首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Previous studies had led to the conclusion that the globular, single-headed myosins IA and IB from Acanthamoeba castellanii contain two actin-binding sites: one associated with the catalytic site and whose binding to F-actin activates the Mg2+-ATPase activity and a second site whose binding results in the cross-linking of actin filaments and makes the actin-activated ATPase activity positively cooperative with respect to myosin I concentration. We have now prepared a 100,000-Da NH2-terminal peptide and a 30,000-Da COOH-terminal peptide by alpha-chymotryptic digestion of the myosin IA heavy chain. The intact 17,000-Da light chain remained associated with the 100,000-Da fragment, which also contained the serine residue that must be phosphorylated for expression of actin-activated ATPase activity by native myosin IA. The 30,000-Da peptide, which contained 34% glycine and 21% proline, bound to F-actin with a KD less than 0.5 microM in the presence or absence of ATP but had no ATPase activity. The 100,000-Da peptide bound to F-actin with KD = 0.4-0.8 microM in the presence of 2 mM MgATP and KD less than 0.01 microM in the absence of MgATP. In contrast to native myosin IA, neither peptide cross-linked actin filaments. The phosphorylated 100,000-Da peptide had actin-activated ATPase activity with the same Vmax as that of native phosphorylated myosin IA but this activity displayed simple, noncooperative hyperbolic dependence on the actin concentration in contrast to the complex cooperative kinetics observed with native myosin IA. These results provide direct experimental evidence for the presence of two actin-binding sites on myosin IA, as was suggested by enzyme kinetic and filament cross-linking data, and also for the previously proposed mechanism by which monomeric myosins I could support contractile activities.  相似文献   

2.
Reinvestigation of the inhibition of actin polymerization by profilin   总被引:11,自引:0,他引:11  
In buffer containing 50 mM KCl, 1 mM MgCl2, 1 mM EGTA, 5 mM imidazole, pH 7.5, 0.1 mM CaCl2, 0.2 mM dithiothreitol, 0.01% NaN3, and 0.2 mM ATP, the KD for the formation of the 1:1 complex between Acanthamoeba actin and Acanthamoeba profilin was about 5 microM. When the actin was modified by addition of a pyrenyl group to cysteine 374, the KD increased to about 40 microM but the critical concentration (0.16 microM) was unchanged. The very much lower affinity of profilin for modified actin explains the anomalous critical concentrations curves obtained for 5-10% pyrenyl-labeled actin in the presence of profilin and the apparently weak inhibition by profilin of the rate of filament elongation when polymerization is quantified by the increase in fluorescence of pyrenyl-labeled actin. Light-scattering assays of the polymerization of unmodified actin in the absence and presence of profilin gave a similar value for the KD (about 5-10 microM) when determined by the increase in the apparent critical concentration of F-actin at steady state at all concentrations of actin up to 20 microM and by the inhibition of the initial rates of polymerization of actin nucleated by either F-actin or covalently cross-linked actin dimer. In the same buffer, but with ADP instead of ATP, the critical concentration of actin was higher (4.9 microM) and the KD of the profilin-actin complex was lower for both unmodified (1-2 microM) and 100% pyrenyl-labeled actin (4.9 microM).  相似文献   

3.
F-actin at steady state in the presence of ATP partially depolymerized to a new steady state upon mechanical fragmentation. The increase in critical concentration with the number concentration of filaments has been quantitatively studied. The data can be explained by a model in which the preferred pathway for actin association-dissociation reactions at steady state in the presence of ATP involves binding of G-actin . ATP to filaments, ATP hydrolysis, and dissociation of G-actin . ADP which is then slowly converted to G-actin . ATP. As a consequence of the slow exchange of nucleotide on G-actin, the respective amounts of G-actin . ATP and G-actin . ADP coexisting with F-actin at steady state depend on the filament number concentration. G-actin coexisting with F-actin at zero number concentration of filaments would then consist of G-actin . ATP only, while the critical concentration obtained at infinite number of filaments would be that for G-actin . ADP. Values of 0.35 and 8 microM, respectively, were found for these two extreme critical concentrations for skeletal muscle actin at 20 degrees C, pH 7.8, 0.1 mM CaCl2, 1 mM MgCl2, and 0.2 mM ATP. The same value of 8 microM was directly measured for the critical concentration of G-actin . ADP polymerized in the presence of ADP and absence of ATP, and it was unaffected by fragmentation. These results have important implications for experiments in which critical concentrations are compared under conditions that change the filament number concentrations.  相似文献   

