首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequences of different plant viral leaders with known translation enhancer ability show partial complementarity to the central region of 18S rRNA. Such complementarity might serve as a means to attract 40S ribosomal subunits and explain in part the translation-enhancing property of these sequences. To verify this notion, we designed β-glucuronidase (GUS) mRNAs differing only in the nature of 10 nt inserts in the center of their 41 base leaders. These were complementary to consecutive domains of plant 18S rRNA. Sucrose gradient analysis revealed that leaders with inserts complementary to regions 1105–1114 and 1115–1124 (‘ARC-1’) of plant 18S rRNA bound most efficiently to the 40S ribosomal subunit after dissociation from 80S ribosomes under conditions of high ionic strength, a treatment known to remove translation initiation factors. Using wheat germ cell-free extracts, we could demonstrate that mRNAs with these leaders were translated more than three times more efficiently than a control lacking such a complementarity. Three linked copies of the insert enhanced translation of reporter mRNA to levels comparable with those directed by the natural translation enhancing leaders of tobacco mosaic virus and potato virus Y RNAs. Moreover, inserting the same leaders as intercistronic sequences in dicistronic mRNAs substantially increased translation of the second cistron, thereby revealing internal ribosome entry site activity. Thus, for plant systems, the complementary interaction between mRNA leader and the central region of 18S rRNA allows cap-independent binding of mRNA to the 43S pre-initiation complex without assistance of translation initiation factors.  相似文献   

2.
Translation of the leaderless Caulobacter dnaX mRNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
The expression of the Caulobacter crescentus homolog of dnaX, which in Escherichia coli encodes both the gamma and tau subunits of the DNA polymerase III holoenzyme, is subject to cell cycle control. We present evidence that the first amino acid in the predicted DnaX protein corresponds to the first codon in the mRNA transcribed from the dnaX promoter; thus, the ribosome must recognize the mRNA at a site downstream of the start codon in an unusual but not unprecedented fashion. Inserting four bases in front of the AUG at the 5' end of dnaX mRNA abolishes translation in the correct frame. The sequence upstream of the translational start site shows little homology to the canonical Shine-Dalgarno ribosome recognition sequence, but the region downstream of the start codon is complementary to a region of 16S rRNA implicated in downstream box recognition. The region downstream of the dnaX AUG, which is important for efficient translation, exhibits homology with the corresponding region from the Caulobacter hemE gene adjacent to the replication origin. The hemE gene also appears to be translated from a leaderless mRNA. Additionally, as was found for hemE, an upstream untranslated mRNA also extends into the dnaX coding sequence. We propose that translation of leaderless mRNAs may provide a mechanism by which the ribosome can distinguish between productive and nonproductive templates.  相似文献   

3.
4.
IRESs are known to recruit ribosomes directly, without a previous scanning of untranslated region of mRNA by the ribosomes. IRESs have been found in a number of viral and cellular mRNAs. Experimentally, IRESs are commonly used to direct the expression of the second cistrons of bicistronic mRNAs. The mechanism of action of IRESs is not fully understood and a certain number of laboratories were not successful in using them in a reliable manner. Three observations done in our laboratory suggested that IRESs might not work as functionally as it was generally believed. Stem loops added before IRESs inhibited mRNA translation. When added into bicistronic mRNAs, IRESs initiated translation of the second cistrons efficiently only when the intercistronic region contained about 80 nucleotides, and they did not work any more effectively with intercistronic regions containing at least 300–400 nucleotides. Conversely, IRESs inserted at any position into the coding region of a cistron interrupted its translation and initiated translation of the following cistron. The first two data are hardly compatible with the idea that IRESs are able to recruit ribosomes without using the classical scanning mechanism. IRESs are highly structured and cannot be scanned by the 40S ribosomal subunit. We suggest that IRESs are shortcircuited and are essentially potent stimulators favoring translation in particular physiological situations.  相似文献   

