首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of long-term cold exposure on skeletal and cardiac muscle protein turnover was investigated in young growing animals. Two groups of 36 male 28-day-old rats were maintained at either 5 degrees C (cold) or 25 degrees C (control). Rates of protein synthesis and degradation were measured in vivo on days 5, 10, 15, and 20. Protein mass by day 20 was approximately 28% lower in skeletal muscle (gastrocnemius and soleus) and approximately 24% higher in heart in cold compared with control rats (P < 0.05). In skeletal muscle, the fractional rates of protein synthesis (k(syn)) and degradation (k(deg)) were not significantly different between cold and control rats, although k(syn) was lower (approximately -26%) in cold rats on day 5; consequent to the lower protein mass, the absolute rates of protein synthesis (approximately -21%; P < 0. 05) and degradation (approximately -13%; P < 0.1) were lower in cold compared with control rats. In heart, overall, k(syn) (approximately +12%; P < 0.1) and k(deg) (approximately +22%; P < 0.05) were higher in cold compared with control rats; consequently, the absolute rates of synthesis (approximately +44%) and degradation (approximately +54%) were higher in cold compared with control rats (P < 0.05). Plasma triiodothyronine concentration was higher (P < 0.05) in cold compared with control rats. These data indicate that long-term cold acclimation in skeletal muscle is associated with the establishment of a new homeostasis in protein turnover with decreased protein mass and normal fractional rates of protein turnover. In heart, unlike skeletal muscle, rates of protein turnover did not appear to immediately return to normal as increased rates of protein turnover were observed beyond day 5. These data also indicate that increased rates of protein turnover in skeletal muscle are unlikely to contribute to increased metabolic heat production during cold acclimation.  相似文献   

2.
Prior studies suggest that estradiol and progesterone regulate body composition in growing female rats. Because these studies did not consider the confounding effect of changes in food intake, it remains unclear whether ovarian hormones regulate body composition independently of their effects on food intake. We utilized a pair-feeding paradigm to examine the effects of these hormones on body composition. In addition, skeletal muscle protein fractional synthesis rate and adipose tissue lipoprotein lipase activity were measured to examine pathways of substrate deposition into fat and fat-free tissue. Female Sprague-Dawley rats [pubertal: 7-8 wk old; 190 +/- 0.5 (SE) g] were separated into four groups: 1) sham-operated (S; n = 8), 2) ovariectomized plus placebo (OVX; n = 8), 3) ovariectomized plus estradiol (OVX+E; n = 8), and 4) ovariectomized plus progesterone (OVX+P; n = 8). All ovariectomized groups were pair-fed to the S group. Body composition was measured using total body electrical conductivity. The relative increase in fat-free mass was greater (P < 0.01) in the OVX group (31 +/- 2%) than in the S (17 +/- 2%), OVX+E (18 +/- 2%), and OVX+P (22 +/- 2%) groups. The fractional synthetic rates of gastrocnemius muscle protein paralleled changes in fat-free mass: OVX had a higher (P < 0.05) synthesis rate (21 +/- 3%/day) than S (12 +/- 2%/day), OVX+E (11 +/- 2%/day), and OVX+P (8 +/- 1%/day) groups. Body fat increased in the S group (31 +/- 7%; P < 0.01), whereas the OVX groups lost fat (OVX: -10 +/- 7%; OVX+E: -15 +/- 7%; OVX+P: -13 +/- 7%). No differences in lipoprotein lipase were found. Our results suggest that estradiol and progesterone may regulate the growth of fat and fat-free tissues in female rats. Moreover, ovarian hormones may influence skeletal muscle growth through their effects on skeletal muscle protein synthesis.  相似文献   