4.
Polymerization under sonication has been developed as a new method to study the rapid polymerization of actin with a large number of elongating sites. The theory proposed assumes that filaments under sonication are maintained at a constant length by the constant input of energy. The data obtained for the reversible polymerization of ADP-actin under sonication have been successfully analyzed according to the proposed model and, therefore, validate the model. The results obtained for the polymerization of ATP-actin under sonication demonstrate the involvement of ATP hydrolysis in the polymerization process. At high actin concentration, polymerization was fast enough, as compared to ATP hydrolysis on the F-actin, to obtain completion of the reversible polymerization of ATP-actin before significant hydrolysis of ATP occurred. A critical concentration of 3 microM was determined as the ratio of the dissociation and association rate constants for the interaction of ATP-actin with the ATP filament ends in 1 mM MgCl2, 0.2 mM ATP. The plot of the rate of elongation of filaments versus actin monomer concentration exhibited an upward deviation at high actin concentration that is consistent with this result. The fact that F-actin at steady state is more stable than the ATP-F-actin polymer at equilibrium suggests that the interaction between ADP-actin and ATP-actin subunits at the end of the ATP-capped filament is much stronger than the interaction between two ATP-actin subunits.  相似文献   

5.
A 41,000-dalton Ca2+-sensitive actin-modulating protein has been purified from rabbit alveolar macrophages using ion exchange and gel filtration chromatography. On sodium dodecyl-polyacrylamide gel electrophoresis, this macrophage protein migrates more rapidly than actin and fails to cross-react with polyclonal anti-actin antibody. It has a Stokes radius of 3.0 nm and an isoelectric point of 6.6. In the presence of micromolar Ca2+ this 41,000-Da protein: reduces the viscosity of polymerized actin, nucleates actin filament assembly, causes a nearly instantaneous increase in fluorescence intensity of subcritical concentrations of pyrenyl-actin (estimated KD of the pyrene actin-macrophage protein complex, 5 X 10(-8) M), increases the critical concentration of actin by 0.65 microM (molar ratios of protein/actin, 1/100-1/10), blocks actin monomer depolymerization from the "barbed" filament ends, and does not sever preformed actin filaments. The ability of this protein to block filament ends is rapidly and completely inhibited by lowering free calcium ion concentration below the micromolar range.  相似文献   

6.
We compared the effects of human filamin A (FLNa) and the activated human Arp2/3 complex on mechanical properties of actin filaments. As little as 1 FLNa to 800 polymerizing actin monomers induces a sharp concentration-dependent increase in the apparent viscosity of 24 microm actin, a parameter classically defined as a gel point. The activated Arp2/3 complex, at concentrations up to 1:25 actins had no detectable actin gelation activity, even in the presence of phalloidin, to stabilize actin filaments against debranching. Increasing the activated Arp2/3 complex to actin ratio raises the FLNa concentration required to induce actin gelation, an effect ascribable to Arp2/3-mediated actin nucleation resulting in actin filament length diminution. Time lapse video microscopy of microparticles attached to actin filaments or photoactivation of fluorescence revealed actin filament immobilization by FLNa in contrast to diffusion of Arp2/3-branched actin filaments. The experimental results support theories predicting that polymer branching absent cross-linking does not lead to polymer gelation and are consistent with the observation that cells deficient in actin filament cross-linking activity have unstable surfaces. They suggest complementary roles for actin branching and cross-linking in cellular actin mechanics in vivo.  相似文献   