5.
Alternative initiations of translation of the human fibroblast growth factor 2 (FGF-2) mRNA, at three CUG start codons and one AUG start codon, result in the synthesis of four isoforms of FGF-2. This process has important consequences on the fate of FGF-2: the CUG-initiated products are nuclear and their constitutive expression is able to induce cell immortalization, whereas the AUG-initiated product, mostly cytoplasmic, can generate cell transformation. Thus, the different isoforms probably have distinct targets in the cell. We show here that translation initiation of the FGF-2 mRNA breaks the rule of the cap-dependent ribosome scanning mechanism. First, translation of the FGF-2 mRNA was shown to be cap independent in vitro. This cap-independent translation required a sequence located between nucleotides (nt) 192 and 256 from the 5' end of the 318-nt-long 5' untranslated region. Second, expression of bicistronic vectors in COS-7 cells indicated that the FGF-2 mRNA is translated through a process of internal ribosome entry mediated by the mRNA leader sequence. By introducing additional AUG codons into the RNA leader sequence, we localized an internal ribosome entry site to between nt 154 and 318 of the 5' untranslated region, just upstream of the first CUG. The presence of an internal ribosome entry site in the FGF-2 mRNA suggests that the process of internal translation initiation, by controlling the expression of a growth factor, could have a crucial role in the control of cell proliferation and differentiation.  相似文献   

6.
The tobacco etch virus (TEV) 5'-leader promotes cap-independent translation in a 5'-proximal position and promotes internal initiation when present in the intercistronic region of a dicistronic mRNA, indicating that the leader contains an internal ribosome entry site. The TEV 143-nucleotide 5'-leader folds into a structure that contains two domains, each of which contains an RNA pseudoknot. Mutational analysis of the TEV 5'-leader identified pseudoknot (PK) 1 within the 5'-proximal domain and an upstream single-stranded region flanking PK1 as necessary to promote cap-independent translation. Mutations to either stem or to loops 2 or 3 of PK1 substantially disrupted cap-independent translation. The sequence of loop 3 in PK1 is complementary to a region in 18 S rRNA that is conserved throughout eukaryotes. Mutations within L3 that disrupted its potential base pairing with 18 S rRNA reduced cap-independent translation, whereas mutations that maintained the potential for base pairing with 18 S rRNA had little effect. These results indicated that the TEV 5'-leader functionally substitutes for a 5'-cap and promotes cap-independent translation through a 45-nucleotide pseudoknot-containing domain.  相似文献   

7.
A possibility of involvement of 3'-terminal 18S rRNA segment in the cap-independent initiation of translation on plant ribosomes was studied. It was shown that 3-terminal segment (nucleotides 1777-1811) of 18S rRNA including the last hairpin 45 is accessible for complementary interactions in 40S ribosomal subunits. Oligonucleotides complementary to this segment of rRNA when added to wheat germ cell-free protein synthesizing system were found to specifically inhibit translation of uncapped reporter mRNA coding for beta-glucuronidase, which bears in the 5'-untranslated region (UTR) a leader sequence of potato virus Y (PVY) genomic RNA possessing fragments complementary to the region 1777-1811. It was shown that a sequence corresponding to nucleotides 291-316 of PVY, which is complementary to a major portion of the 3-terminal 18S rRNA segment 1777-1808, when placed into 5'-UTR, is able to enhance translational efficiency of the reporter mRNAs. The results obtained suggest that complementary interactions between mRNA 5'-UTR and 18S rRNA 3'-terminal segment can take place in the course of cap-independent translation initiation.  相似文献   

8.
IRES-dependent translational control of Cbfa1/Runx2 expression   总被引:4,自引:0,他引:4  
The P1 and P2 promoters of the Cbfa1/Runx2 gene produce Type I and II mRNAs with distinct complex 5'-untranslated regions, respectively designated UTR1 and UTR2. To evaluate whether the 5'-UTRs impart different translational efficiencies to the two isoforms, we created SV40 promoter-UTR-luciferase reporter (luc) constructs in which the translational potential of the 5'-UTR regions was assessed indirectly by measurement of luciferase activity in transfected cell lines in vitro. In MC3T3-E1 pre-osteoblasts, UTR2 was translated approximately twice as efficiently as the splice variants of UTR1, whereas translation of unspliced UTR1 was repressed. To determine if the UTRs conferred internal ribosome entry site (IRES)-dependent translation, we tested bicistronic SV40 promoter-Rluc-UTR-Fluc constructs in which Fluc is expressed only if the intercistronic UTR permits IRES-mediated translation. Transfection of bicistronic constructs into MC3T3-E1 osteoblasts demonstrated that both UTR2 and the spliced forms of UTR1 possess IRES activity. Similar to other cellular IRESs, activity increased with genotoxic stress induced by mitomycin C. In addition, we observed an osteoblastic maturation-dependent increase in IRES-mediated translation of both UTR2 and the spliced forms of UTR1. These findings suggest that Cbfa1 UTRs have IRES-dependent translational activities that may permit continued Cbfa1 expression under conditions that are not optimal for cap-dependent translation.  相似文献   