3.
We examined the temporal relationship between portacaval anastomosis (PCA), weight gain, changes in skeletal muscle mass and molecular markers of protein synthesis, protein breakdown, and satellite cell proliferation and differentiation. Male Sprague-Dawley rats with end to side PCA (n=24) were compared with sham-operated pair-fed rats (n=24). Whole body weight, lean body mass, and forelimb grip strength were determined at weekly intervals. The skeletal muscle expression of the ubiquitin proteasome system, myostatin, its receptor (the activin 2B receptor) and its signal, cyclin-dependent kinase inhibitor (CDKI) p21, insulin-like growth factor (IGF)-I and its receptor (IGF-I receptor-alpha), and markers of satellite cell proliferation and differentiation were quantified. PCA rats did not gain body weight and had lower lean body mass, forelimb grip strength, and gastrocnemius muscle weight. The skeletal muscle expression of the mRNA of ubiquitin proteasome components was higher in PCA rats in the first 2 wk followed by a lower expression in the subsequent 2 wk (P<0.01). The mRNA and protein of myostatin, activin 2B receptor, and CDKI p21 were higher, whereas IGF-I and its receptor as well as markers of satellite cell function (proliferating nuclear cell antigen, myoD, myf5, and myogenin) were lower at weeks 3 and 4 following PCA (P < 0.05). We conclude that PCA resulted in uninhibited proteolysis in the initial 2 wk. This was followed by an adaptive response in the later 2 wk consisting of an increased expression of myostatin that may have contributed to reduced muscle protein synthesis, impaired satellite cell function, and lower skeletal muscle mass.  相似文献   

4.
We have previously shown that 4 wk of exercise training early in life normalizes the otherwise greatly reduced pancreatic β-cell mass in adult male rats born small. The aim of the current study was to determine whether a similar normalization in adulthood of reduced skeletal muscle mitochondrial biogenesis markers and alterations in skeletal muscle lipids of growth-restricted male rats occurs following early exercise training. Bilateral uterine vessel ligation performed on day 18 of gestation resulted in Restricted offspring born small (P < 0.05) compared with both sham-operated Controls and a sham-operated Reduced litter group. Offspring remained sedentary or underwent treadmill running from 5-9 (early exercise) or 20-24 (later exercise) wk of age. At 24 wk of age, Restricted and Reduced litter offspring had lower (P < 0.05) skeletal muscle peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) protein expression compared with Control offspring. Early exercise training had the expected effect of increasing skeletal muscle markers of mitochondrial biogenesis, but, at this early age (9 wk), there was no deficit in Restricted and Reduced litter skeletal muscle mitochondrial biogenesis. Unlike our previous observations in pancreatic β-cell mass, there was no "reprogramming" effect of early exercise on adult skeletal muscle such that PGC-1α was lower in adult Restricted and Reduced litter offspring irrespective of exercise training. Later exercise training increased mitochondrial biogenesis in all groups. In conclusion, although the response to exercise training remains intact, early exercise training in rats born small does not have a reprogramming effect to prevent deficits in skeletal muscle markers of mitochondrial biogenesis in adulthood.  相似文献   

5.
Chronic leptin administration reduces triacylglycerol content in skeletal muscle. We hypothesized that chronic leptin treatment, within physiologic limits, would reduce the fatty acid uptake capacity of red and white skeletal muscle due to a reduction in transport protein expression (fatty acid translocase (FAT/CD36) and plasma membrane-associated fatty acid-binding protein (FABPpm)) at the plasma membrane. Female Sprague-Dawley rats were infused for 2 weeks with leptin (0.5 mg/kg/day) using subcutaneously implanted miniosmotic pumps. Control and pair-fed animals received saline-filled implants. Leptin levels were significantly elevated (approximately 4-fold; p < 0.001) in treated animals, whereas pair-fed treated animals had reduced serum leptin levels (approximately -2-fold; p < 0.01) relative to controls. Palmitate transport rates into giant sarcolemmal vesicles were reduced following leptin treatment in both red (-45%) and white (-84%) skeletal muscle compared with control and pair-fed animals (p < 0.05). Leptin treatment reduced FAT mRNA (red, -70%, p < 0.001; white, -48%, p < 0.01) and FAT/CD36 protein expression (red, -32%; p < 0.05) in whole muscle homogenates, whereas FABPpm mRNA and protein expression were unaltered. However, in leptin-treated animals plasma membrane fractions of both FAT/CD36 and FABPpm protein expression were significantly reduced in red (-28 and -34%, respectively) and white (-44 and -56%, respectively) muscles (p < 0.05). Across all experimental treatments and muscles, palmitate uptake by giant sarcolemmal vesicles was highly correlated with the plasma membrane FAT/CD36 protein (r = 0.88, p < 0.01) and plasma membrane FABPpm protein (r = 0.94, p < 0.01). These studies provide the first evidence that protein-mediated long chain fatty acid transport is subject to long term regulation by leptin.  相似文献   