7.
Cross-linking of actin filaments (F-actin) into bundles and networks was investigated with three different isoforms of the dumbbell-shaped alpha-actinin homodimer under identical reaction conditions. These were isolated from chicken gizzard smooth muscle, Acanthamoeba, and Dictyostelium, respectively. Examination in the electron microscope revealed that each isoform was able to cross-link F-actin into networks. In addition, F-actin bundles were obtained with chicken gizzard and Acanthamoeba alpha-actinin, but not Dictyostelium alpha-actinin under conditions where actin by itself polymerized into disperse filaments. This F-actin bundle formation critically depended on the proper molar ratio of alpha-actinin to actin, and hence F-actin bundles immediately disappeared when free alpha-actinin was withdrawn from the surrounding medium. The apparent dissociation constants (Kds) at half-saturation of the actin binding sites were 0.4 microM at 22 degrees C and 1.2 microM at 37 degrees C for chicken gizzard, and 2.7 microM at 22 degrees C for both Acanthamoeba and Dictyostelium alpha-actinin. Chicken gizzard and Dictyostelium alpha-actinin predominantly cross-linked actin filaments in an antiparallel fashion, whereas Acanthamoeba alpha-actinin cross-linked actin filaments preferentially in a parallel fashion. The average molecular length of free alpha-actinin was 37 nm for glycerol-sprayed/rotary metal-shadowed and 35 nm for negatively stained chicken gizzard; 46 and 44 nm, respectively, for Acanthamoeba; and 34 and 31 nm, respectively, for Dictyostelium alpha-actinin. In negatively stained preparations we also evaluated the average molecular length of alpha-actinin when bound to actin filaments: 36 nm for chicken gizzard and 35 nm for Acanthamoeba alpha-actinin, a molecular length roughly coinciding with the crossover repeat of the two-stranded F-actin helix (i.e., 36 nm), but only 28 nm for Dictyostelium alpha-actinin. Furthermore, the minimal spacing between cross-linking alpha-actinin molecules along actin filaments was close to 36 nm for both smooth muscle and Acanthamoeba alpha-actinin, but only 31 nm for Dictyostelium alpha-actinin. This observation suggests that the molecular length of the alpha-actinin homodimer may determine its spacing along the actin filament, and hence F-actin bundle formation may require "tight" (i.e., one molecule after the other) and "untwisted" (i.e., the long axis of the molecule being parallel to the actin filament axis) packing of alpha-actinin molecules along the actin filaments.  相似文献   

8.
The correlation between the time courses of actin polymerization under continuous sonication and the associated ATP hydrolysis has been studied. ATP hydrolysis was not mechanistically coupled to polymerization, i.e. not necessary for polymerization, but occurred on F-actin in a subsequent monomolecular reaction. Under sonication, polymerization was complete in 10 s while hydrolysis of ATP on the polymer required 200 s. A value of 0.023 s-1 was found for the first order rate constant of ATP hydrolysis on the polymer at 25 degrees C, pH 7.8, in the presence of 0.2 mM ATP, 0.1 mM CaCl2, and 1 mM MgCl2, independent of the F-actin concentration. The conversion of ATP X F-actin to ADP X F-actin was accompanied by an increase in fluorescence of a pyrenyl probe covalently attached to actin, consistent with a 2-fold greater fluorescence for ADP X F-actin than for ATP X F-actin, with a rate constant of 0.022 s-1. In contrast, the fluorescence of F-actin labeled with 7-chloro-4-nitrobenzeno-2-oxa-1,3-diazole did not change significantly when ATP or ADP was bound. The direct consequence of the uncoupling between polymerization and ATP hydrolysis is the formation of an ATP cap at the ends of the filaments, which maintains the stability of the polymer, while most of the filament contains bound ADP. The heterogeneity of the filament with respect to ATP and ADP results in a nonlinear relationship between the rate of elongation and the concentration of G-actin with a discontinuity at the critical concentration, where the rate of growth is zero. In this respect, F-actin in ATP behaves similarly to microtubules in GTP.  相似文献   