9.
D G Macejak  P Sarnow 《Enzyme》1990,44(1-4):310-319
Translation of the mRNA encoding the immunoglobulin heavy-chain binding protein (BiP) is enhanced in poliovirus-infected cells at a time when translation of host cell mRNAs is inhibited. To test whether the mRNA of BiP is translated by internal ribosome binding, like picornaviral RNAs, we constructed plasmids for the expression of dicistronic hybrid RNAs containing the 5' noncoding region (5'NCR) of BiP as an intercistronic spacer element between two cistrons. Expression of these dicistronic mRNAs in mammalian cells resulted in efficient translation of both cistrons, demonstrating that the 5'NCR of BiP can confer internal ribosome binding to a heterologous RNA. This result suggests that the mRNA encoding BiP is bifunctional and can be translated by an internal ribosome-binding mechanism, in addition to the conventional cap-dependent scanning mechanism. This is the first demonstration of a cellular mRNA that can be translated by internal ribosome binding, and implies that this may be a mechanism for cellular translational regulation.  相似文献   

10.
The S1 mRNA of avian reovirus is functionally tricistronic, encoding three unrelated proteins, p10, p17 and σC, from three sequential, partially overlapping open reading frames (ORFs). The mechanism of translation initiation at the 3′-proximal σC ORF is currently unknown. Transient RNA transfections using Renilla luciferase reporter constructs revealed only a modest reduction in reporter expression upon optimization of either the p10 or p17 start sites. Insertion of multiple upstream AUG (uAUG) codons in a preferred start codon sequence context resulted in a substantial retention of downstream translation initiation on the S1 mRNA, but not on a heterologous mRNA. The S1 mRNA therefore facilitates leaky scanning to promote ribosome access to the σC start codon. Evidence also indicates that σC translation is mediated by a second scanning-independent mechanism capable of bypassing upstream ORFs. This alternate mechanism is cap-dependent and requires a sequence-dependent translation enhancer element that is complementary to 18S rRNA. Downstream translation initiation of the tricistronic S1 mRNA is therefore made possible by two alternate mechanisms, facilitated leaky scanning and an atypical form of ribosome shunting. This dual mechanism of downstream translation initiation ensures sufficient expression of the σC cell attachment protein that is essential for infectious progeny virus production.  相似文献   

11.
12.
Bacteriophage T7's gene 0.3, coding for an antirestriction protein, possesses one of the strongest translation initiation regions (TIR) in E. coli. It was isolated on DNA fragments of differing length and cloned upstream of the mouse dihydrofolate reductase gene in an expression vector to control the translation of this gene's sequence. The TIR's efficiency was highly dependent on nucleotides +15 to +26 downstream of the gene's AUG. This sequence is complementary to nucleotides 1471-1482 of the 16srRNA. Similar sequences complementary to this rRNA region are present in other efficient TIRs of the E. coli genome and those of its bacteriophages. There seems to be a correlation between this sequence homology and the efficiency of the initiation signals. We propose that this region specifies a stimulatory interaction between the mRNA and 16srRNA besides the Shine-Dalgarno interaction during the translation initiation step.  相似文献   