6.
Maternal stress and undernutrition can occur together and expose the fetus to high glucocorticoid (GLC) levels during this vulnerable period. To determine the consequences of GLC exposure on fetal skeletal muscle independently of maternal food intake, groups of timed-pregnant Sprague-Dawley rats (n = 7/group) were studied: ad libitum food intake (control, CON); ad libitum food intake with 1 mg dexamethasone/l drinking water from embryonic day (ED)13 to ED21 (DEX); pair-fed (PF) to DEX from ED13 to ED21. On ED22, dams were injected with [(3)H]phenylalanine for measurements of fetal leg muscle and diaphragm fractional protein synthesis rates (FSR). Fetal muscles were analyzed for protein and RNA contents, [(3)H]phenylalanine incorporation, and MuRF1 and atrogin-1 (MAFbx) mRNA expression. Fetal liver tyrosine aminotransferase (TAT) expression was quantified to assess fetal exposure to GLCs. DEX treatment reduced maternal food intake by 13% (P < 0.001) and significantly reduced placental mass relative to CON and PF dams. Liver TAT expression was elevated only in DEX fetuses (P < 0.01). DEX muscle protein masses were 56% and 70% than those of CON (P < 0.01) and PF (P < 0.05) fetuses, respectively; PF muscles were 80% of CON (P < 0.01). Muscle FSR decreased by 35% in DEX fetuses (P < 0.001) but were not different between PF and CON. Only atrogin-1 expression was increased in DEX fetus muscles. We conclude that high maternal GLC levels and inadequate maternal food intake impair fetal skeletal muscle growth, most likely through different mechanisms. When combined, the effects of decreased maternal intake and maternal GLC intake on fetal muscle growth are additive.  相似文献   

7.
The influence of cancer cachexia and chemotherapy and subsequent recovery of skeletal muscle protein mass and turnover was investigated in mice. Cancer cachexia was induced using colon 26 adenocarcinoma, which is characteristic of the human condition, and can be cured with 100% efficacy using an experimental nitrosourea, cystemustine (C(6)H(12)CIN(3)O(4)S). Reduced food intake was not a factor in these studies. Three days after cachexia began, healthy and tumor-bearing mice were given a single intraperitoneal injection of cystemustine (20 mg/kg). Skeletal muscle mass in tumor-bearing mice was 41% lower (P < 0.05) than in healthy mice 2 wk after cachexia began. Skeletal muscle wasting was mediated initially by decreased protein synthesis (-38%; P < 0.05) and increased degradation (+131%; P < 0.05); later wasting resulted solely from decreased synthesis (~-54 to -69%; P < 0.05). Acute cytotoxicity of chemotherapy did not appear to have an important effect on skeletal muscle protein metabolism in either healthy or tumor-bearing mice. Recovery began 2 days after treatment; skeletal muscle mass was only 11% lower than in healthy mice 11 days after chemotherapy. Recovery of skeletal muscle mass was affected initially by decreased protein degradation (-80%; P < 0.05) and later by increased protein synthesis (+46 to +73%; P < 0.05) in cured compared with healthy mice. This study showed that skeletal muscle wasted from cancer cachexia and after chemotherapeutic treatment is able to generate a strong anabolic response by making powerful changes to protein synthesis and degradation.  相似文献   