9.
M Oosawa  K Maruyama 《FEBS letters》1987,213(2):433-437
Phalloidin (2 mol per mol actin)-treated pyrenyl F-actin showed a critical concentration of 1.8 microM in the presence of 10 mM KCl, 0.2 mM ADP, and 5 mM Tris-HCl buffer, pH 8.0 at 25 degrees C. The filament weight concentration did not change at all during and after sonication, yet degrees of flow birefringence increased and the filament number concentration decreased after the termination of sonication. The latter changes were not affected by EDTA, but inhibited by beta-actinin. These observations suggest that reannealing of short pieces of phalloidin-treated actin filaments fragmented during sonication takes place during recovery after sonication.  相似文献   

10.
W Nishida  M Abe  K Takahashi  K Hiwada 《FEBS letters》1990,268(1):165-168
A new method for the preparation of smooth muscle thin filaments which include calponin was established. We found that calponin readily separated from thin filaments in the presence of 10 mM ATP. By preventing thin filament extract from exposing to ATP, we obtained thin filaments which contained actin, tropomyosin, caldesmon and calponin in molar ratios of 7:0.9:0.6:0.7. We studied myosin Mg-ATPase activity by using the thin filaments in comparison with classical thin filaments prepared by the method of Marston and Smith, which contained the same amounts of caldesmon and tropomyosin as our thin filaments but lost almost all calponin. The presence of calponin reduced the Vmax value for thin filament-activated myosin Mg-ATPase activity by 33% without a significant change in Km value. These findings suggest that calponin inhibits myosin Mg-ATPase activity by modulation of a kinetic step as an integral component of smooth muscle thin filaments.  相似文献   

11.
The actin-activated Mg2+-ATPase activity of phosphorylated Acanthamoeba myosin I was previously shown to be cooperatively dependent on the myosin concentration (Albanesi, J. P., Fujisaki, H., and Korn, E. D. (1985) J. Biol. Chem. 260, 11174-11179). This observation was rationalized by assuming that myosin I contains a high-affinity and a low-affinity F-actin-binding site and that binding at the low-affinity site is responsible for the actin-activated ATPase activity. Therefore, enzymatic activity would correlate with the cross-linking of actin filaments by myosin I, and the cooperative increase in specific activity at high myosin:actin ratios would result from the fact that cross-linking by one myosin molecule would increase the effective F-actin concentration for neighboring myosin molecules. This model predicts that high specific activity should occur at myosin:actin ratios below that required for cooperative interactions if the actin filaments are cross-linked by catalytically inert cross-linking proteins. This prediction has been confirmed by cross-linking actin filaments with either of three gelation factors isolated from Acanthamoeba, one of which has not been previously described, or by enzymatically inactive unphosphorylated Acanthamoeba myosin I.  相似文献   

12.
Fascin is an actin crosslinking protein that organizes actin filaments into tightly packed bundles believed to mediate the formation of cellular protrusions and to provide mechanical support to stress fibers. Using quantitative rheological methods, we studied the evolution of the mechanical behavior of filamentous actin (F-actin) networks assembled in the presence of human fascin. The mechanical properties of F-actin/fascin networks were directly compared with those formed by alpha-actinin, a prototypical actin filament crosslinking/bundling protein. Gelation of F-actin networks in the presence of fascin (fascin to actin molar ratio >1:50) exhibits a non-monotonic behavior characterized by a burst of elasticity followed by a slow decline over time. Moreover, the rate of gelation shows a non-monotonic dependence on fascin concentration. In contrast, alpha-actinin increased the F-actin network elasticity and the rate of gelation monotonically. Time-resolved multiple-angle light scattering and confocal and electron microscopies suggest that this unique behavior is due to competition between fascin-mediated crosslinking and side-branching of actin filaments and bundles, on the one hand, and delayed actin assembly and enhanced network micro-heterogeneity, on the other hand. The behavior of F-actin/fascin solutions under oscillatory shear of different frequencies, which mimics the cell's response to forces applied at different rates, supports a key role for fascin-mediated F-actin side-branching. F-actin side-branching promotes the formation of interconnected networks, which completely inhibits the motion of actin filaments and bundles. Our results therefore show that despite sharing seemingly similar F-actin crosslinking/bundling activity, alpha-actinin and fascin display completely different mechanical behavior. When viewed in the context of recent microrheological measurements in living cells, these results provide the basis for understanding the synergy between multiple crosslinking proteins, and in particular the complementary mechanical roles of fascin and alpha-actinin in vivo.  相似文献   