13.
A well-established feature of the translation initiation region, which attracts the ribosomes to the prokaryotic mRNAs, is a purine rich area called Shine/Dalgarno sequence (SD). There are examples of various other sequences, which despite having no similarity to an SD sequence are capable of enhancing and/or initiating translation. The mechanisms by which these sequences affect translation remain unclear, but a base pairing between mRNA and 16S ribosomal RNA (rRNA) is proposed to be the likely mechanism. In this study, using a computational approach, we identified a non-SD signal found specifically in the translation initiation regions of Escherichia coli mRNAs, which contain super strong SD sequences. Nine of the 11 E. coli translation initiation regions, which were previously identified for having super strong SD sequences, also contained six or more nucleotides complementary to box-17 on the 16S rRNA (nucleotides 418-554). Mutational analyses of those initiation sequences indicated that when complementarity to box-17 was eliminated, the efficiency of the examined sequences to mediate the translation of chloramphenicol acetyltransferase (CAT) mRNA was reduced. The results suggest that mRNA sequences with complementarity to box-17 of 16S rRNA may function as enhancers for translation in E. coli.  相似文献   

14.
The S1 genome segments of avian and Nelson Bay reovirus encode tricistronic mRNAs containing three sequential partially overlapping open reading frames (ORFs). The translation start site of the 3'-proximal ORF encoding the sigmaC protein lies downstream of two ORFs encoding the unrelated p10 and p17 proteins and more than 600 nucleotides distal from the 5'-end of the mRNA. It is unclear how translation of this remarkable tricistronic mRNA is regulated. We now show that the p10 and p17 ORFs are coordinately expressed by leaky scanning. Translation initiation events at these 5'-proximal ORFs, however, have little to no effect on translation of the 3'-proximal sigmaC ORF. Northern blotting, insertion of upstream stop codons or optimized translation start sites, 5'-truncation analysis, and poliovirus 2A protease-mediated cleavage of eIF4G indicated sigmaC translation derives from a full-length tricistronic mRNA using a mechanism that is eIF4G-dependent but leaky scanning- and translation reinitiation-independent. Further analysis of artificial bicistronic mRNAs failed to provide any evidence that sigmaC translation derives from an internal ribosome entry site. Additional features of the S1 mRNA and the mechanism of sigmaC translation also differ from current models of ribosomal shunting. Translation of the tricistronic reovirus S1 mRNA, therefore, is dependent both on leaky scanning and on a novel scanning-independent mechanism that allows translation initiation complexes to efficiently bypass two functional upstream ORFs.  相似文献   

15.
RNA plant viruses use various translational regulatory mechanisms to control their gene expression. Translational enhancement of viral mRNAs that leads to higher levels of protein synthesis from specific genes may be essential for the virus to successfully compete for cellular translational machinery. The control elements have yet to be analyzed for members of the genus Carmovirus, a small group of plant viruses with positive-sense RNA genomes. In this study, we examined the 3' untranslated region (UTR) of hibiscus chlorotic ringspot virus (HCRSV) genomic RNA (gRNA) and subgenomic RNA (sgRNA) for its role in the translational regulation of viral gene expression. The results showed that the 3' UTR of HCRSV significantly enhanced the translation of several open reading frames on gRNA and sgRNA and a viral gene in a bicistronic construct with an inserted internal ribosome entry site. Through deletion and mutagenesis studies of both the bicistronic construct and full-length gRNA, we demonstrated that a six-nucleotide sequence, GGGCAG, that is complementary to the 3' region of the 18S rRNA and a minimal length of 180 nucleotides are required for the enhancement of translation induced by the 3' UTR.  相似文献   

16.
A putative implication 3′-terminal 18S rRNA segment in the cap-independent initiation of translation on plant ribosomes was studied. It was shown that 3′-terminal segment (nucleotides 1777–1811) of 18S rRNA including the last hairpin 45 was accessible for complementary interactions within 40S ribosomal subunits. Oligonucleotides complementary to this segment of rRNA, when added to wheat germ cell-free protein synthesizing system, specifically inhibited translation of uncapped reporter mRNA encoding β-glucuronidase. In the 5′-untranslated region (UTR), the reporter mRNA contained a leader sequence of potato virus Y (PVY) genomic RNA with fragments complementary to the region 1777–1811. A sequence corresponding to nucleotides 291–316 of PVY, which was complementary to most of the 3′-terminal 18S rRNA segment 1777–1808, was shown to enhance translational efficiency of the reporter mRNAs when placed into 5′-UTR. The obtained results suggest that complementary interactions between 5′-UTR of mRNA and 3′-terminal segment of 18S rRNA can take place during cap-independent translation initiation.  相似文献   