8.
暴露在低氧环境下,可能会引起胃肠功能障碍和摄食量下降,打破骨骼肌蛋白质合成和分解平衡,造成骨骼肌萎缩。为探讨低氧环境下骨骼肌的萎缩是低氧环境引起的还是低氧诱发的摄食量减少所致,本研究检测大鼠腓肠肌中低氧时蛋白质合成与分解相关基因的蛋白质表达。将21只雄性SD大鼠,随机分为3组:常氧对照组、低氧组(氧浓度为12.4%,模拟海拔4 000 m高度)和配对组(大鼠的摄食量与低氧组前1 d的摄食量相同),每组7只,每天记录大鼠体重和摄食量。4周后,HE染色法观察腓肠肌肌纤维形态,Western印迹测试相关蛋白质水平。低氧组和配对组摄食量在低氧干预初期,较常氧对照组有显著性下降(P<0.05),干预后期差异不明显;干预期间,低氧组大鼠体重平均增加量(102.10 g)、体重(341.20 ± 16.75 g)、肌肉总量(226.83 ± 8.33 g)和腓肠肌肌纤维横截面积(12.67 ± 1.83 mm)较常氧对照组(128.00 g;377.50 ± 20.75 g;260.50 ± 9.35 g;15.78 ± 2.38 mm)和配对组(119.40 g;375.86 ± 11.30 g;262.29 ± 7.90 g;15.71 ± 2.82 mm)均显著下降,配对组较常氧对照组无显著性差异;4周干预后,与常氧对照组相比,低氧组大鼠腓肠肌中与低氧相关的HIF1α显著增加(1.42 ± 0.19, P<0.05),Akt和p-Akt/Akt显著降低 (1.44 ± 0.13; 0.47 ± 0.08, P<0.05),配对组上述3种指标相对表达量均无显著性差异;在蛋白质合成方面,低氧组mTOR较常氧对照组显著下降(0.63 ± 0.18, P<0.05),配对组较常氧对照组差异不明显;低氧组腓肠肌中,4EBP1(1.14 ± 0.14)和p70S6K1(1.14 ± 0.11)较配对组显著下降(P<0.05)。在蛋白质分解方面,低氧组p-FoxO1和p-FoxO1/FoxO1比值较常氧对照组显著下降(0.71 ± 0.15; 0.78 ± 0.14, P<0.05);低氧组大鼠腓肠肌中,Atrogin1、MuRF1、Beclin1、LC3Ⅰ及LC3Ⅱ/Ⅰ比值均高于常氧对照组(1.35 ± 0.12; 1.30 ± 0.22; 1.17 ± 0.11; 1.03 ± 0.11; 1.35 ± 0.13, P<0.05);配对组与常氧对照组间无明显差异。低氧环境下骨骼肌中蛋白质合成相关基因表达减少,蛋白质分解相关基因表达增加,造成骨骼肌萎缩,体重下降,此变化与摄食量减少无关。  相似文献   

9.
暴露在低氧环境下,可能会引起胃肠功能障碍和摄食量下降,打破骨骼肌蛋白质合成和分解平衡,造成骨骼肌萎缩。为探讨低氧环境下骨骼肌的萎缩是低氧环境引起的还是低氧诱发的摄食量减少所致,本研究检测大鼠腓肠肌中低氧时蛋白质合成与分解相关基因的蛋白质表达。将21只雄性SD大鼠,随机分为3组:常氧对照组、低氧组(氧浓度为12.4%,模拟海拔4 000 m高度)和配对组(大鼠的摄食量与低氧组前1 d的摄食量相同),每组7只,每天记录大鼠体重和摄食量。4周后,HE染色法观察腓肠肌肌纤维形态,Western印迹测试相关蛋白质水平。低氧组和配对组摄食量在低氧干预初期,较常氧对照组有显著性下降(P<0.05),干预后期差异不明显;干预期间,低氧组大鼠体重平均增加量(102.10 g)、体重(341.20 ± 16.75 g)、肌肉总量(226.83 ± 8.33 g)和腓肠肌肌纤维横截面积(12.67 ± 1.83 mm)较常氧对照组(128.00 g;377.50 ± 20.75 g;260.50 ± 9.35 g;15.78 ± 2.38 mm)和配对组(119.40 g;375.86 ± 11.30 g;262.29 ± 7.90 g;15.71 ± 2.82 mm)均显著下降,配对组较常氧对照组无显著性差异;4周干预后,与常氧对照组相比,低氧组大鼠腓肠肌中与低氧相关的HIF1α显著增加(1.42 ± 0.19, P<0.05),Akt和p-Akt/Akt显著降低 (1.44 ± 0.13; 0.47 ± 0.08, P<0.05),配对组上述3种指标相对表达量均无显著性差异;在蛋白质合成方面,低氧组mTOR较常氧对照组显著下降(0.63 ± 0.18, P<0.05),配对组较常氧对照组差异不明显;低氧组腓肠肌中,4EBP1(1.14 ± 0.14)和p70S6K1(1.14 ± 0.11)较配对组显著下降(P<0.05)。在蛋白质分解方面,低氧组p-FoxO1和p-FoxO1/FoxO1比值较常氧对照组显著下降(0.71 ± 0.15; 0.78 ± 0.14, P<0.05);低氧组大鼠腓肠肌中,Atrogin1、MuRF1、Beclin1、LC3Ⅰ及LC3Ⅱ/Ⅰ比值均高于常氧对照组(1.35 ± 0.12; 1.30 ± 0.22; 1.17 ± 0.11; 1.03 ± 0.11; 1.35 ± 0.13, P<0.05);配对组与常氧对照组间无明显差异。低氧环境下骨骼肌中蛋白质合成相关基因表达减少,蛋白质分解相关基因表达增加,造成骨骼肌萎缩,体重下降,此变化与摄食量减少无关。  相似文献   