13.
IQGAP1 is a homodimeric protein that reversibly associates with F-actin, calmodulin, activated Cdc42 and Rac1, CLIP-170, beta-catenin, and E-cadherin. Its F-actin binding site includes a calponin homology domain (CHD) located near the N-terminal of each subunit. Prior studies have implied that medium- to high-affinity F-actin binding (5-50 microM K(d)) requires multiple CHDs located either on an individual polypeptide or on distinct subunits of a multimeric protein. For IQGAP1, a series of six tandem IQGAP coiled-coil repeats (IRs) located past the C-terminal of the CHD of each subunit support protein dimerization and, by extension, the IRs or an undefined subset of them were thought to be essential for F-actin binding mediated by its CHDs. Here we describe efforts to determine the minimal region of IQGAP1 capable of binding F-actin. Several truncation mutants of IQGAP1, which contain progressive deletions of the IRs and CHD, were assayed for F-actin binding in vitro. Fragments that contain both the CHD and at least one IR could bind F-actin and, as expected, removal of all six IRs and the CHD abolished binding. Unexpectedly, a fragment called IQGAP1(2-210), which contains the CHD, but lacks IRs, could bind actin filaments. IQGAP1(2-210) was found to be monomeric, to bind F-actin with a K(d) of approximately 47 microM, to saturate F-actin at a molar ratio of one IQGAP1(2-210) per actin monomer, and to co-localize with cortical actin filaments when expressed by transfection in cultured cells. These collective results identify the first known example of high-affinity actin filament binding mediated by a single CHD.  相似文献   

14.
《The Journal of cell biology》1985,101(5):1850-1857
We have used two actin-binding proteins of the intestinal brush border, TW 260/240 and villin, to examine the effects of filament cross-linking and filament length on myosin-actin interactions. TW 260/240 is a nonerythroid spectrin that is a potent cross-linker of actin filaments. In the presence of this cross-linker we observed a concentration- dependent enhancement of skeletal muscle actomyosin ATPase activity (150-560% of control; maximum enhancement at a 1:70-80 TW 260/240:actin molar ratio). TW 260/240 did not cause a similar enhancement of either acto-heavy meromyosin (HMM) ATPase or acto-myosin subfragment-one (S1) ATPase. Villin, a Ca2+-dependent filament capping and severing protein of the intestinal microvillus, was used to generate populations of actin filaments of various lengths from less than 20 nm to 2.0 microns; (villin:actin ratios of 1:2 to 1:4,000). The effect of filament length on actomyosin ATPase was biphasic. At villin:actin molar ratios of 1:2- 25 actin-activated myosin ATPase activity was inhibited to 20-80% of control values, with maximum inhibition observed at the highest villin:actin ratio. The ATPase activities of acto-HMM and acto-S1 were also inhibited at these short filament lengths. At intermediate filament lengths generated at villin:actin ratios of 1:40-400 (average lengths 0.26-1.1 micron) an enhancement of actomyosin ATPase was observed (130-260% of controls), with a maximum enhancement at average filament lengths of 0.5 micron. The levels of actomyosin ATPase fell off to control values at low concentrations of villin where filament length distributions were almost those of controls. Unlike intact myosin, the actin-activated ATPase of neither HMM nor S1 showed an enhancement at these intermediate actin filament lengths.  相似文献   