17.
The insulin-like growth factor I receptor (IGF-IR) is a heterotetrameric receptor mediating the effects of insulin-like growth I and other growth factors. This receptor is encoded by an mRNA containing an unusually long, G-C-rich, and highly structured 5' untranslated region. Using bicistronic constructs, we demonstrated here that the 5' untranslated region of the IGF-IR allows translation initiation by internal ribosome entry and therefore constitutes an internal ribosome entry site. In vitro cross-linking revealed that this internal ribosome entry site binds a protein of 57 kDa. Immunoprecipitation of UV cross-linked proteins proved that this protein was the polypyrimidine tract-binding protein, a well known regulator of picornavirus mRNA translation. The efficiency of translation of the endogenous IGF-IR mRNA is not affected by rapamycin, which is a potent inhibitor of cap-dependent translation. This result provides evidence that the endogenous IGF-IR mRNA is translated, at least in part, through a cap-independent mechanism. This is the first report of a growth factor receptor containing sequence elements that allow translation initiation to occur by internal initiation. Because the IGF-IR has a pivotal function in the cell cycle, this mechanism of translation regulation could play a crucial role in the control of cell proliferation and differentiation.  相似文献   

18.
Watson-Crick base pairing is shown to occur between the mRNA and nucleotides near the 3' end of 16S rRNA during the elongation phase of protein synthesis in Escherichia coli. This base-pairing is similar to the mRNA-rRNA interaction formed during initiation of protein synthesis between the Shine and Dalgarno (S-D) nucleotides of ribosome binding sites and their complements in the 1540-1535 region of 16S rRNA. mRNA-rRNA hybrid formation during elongation had been postulated to explain the dependence of an efficient ribosomal frameshift on S-D nucleotides precisely spaced 5' on the mRNA from the frameshift site. Here we show that disruption of the postulated base pairs by single nucleotide substitutions, either in the S-D sequence required for shifting or in nucleotide 1538 of 16S rRNA, decrease the amount of shifting, and that this defect is corrected by restoring complementary base pairing. This result implies that the 3' end of 16S rRNA scans the mRNA very close to the decoding sites during elongation.  相似文献   

19.
Previous experiments showed that S15 inhibits its own translation by binding to its mRNA in a region overlapping the ribosome loading site. This binding was postulated to stabilize a pseudoknot structure that exists in equilibrium with two stem-loops and to trap the ribosome on its mRNA loading site in a transitory state. In this study, we investigated the effect of mutations in the translational operator on: the binding of protein S15, the formation of the 30S/mRNA/tRNA(fMet) ternary initiation complex, the ability of S15 to inhibit the formation of this ternary complex. The results were compared to in vivo expression and repression rates. The results show that (1) the pseudoknot is required for S15 recognition and translational control; (2) mRNA and 16S rRNA efficiently compete for S15 binding and 16S rRNA suppresses the ability of S15 to inhibit the formation of the active ternary complex; (3) the ribosome binds more efficiently to the pseudoknot than to the stem-loop; (4) sequences located between nucleotides 12 to 47 of the S15 coding phase enhances the efficiency of ribosome binding in vitro; this is correlated with enhanced in vivo expression and regulation rates.  相似文献   

20.
The possible involvement of 18S rRNA fragment 1638–1650, including basements of the helices h44 and h28, as well as nucleotides of the ribosomal decoding site in the cap-independent mode of the initiation of the translation of plant ribosomes is studied. This rRNA fragment is shown to be accessible for complementary interactions in the 40S ribosomal subunit. It is found that the sequence that is complementary to the 18S rRNA fragment 1638–1650 is able to enhance the efficiency of the reporter mRNA translation when placed just after the initiation codon. The obtained results indicate that, in the course of the cap-independent mode of the initiation of translation, complementary interactions can occur between the mRNA coding sequence and 18S rRNA fragment in the region of the ribosomal decoding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号