10.
Rosiglitazone (RSG) is an insulin-sensitizing thiazolidinedione (TZD) that exerts peroxisome proliferator-activated receptor-gamma (PPARgamma)-dependent and -independent effects. We tested the hypothesis that part of the insulin-sensitizing effect of RSG is mediated through the action of AMP-activated protein kinase (AMPK). First, we determined the effect of acute (30-60 min) incubation of L6 myotubes with RSG on AMPK regulation and palmitate oxidation. Compared with control (DMSO), 200 microM RSG increased (P < 0.05) AMPKalpha1 activity and phosphorylation of AMPK (Thr172). In addition, acetyl-CoA carboxylase (Ser218) phosphorylation and palmitate oxidation were increased (P < 0.05) in these cells. To investigate the effects of chronic RSG treatment on AMPK regulation in skeletal muscle in vivo, obese Zucker rats were randomly allocated into two experimental groups: control and RSG. Lean Zucker rats were treated with vehicle and acted as a control group for obese Zucker rats. Rats were dosed daily for 6 wk with either vehicle (0.5% carboxymethylcellulose, 100 microl/100 g body mass), or 3 mg/kg RSG. AMPKalpha1 activity was similar in muscle from lean and obese animals and was unaffected by RSG treatment. AMPKalpha2 activity was approximately 25% lower in obese vs. lean animals (P < 0.05) but was normalized to control values after RSG treatment. ACC phosphorylation was decreased with obesity (P < 0.05) but restored to the level of lean controls with RSG treatment. Our data demonstrate that RSG restores AMPK signaling in skeletal muscle of insulin-resistant obese Zucker rats.  相似文献   

11.
Physical exercise exacerbates the cytotoxic effects of statins in skeletal muscle. Mitochondrial impairments may play an important role in the development of muscular symptoms following statin treatment. Our objective was to characterize mitochondrial function and reactive oxygen species (ROS) production in skeletal muscle after exhaustive exercise in atorvastatin-treated rats. The animals were divided into four groups: resting control (CONT; n = 8) and exercise rats (CONT+EXE; n = 8) as well as resting (ATO; n = 10) and exercise (ATO+EXE; n = 8) rats that were treated with atorvastatin (10 mg·kg(-1)·day(-1) for 2 wk). Exhaustive exercise showed that the distance that was covered by treated animals was reduced (P < 0.05). Using dihydroethidium staining, we showed that the ROS level was increased by 60% in the plantaris muscle of ATO compared with CONT rats and was highly increased in ATO+EXE (226%) compared with that in CONT+EXE rats. The maximal mitochondrial respiration (V(max)) was decreased in ATO rats compared with that in CONT rats (P < 0.01). In CONT+EXE rats, V(max) significantly increased compared with those in CONT rats (P < 0.05). V(max) was significantly lower in ATO+EXE rats (-39%) compared with that in CONT+EXE rats (P < 0.001). The distance that was covered by rats significantly correlated with V(max) (r = 0.62, P < 0.01). The glycogen content was decreased in ATO, CONT+EXE, and ATO+EXE rats compared with that in CONT rats (P < 0.05). GLUT-4 mRNA expression was higher after exhaustive exercise in CONT+EXE rats compared with the other groups (P < 0.05). Our results show that exhaustive exercise exacerbated metabolic perturbations and ROS production in skeletal muscle, which may reduce the exercise capacity and promote the muscular symptoms in sedentary atorvastatin-treated animals.  相似文献   