15.
Adami R  Cintio O  Trombetta G  Choquet D  Grazi E 《Biochemistry》2002,41(18):5907-5912
The effects of coupling with tetramethylrhodamine-5-iodoacetamide and of the decoration with tropomyosin and with myosin subfragment 1 on the elastic properties of F-actin filament are investigated. At 22 degrees C, in 15 mM orthophosphate and 3 mM MgCl2, tetramethylrhodamine F-actin displays a yield strength of 3.69 +/- 0.213 pN and an elastic modulus by stretching of 0.91 MPa. Decoration with tropomyosin increases the yield strength of tetramethylrhodamine F-actin to 10.51 +/- 0.24 pN and the elastic modulus by stretching to 23-75 MPa. Mixtures of myosin subfragment 1 and tetramethylrhodamine F-actin at the 0.2:1, 0.4:1, 0.6:1, 0.8:1, and 1:1 molar ratios are also studied. Both yield strength and the elastic modulus by stretching are found to increase progressively with the ratio. At the 1:1 molar ratio, the yield strength is 15.81 +/- 0.26 pN and the elastic modulus by stretching is 13.45 to 40 MPa. Decoration of tetramethylrhodamine F-actin with both tropomyosin and myosin subfragment 1, at the 1:1 molar ratio with the actin monomer, produces filaments with an yield strength of 22.3 +/- 0.48 pN.  相似文献   

16.
We have determined the absolute phosphate content of microtubule-associated proteins (MAPs) and established that phosphorylation inhibits the actin filament cross-linking activity of MAPs and both of the major MAP components, MAP-2 and tau. Similar results were obtained with actin from rabbit muscle, hog brain, and Acanthamoeba castellanii. We used the endogenous phosphatases and kinases in hog brain microtubule protein to modulate MAP phosphate level before isolating heat-stable MAPs. MAPs isolated directly from twice-cycled microtubule protein contain 7.1 +/- 0.1 (S.E.) mol of phosphate/300,000 g protein. After incubating microtubule protein without ATP, MAPs, had 4.9 +/- 0.6 phosphates. After incubating microtubule protein with 1 mM ATP and 5 microM cAMP in 2 mM EGTA, MAPs had 8.6 +/- 0.5 phosphates but there was also exchange of three more [32P]phosphates from gamma-labeled ATP for preexisting MAP phosphate. Incubation of microtubule protein with ATP and cAMP in 5 mM CaCl2 resulted in exchange but no net addition of phosphate to MAPs. We fractionated the MAP preparations by gel filtration and obtained MAP-2 with 4.3 to 7.5 and tau with 1.5 to 2.2 mol of phosphate/mol of protein depending on how we treated the microtubule protein prior to MAP isolation. The actin filament cross-linking activity of whole MAPs, MAP-2, and tau depended on the MAP-phosphate content. In all cases, phosphorylation of MAPs inhibited actin filament cross-linking activity. The concentration of high phosphate MAPs required to form a high viscosity solution with actin filaments was 2 to 4 times more than that of low phosphate. MAPs. During incubation of microtubule protein with [gamma-32P]ATP, only MAP peptides are labeled. Treatment of these MAPs with either acid or alkaline phosphatase removes phosphate mainly from MAP-2, with an increase in actin filament cross-linking activity. Thus, both MAP phosphorylation and the effect of phosphorylation on actin cross-linking activity of MAPs are reversible.  相似文献   

17.
Ca2+-calmodulin-dependent polymerization of actin by myelin basic protein   总被引:1,自引:0,他引:1  
The interaction between myelin basic protein (MBP) and G-actin was studied under nonpolymerizing conditions, i.e.,2mM HEPES, pH 7.5, 0.1 mM CaCl2 and 0.2 mM ATP. Fluorescence studies using pyrenyl-actin and the measurements of ATP hydrolysis rate show that MBP induces changes in the structure of the actin monomer similar to those occurring during polymerization by salt. Electron microscope observations of the MBP-G-actin complex reveal the presence of filamentous structures which appear as separate filaments or as bundles of filaments in lateral association. These filaments are polar as visualized by attachment of heavy meromyosin. The biochemical data together with electron microscope observations suggest that the binding of MBP to G-actin under non-polymerizing conditions induces an interaction between actin monomers leading to the formation of filamentous structures which may be similar to F-actin filaments. The effects of MBP on G-actin can be reversed by calmodulin in the presence of Ca2+.  相似文献   

