, inducible expression, under control of a tetracycline-regulated promoter, of D404G-TbetaRII in TGF-beta- sensitive Mac-1 cells as well as in Hep3B hepatoma cells results in resistance to TGF-beta and disappearance of cell surface TbetaRI and TbetaRII. Overexpression of wild-type TbetaRII in Mac-2A cells restores cell surface TbetaRI and TbetaRH and sensitivity to TGF-beta. The ability of the D404G-TbetaRH to dominantly inhibit function of wild-type TGF-beta receptors represents a new mechanism for loss of sensitivity to the growth-inhibitory functions of TGF-beta in tumor development.  相似文献   

17.
Immunohistochemistry as well as in situ and Northern blot hybridization were employed to determine temporal and cell-type-specific expression of transforming growth factor-alpha (TGF-alpha) in the mouse uterus during the peri-implantation period. The co-localization of TGF-alpha (by immunohistochemistry) with its mRNA (by in situ hybridization) in the luminal and glandular epithelia on Days 1-4 of pregnancy (Day 1 = vaginal plug) and also in many stromal cells on Days 3 and 4 indicates that these cells are the primary sites of TGF-alpha synthesis during the preimplantation period. The higher levels of TGF-alpha mRNA in total uterine RNA on Day 4, as shown by Northern blotting, is consistent with the recruitment of stromal cells expressing this gene. During the post-implantation period (Days 5-8), the co-localization of the mRNA and protein in the decidua at the implantation sites suggests that the decidualizing stromal cells synthesize TGF-alpha. Although in situ hybridization showed the presence of mRNA in embryos on Days 5-8, immunostaining was noted in the embryo only on Days 5 and 6. These results suggest that uterine and embryonic expression of TGF-alpha during the peri-implantation period could be involved in embryonic development, preparation of the uterus for implantation, and decidualization.  相似文献   

18.
Molecular cloning of the partial cDNA coding sequences of the four erbB receptors and the epidermal growth factor (EGF)-like ligands EGF, transforming growth factor alpha (TGF), and heparin-binding EGF (HB-EGF) has provided the basis for a comprehensive analysis of the spatiotemporal expression pattern of the EGF receptor/ligand system during the peri-implantation period in the rabbit. Employing nonradioactive in situ hybridization and immunolocalization, we observed differential expression of erbB1-erbB3 within the trophectoderm of the blastocyst. ErbB1 was strongly expressed in the cytotrophoblast but was downregulated upon syncytium formation. ErbB3 was a product of both the cyto- and syncytiotrophoblast. Despite the expression of erbB2 mRNA, the trophectoderm was devoid of immunoreactive ErbB2. ErbB4 gene activity was exclusively detected in the trophoblast at midpregnancy. The luminal and glandular epithelium and stroma of the nonpregnant, pseudopregnant, and pregnant rabbit uterus at Day 6 of gestation also expressed ErbB1-ErbB3. In the peri-implantation period, gene activities of erbB1-erbB3 were upregulated upon decidualization. At the site of implantation, uterine luminal epithelial cells apposing the preimplantation blastocyst displayed a distinct membrane immunolocalization of ErbB2, identifying the uterine epithelium as target for EGF, TGFalpha, and HB-EGF derived from both the embryonic trophectoderm and the uterine epithelium. In the luminal epithelium at the antimesometrial uterine site, HB-EGF gene activity was upregulated at the time of blastocyst attachment, but this upregulation was not reflected in an increase in immunoreactive HB-EGF. The detection of tyrosine phosphorylated ErbB2 in the rabbit placenta indicated the presence of a functional ErbB/EGF-like system in the pregnant rabbit uterus. This study provides strong evidence for a role of the ErbB/EGF-like system in embryo/maternal interactions during the peri-implantation period in the rabbit.  相似文献   

19.
The transforming growth factor beta (TGF-beta) is a vital regulator of placental development and functions. TGF-beta exerts several modulatory effects on trophoblast cells, such as inhibition of proliferation and invasiveness, and stimulation of differentiation by inducing multinucleated cell formation. In this study, we determine the expression patterns of TGF-beta signaling molecules in normal trophoblast, various hydatidiform mole types and choriocarcinoma. A total of 132 cases, including 51 normal placenta (20 first trimester, 11 second trimester, and 20 third trimester) and 81 gestational trophoblastic diseases (17 choriocarcinoma, and 64 hydatidiform moles: 39 complete, 6 partial, and 19 invasive) were immunohistochemically analyzed with anti-TGF beta1/2, TGF-beta receptor type I (TbetaRI), TbetaRII, Smad 2/3, and Smad 4 antibodies on paraffin blocks. In the case of normal placenta, maximal levels of all TGF-beta signaling molecules were observed in villous trophoblast in the first trimester, which decreased with gestational age. Expression of all the TGF-beta signaling proteins except Smad2/3, was significantly enhanced in various moles, relative to normal trophoblast. Moreover, TGF-beta signaling molecules were significantly downregulated in choriocarcinoma, compared to moles. In particular, TbetaRI and Smad2/3 levels were lower in choriocarcinoma than normal villous trophoblast (TbetaRI: p<0.025, Smad2/3: p<0.001). In conclusion, the TGF-beta signaling pathway plays an important role in the pathogenesis and progression of gestational trophoblastic disease, and may thus be employed as a potential therapeutic target and a diagnostic biomarker.  相似文献   

20.
Control over the action of steroid hormones in the uterus and conceptus during the initial period of gestation appears to be regulated locally by growth factors. This study involved immunohistochemical detection of epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha) and transforming growth factor-beta s (TGF-beta s), to determine their role in the caprine peri-implantation period. Epidermal growth factor was expressed in the luminal and glandular endometrial epithelium of goats on all days studied (Days 22 to 30 post coitum), but it was not detected in trophoblastic cells or in other embryonic structures. Between Days 22 and 30 post coitum, TGF-alpha was detected in the epithelial cells and superficial stroma of the uterus and in the trophoendodermic cells of the embryo. Transforming growth factor-beta s expression, observed in the endometrium, embryo and extraembryonic membranes on Day 22 post coitum, decreased by Day 24 post coitum and disappeared in the embryo by Day 30 post coitum, while remaining in the other structures. The presence of these growth factors during the peri-implantation period in the goat suggests their participation in proliferation and differentiation phenomena which occur during implantation and embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号