12.
Blood metabolic parameters of Walker-256 tumour-bearing rats, on days 5, 8, 11 and 14 after implantation of tumour, were compared with those of rats without tumour fed ad libitum (free-fed control) or with reduced feeding (pair-fed control), similar to the anorexic tumour-bearing rats. Cachexia parameters and tumour mass also were investigated. In general, especially on day 14 after implantation of tumour, there was reduction of body mass, gastrocnemius muscle mass, food intake and glycemia and increase of blood triacylglycerol, free fatty acids, lactate and urea, compared with free-fed controls rats. These changes did not occur in pair-fed control, except a slight reduction of glycemia. Pair-fed control showed no significant changes in blood cholesterol and glycerol in comparison with free-fed control, although there was reduction of cholesterol and increase of blood glycerol on day 14 after tumour implantation compared with pair-fed control. The results demonstrate that, besides the characteristic signs of the cachexia syndrome such as anorexia, weight loss and muscle catabolism, Walker-256 tumour-bearing rats show several blood metabolic alterations, some of which begin as early as day 5 after implantation of tumour, and are accentuated during the development of cachexia. Evidence that the alterations of blood metabolic parameters of tumour-bearing rats were not found in pair-fed control indicate that they were not caused by decreased food intake. These changes were probably mediated by factors produced by tumour or host tissue in response to the presence of tumour.  相似文献   

13.
The molecular mechanisms responsible for impaired insulin action have yet to be fully identified. Rodent models demonstrate a strong relationship between insulin resistance and an elevation in skeletal muscle inducible nitric oxide synthase (iNOS) expression; the purpose of this investigation was to explore this potential relationship in humans. Sedentary men and women were recruited to participate (means ± SE: nonobese, body mass index = 25.5 ± 0.3 kg/m(2), n = 13; obese, body mass index = 36.6 ± 0.4 kg/m(2), n = 14). Insulin sensitivity was measured using an intravenous glucose tolerance test with the subsequent modeling of an insulin sensitivity index (S(I)). Skeletal muscle was obtained from the vastus lateralis, and iNOS, endothelial nitric oxide synthase (eNOS), and neuronal nitric oxide synthase (nNOS) content were determined by Western blot. S(I) was significantly lower in the obese compared with the nonobese group (~43%; P < 0.05), yet skeletal muscle iNOS protein expression was not different between nonobese and obese groups. Skeletal muscle eNOS protein was significantly higher in the nonobese than the obese group, and skeletal muscle nNOS protein tended to be higher (P = 0.054) in the obese compared with the nonobese group. Alternative analysis based on S(I) (high and low tertile) indicated that the most insulin-resistant group did not have significantly more skeletal muscle iNOS protein than the most insulin-sensitive group. In conclusion, human insulin resistance does not appear to be associated with an elevation in skeletal muscle iNOS protein in middle-aged individuals under fasting conditions.  相似文献   

14.
Lack of thyroid hormones may affect the composition and structure of the interstitium. Hypothyrosis was induced in rats by thyroidectomy 4-12 wk before the experiments. In hypothyroid rats (n = 16), interstitial fluid pressure measured with micropipettes in hindlimb skin and muscle averaged +0.1 +/- 0.2 and +0.5 +/- 0.2 mmHg, respectively, with corresponding pressures in control rats (n = 16) of -1.5 +/- 0.1 (P < 0.001) and -0.8 +/- 0.1 mmHg (P < 0.001). Interstitial fluid volume, measured as the difference between the distribution volumes of (51)Cr-EDTA and (125)I-labeled BSA, was similar or lower in skin and higher in hypothyroid muscle. Total protein and albumin concentration in plasma and interstitial fluid (isolated from implanted wicks) was lower in hypothyroid compared with control rats. Hyaluronan content (n = 9) in rat hindlimb skin was 2.05 +/- 0.15 and 1.92 +/- 0.09 mg/g dry wt (P > 0.05) in hypothyroid and control rats, respectively, with corresponding content in hindlimb skeletal muscle of 0.35 +/- 0.07 and 0.23 +/- 0. 01 mg/g dry wt (P < 0.01). Interstitial exclusion of albumin in skin and muscle was measured after (125)I-labeled rat serum albumin infusion for 120-168 h with an implanted osmotic pump. Relative excluded volume for albumin (V(e)/V(i)) was calculated as 1 - V(a)/V(i), and averaged 28 and 28% in hindlimb muscle (P > 0.05), 44 and 45% in hindlimb skin (P > 0.05), and 19 and 32% in back skin (P < 0.05) in hypothyroid and control rats, respectively. Albumin mass was higher in back skin in spite of a lower interstitial fluid albumin concentration, a finding explained by a reduced V(e)/V(i) in back skin in hypothyroid rats. These experiments suggest that lack of thyroid hormones in rats changes the interstitial matrix again leading to reduced interstitial compliance and changes in the transcapillary fluid balance.  相似文献   