18.
The rate of filamentous actin (F-actin) depolymerization is proportional to the number of filaments depolarizing and changes in the rate are proportional to changes in filament number. To determine the number and length of actin filaments in polymorphonuclear leukocytes and the change in filament number and length that occurs during the increase in F-actin upon chemoattractant stimulation, the time course of cellular F-actin depolymerization in lysates of control and peptide-stimulated cells was examined. F-actin was quantified by the TRITC-labeled phalloidin staining of pelletable actin. Lysis in 1.2 M KCl and 10 microM DNase I minimized the effects of F-actin binding proteins and G-actin, respectively, on the kinetics of depolymerization. To determine filament number and length from a depolymerization time course, depolymerization kinetics must be limited by the actin monomer dissociation rate. Comparison of time courses of depolymerization in the presence (pointed ends free) or absence (barbed and pointed ends free) of cytochalasin suggested depolymerization occurred from both ends of the filament and that monomer dissociation was rate limiting. Control cells had 1.7 +/- 0.4 x 10(5) filaments with an average length of 0.29 +/- 0.09 microns. Chemo-attractant stimulation for 90 s at room temperature with 0.02 microM N-formylnorleucylleucylphenylalanine caused a twofold increase in F-actin and about a two-fold increase in the total number of actin filaments to 4.0 +/- 0.5 x 10(5) filaments with an average length of 0.27 +/- 0.07 microns. In both cases, most (approximately 80%) of the filaments were quite short (less than or equal to 0.18 micron). The length distributions of actin filaments in stimulated and control cells were similar.  相似文献   

19.
C M Cohen  S F Foley 《Biochemistry》1984,23(25):6091-6098
Ternary complex formation between the major human erythrocyte membrane skeletal proteins spectrin, protein 4.1, and actin was quantified by measuring cosedimentation of spectrin and band 4.1 with F-actin. Complex formation was dependent upon the concentration of spectrin and band 4.1, each of which promoted the binding of the other to F-actin. Simultaneous measurement of the concentrations of spectrin and band 4.1 in the sedimentable complex showed that a single molecule of band 4.1 was sufficient to promote the binding of a spectrin dimer to F-actin. However, the molar ratio of band 4.1/spectrin in the complex was not fixed, ranging from approximately 0.6 to 2.2 as the relative concentration of added spectrin to band 4.1 was decreased. A mole ratio of 0.6 band 4.1/spectrin suggests that a single molecule of band 4.1 can promote the binding of more than one spectrin dimer to an actin filament. Saturation binding studies showed that in the presence of band 4.1 every actin monomer in a filament could bind at least one molecule of spectrin, yielding ternary complexes with spectrin/actin mole ratios as high as 1.4. Electron microscopy of such complexes showed them to consist of actin filaments heavily decorated with spectrin dimers. Ternary complex formation was not affected by alteration in Mg2+ or Ca2+ concentration but was markedly inhibited by KCl above 100 mM and nearly abolished by 10 mM 2,3-diphosphoglycerate or 10 mM adenosine 5'-triphosphate. Our data are used to refine the molecular model of the red cell membrane skeleton.  相似文献   

20.
Brain microtubule-associated protein 2 (MAP2) is known to cross-link muscle F-actin in vitro into a gel or discrete bundles of actin filaments. Previous reports indicate that this cross-linking reverses in the presence of millimolar ATP, while MAP2 molecules remain attached along single filaments of F-actin. Therefore, it is likely that the actin filament has two sets of surface areas with ATP-sensitive and insensitive affinities for MAP2. Using purified preparations of brain MAP2 and skeletal muscle F-actin and tropomyosin, we have studied the effects of tropomyosin on the MAP2-actin interaction by dark-field light microscopy, electron microscopy, sedimentation assay, and low shear viscometry. The results show that cross-linking of F-actin with MAP2 reverses upon addition of a stoichiometric amount of tropomyosin, although MAP2 remains bound to F-actin complex with tropomyosin. The ternary complex does not dissociate noticeably when exposed to a millimolar concentration of ATP. On the basis of these findings, it is concluded that ATP-insensitive MAP2-binding of F-actin is not sterically blocked by tropomyosin, while the ATP-sensitive binding is blocked by it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号