15.
目的:以运动作为对比,观察不同时长(14 d、28 d)间歇性禁食的体重控制效果,探究其对骨骼肌质量及自噬的影响。方法:选取60只SD大鼠(雄)随机分为3组(n=20):安静对照组(Sed组)、间歇性禁食组(InF组)、有氧运动组(Exe组),设实验周期分别为14 d和28 d。InF组采用间歇性禁食(隔日禁食),Exe组施加跑台运动干预,每周记录体重。DEXA检测体脂并计算体脂指数,天平称量比目鱼肌湿重(双侧)并计算湿重指数,免疫荧光检测细胞外基质蛋白laminin反映肌纤维横截面积、检测LC3标记自噬体,透射电镜观察自噬体数量及形态,Western blot检测自噬相关蛋白ULK1、LC3、p62及调控蛋白AMPKα、p-AMPKα(Thr172)的表达情况。结果:①干预7 d开始,InF、Exe组大鼠体重显著低于Sed组,且InF组体重显著低于Exe组(P<0.01),28 d干预后InF、Exe组体脂指数显著低于Sed组,且InF组体脂指数显著低于Exe组(P<0.05)。②干预28 d时Exe组单根肌纤维面积较Sed、InF组明显增大(P<0.01)。③在各...  相似文献   

16.
The purpose of this study was to determine the necessity of nitric oxide (NO) for hypertrophy and fiber-type transition in overloaded (OL) skeletal muscle. Endogenous NO production was blocked by administering N(G)-nitro-L-arginine methyl ester (L-NAME; 0.75 mg/ml; approximately 100 mg x kg-1 x day-1) in drinking water. Thirty-eight female Sprague-Dawley rats (approximately 250 g) were randomly divided into four groups: control-nonoverloaded (Non-OL), control-OL, L-NAME-Non-OL, and L-NAME-OL. Chronic overload of the plantaris was induced bilaterally by surgical removal of the gastrocnemius and soleus. Rats in the Non-OL groups received sham surgeries. L-NAME treatment began 24 h before surgery and continued until the rats were killed 14 days postsurgery. Although OL induced hypertrophy in both control (+76%) and L-NAME (+39%) conditions (P < 0.05), mean plantaris-to-body mass ratio in the L-NAME-OL group was significantly lower (P < 0.05) than that in the control-OL group. Microphotometric analysis of histochemically determined fiber types revealed increases in cross-sectional area (P < 0.05) for all fiber types (types I, IIA, and IIB/X) in the OL plantaris from control rats, whereas L-NAME-OL rats exhibited increases only in type I and IIB/X fibers. SDS-PAGE analysis of myosin heavy chain (MHC) composition in the plantaris indicated a significant (P < 0.05) OL effect in the control rats. Specifically, the mean proportion of type I MHC increased 6% (P < 0.05), whereas the proportion of type IIb MHC decreased approximately 9% (P < 0.05). No significant OL effects on MHC profile were observed in the L-NAME rats. These data support a role of NO in overload-induced skeletal muscle hypertrophy and fiber-type transition.  相似文献   

17.
The purpose of this investigation was to determine whether heavy-resistance exercise training alters the skeletal muscle fiber composition of young rats. Ten male Long Evans rats (3 wk old) were trained to lift progressively heavier weights, which were secured to the rats' tails, while they ascended a 40-cm 90 degree mesh incline 20 times/day 5 days/wk for a food reward. After 8 wk of training, they lifted 406 +/- 19 (SD) g in addition to their body weight (261 +/- 9 g). Compared with 10 sedentary pair-fed rats, no hypertrophy of forelimb muscles (biceps brachii and brachialis) was observed, but rectus femoris wet and dry weights were greater (P less than 0.01) in the trained group. In the deep region of the rectus femoris, type I fiber area was similar between groups, but the trained rats had both a lower (P less than 0.05) percentage of type I fibers and a smaller (P less than 0.05) portion of the total area occupied by type I fibers. The percentage of type IIb fibers in the deep region of the rectus femoris was also similar between groups, but the portion of the deep area composed of type IIb fibers was greater (P less than 0.05) in the trained rats. In the superficial region of the rectus femoris, the trained rats' type IIb fibers were larger (P less than 0.01) and occupied a greater (P less than 0.05) portion of the superficial muscle area.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Jones W. O. and Symons L. E. A. 1982. Protein synthesis in the whole body, liver, skeletal muscle and kidney cortex of lambs infected by the nematode Trichostrongylus colubriformis. International Journal for Parasitology12: 295–301. Tyrosine flux and the synthesis of protein in the whole body, liver, skeletal muscle and kidney cortex and of albumin in lambs infected with Trichostrongylus colubriformis and uninfected lambs fed ad libitum or pair-fed with the infected group, were measured by constant infusion of 14C-l-tyrosine. Live weight gain was lower in the infected than in pairfed lambs, but rates of whole body protein synthesis were similar in both groups. On the other hand, compared with control lambs, there was a faster rate of protein synthesis per unit of protein consumed in infected but not in pair-fed lambs. Rates of protein synthesis per unit of body weight in infected were higher than in pair-fed lambs, but similar to the rate in control lambs. The fractional synthetic rates (FSR) of albumin and liver proteins and the amount of liver protein synthesized per day were increased by infection. The FSR and amount of protein synthesized per day were depressed in skeletal muscle and kidney cortex. Anorexia did not explain any of these changes. Infection caused a loss of protein from each of these tissues, but this loss was due to anorexia in only the liver. There was generally good correlation between concentration of RNA per g fresh weight or per mg nitrogen and the FSR of protein. However, although the RNADNA ratio correlated well with synthesis in skeletal muscle, it was poorly correlated for liver proteins. The relationship between the rate of growth and protein synthesis in infected lambs is discussed.  相似文献   

19.
Prolonged treatment with the beta(2)-adrenoceptor agonist clenbuterol (1-2 mg. kg body mass(-1). day (-1)) is known to induce the hypertrophy of fast-contracting fibers and the conversion of slow- to fast-contracting fibers. We investigated the effects of administering a lower dose of clenbuterol (250 microgram. kg body mass(-1). day (-1)) on skeletal muscle myosin heavy chain (MyHC) protein isoform content and adenine nucleotide (ATP, ADP, and AMP) concentrations. Male Wistar rats were administered clenbuterol (n = 8) or saline (n = 6) subcutaneously for 8 wk, after which the extensor digitorum longus (EDL) and soleus muscles were removed. We demonstrated an increase of type IIa MyHC protein content in the soleus from approximately 0.5% in controls to approximately 18% after clenbuterol treatment (P < 0.05), which was accompanied by an increase in the total adenine nucleotide pool (TAN; approximately 19%, P < 0.05) and energy charge [E-C = (ATP + 0.5 ADP)/(ATP + ADP + AMP); approximately 4%; P < 0.05]. In the EDL, a reduction in the content of the less prevalent type I MyHC protein from approximately 3% in controls to 0% after clenbuterol treatment (P < 0.05) occurred without any alterations in TAN and E-C. These findings demonstrate that the phenotypic changes previously observed in slow muscle after clenbuterol administration at 1-2 mg. kg body mass(-1). day(-1) are also observed at a substantially lower dose and are paralleled by concomitant changes in cellular energy metabolism.  相似文献   

20.
Aging is associated with a decrease in diaphragmatic maximal tetanic force production (P(o)) in senescent rats. Treatment with the beta(2)-agonist clenbuterol (CB) has been shown to increase skeletal muscle mass and P(o) in weak locomotor skeletal muscles from dystrophic rodents. It is unknown whether CB can increase diaphragmatic mass and P(o) in senescent rats. Therefore, we tested the hypothesis that CB treatment will increase specific P(o) (i.e., force per cross-sectional area) and mass in the diaphragm of old rats. Young (5 mo) and old (23 mo) male Fischer 344 rats were randomly assigned to one of the following groups (n = 10/group): 1) young CB treated; 2) young control; 3) old CB treated; and 4) old control. Animals were injected daily with either CB (2 mg/kg) or saline for 28 days. CB increased (P < 0.05) the mass of the costal diaphragm in both young and old animals. CB treatment increased diaphragmatic-specific P(o) in old animals (approximately 15%; P < 0.05) but did not alter (P > 0.05) diaphragmatic-specific P(o) in young animals. Biochemical analysis indicated that the improved maximal specific P(o) in the diaphragm of CB-treated old animals was not due to increased myofibrillar protein concentration. Analysis of the myosin heavy chain (MHC) content of the costal diaphragm revealed a CB-induced increase (P < 0.05) in type IIb MHC and a decrease in type I, IIa, and IIx MHC in both young and old animals. These data support the hypothesis that CB treatment can restore the age-associated decline in both diaphragmatic-specific P(o) and muscle mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号